

What’s New in
Omnis Studio 11.2

Omnis Software
July 2025

75-072025-01

The software this document describes is furnished under a license agreement. The software may be used or copied
only in accordance with the terms of the agreement. Names of persons, corporations, or products used in the tutorials
and examples of this manual are fictitious. No part of this publication may be reproduced, transmitted, stored in a
retrieval system or translated into any language in any form by any means without the written permission of Omnis
Software.

© Omnis Software, and its licensors 2025. All rights reserved.
Portions © Copyright Microsoft Corporation.
Regular expressions Copyright (c) 1986,1993,1995 University of Toronto.

© 1999-2025 The Apache Software Foundation. All rights reserved.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
Specifically, this product uses Json-smart published under Apache License 2.0
(http://www.apache.org/licenses/LICENSE-2.0)

© 2001-2025 Python Software Foundation; All Rights Reserved.

The iOS application wrapper uses UICKeyChainStore created by http://kishikawakatsumi.com and governed by the MIT
license.

Omnis® and Omnis Studio® are registered trademarks of Omnis Software.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows Vista, Windows Mobile, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other countries.

Apple, the Apple logo, Mac OS, Macintosh, iPhone, and iPod touch are registered trademarks and iPad is a trademark
of Apple, Inc.

IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation.

ICU is Copyright © 1995-2025 International Business Machines Corporation and others.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company Ltd.

Portions Copyright (c) 1996-2025, The PostgreSQL Global Development Group
Portions Copyright (c) 1994, The Regents of the University of California

Oracle, Java, and MySQL are registered trademarks of Oracle Corporation and/or its affiliates

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc.

Acrobat is a registered trademark of Adobe Systems, Inc.

CodeWarrior is a trademark of Metrowerks, Inc.

This software is based in part on ChartDirector, copyright Advanced Software Engineering (www.advsofteng.com).

This software is based in part on the work of the Independent JPEG Group.
This software is based in part of the work of the FreeType Team.

Other products mentioned are trademarks or registered trademarks of their corporations.

http://kishikawakatsumi.com/

 Table of Contents

 3

Table of Contents
ABOUT THIS MANUAL ... 6

SOFTWARE SUPPORT, COMPATIBILITY AND CONVERSION ISSUES 7
Serial Numbers and Licensing .. 7
Library and Datafile Conversion .. 7
macOS Support .. 7
Windows 32-bit Support .. 7
Enter Data Mode ... 8
VCS API .. 8
NULL values sent to the JS Client ... 8
macOS Tree Restructure .. 8
Subform Client Commands ... 8

WHAT’S NEW IN OMNIS STUDIO 11.2 .. 9

JAVASCRIPT COMPONENTS .. 11
Subformset Panels .. 11
Field Border Icons ... 14
Scroll Shadows ... 16
Component Icons .. 16
Native List ... 17
Toolbar Control ... 18
Data Grid .. 19
JS Chart Control ... 20
Html Link Control .. 20
Date Pickers ... 20
Navigation Menu Object .. 20
Tree Lists .. 21
Droplists .. 21
Tab Bar Control ... 21
JS Themes .. 21
Component Names ... 21

JAVASCRIPT REMOTE FORMS ... 22
Overriding the Browser History ... 22
Customizing Keyboard Shortcuts .. 23
Interacting with the Clipboard .. 24
Subform Palettes .. 25
PDF Printing ... 25
Push Notifications ... 26
Construct Row Variable .. 27
Return Methods .. 27
Date Parsing ... 27
HTTP Server ... 28
Layout Minimum Height .. 28

DEBUGGING METHODS ... 28
Method Bookmarks ... 28

OMNIS ENVIRONMENT .. 29
macOS Tree Restructure .. 29
SQL Query Builder .. 30
Omnis Configuration ... 30
Menu Theme Colors .. 31
Omnis Task Bar .. 31
Studio Now Sample Libraries .. 31

WINDOW COMPONENTS ... 31

Table of Contents

4

Border Icons ... 31
OBrowser .. 32
Entry Fields ... 32
Tab Strip ... 32
Masked Entry Field ... 33
Pushbuttons .. 33
Headed List ... 33

REPORT PROGRAMMING .. 33
Enterable Report Fields .. 33

OW3 WORKER OBJECTS .. 34
HTTP Worker Object ... 34
HASH Worker Object .. 34
OAUTH2 Worker Object .. 34
LDAP Worker Object ... 35

OMNIS VCS ... 35
VCS API .. 35
Update from VCS .. 36
Update Local Library ... 36
VCS Privileges .. 36

WINDOW PROGRAMMING .. 36
Enter Data Mode ... 36
Form and Report Wizards ... 37

LIBRARIES AND CLASSES .. 37
Recent Libraries .. 37
Exporting Libraries to JSON .. 37
File Classes .. 37

SQL PROGRAMMING .. 38
Cancelling a long-running fetch ... 38

LIST PROGRAMMING... 38
Searching Lists ... 38

JSON ... 38
JSON Object Methods .. 38

FUNCTIONS ... 39
bitand() and bitor() .. 39
bitclear() .. 39
bool() .. 39
coalesce() ... 40
coalesceempty() .. 40
FileOps.$copy() ... 40
FileOps.$move() ... 41
FileOps.$joinpath() .. 42
FileOps Workers ... 42
FileOps.$writefile() .. 42
idletime() ... 43
Omnis PDF Device.$embeddata() ... 43
Omnis PDF Device.$embedfile() ... 43
OREGEX.$replace() .. 43
OREGEX.$replaceall() .. 44
rcedit.$getapplicationmanifest() .. 44
rcedit.$getfileversion() ... 44
rcedit.$getproductversion() .. 45
rcedit.$getresourcestring() .. 45
rcedit.$getversionstring() ... 45
replace() and replaceall() .. 46

DEPLOYING YOUR APPS ... 46
Server Configuration ... 46

 Table of Contents

 5

Firstruninstall... 46
EXTERNAL COMPONENT SDK ... 46

Functions .. 46

APPENDIX ... 47

MACOS TREE RESTRUCTURE ... 47
Online Documentation changes .. 47

About This Manual

6

About This Manual
This document describes the new features and enhancements in Omnis Studio 11.2
Revision 40173 release.

See the Readme.txt file for details of bug fixes in this release and any release notes
for Omnis Studio 11.2 Revision 40173.

See the Install.txt file to find out System Requirements for running the Development,
Runtime, and Server versions of Omnis Studio 11.2.

If you are upgrading from Studio 10.x or before, you may like to read the ‘What’s New
in Omnis Studio 11.1’ (Whatsnew111.pdf, published June 2024) for more information
about features added in Studio 11.0 and 11.1.

NOTE: Where a new feature or an enhancement relates to an Enhancement Request
or Customer reported fault, the fault reference (e.g. ST/../…) and revision number is
included to enable you to track your own ERs and reported faults.

 About This Manual

 7

Software Support, Compatibility and
Conversion Issues

The following section contains issues regarding software support, compatibility and
conversion in Omnis Studio 11.2 Revision 40173.

Serial Numbers and Licensing
You will require a new serial number to run Omnis Studio 11.2, unless you are using
Studio Now. If you are on a support program such as ODPP or RMA, you may receive
an upgrade serial number. Contact your local sales office to buy a license or obtain an
upgrade serial number under your current support program; go to the Contacts page on
the Omnis website: www.omnis.net

Library and Datafile Conversion
Converting 10.x Libraries

All Omnis Studio 10.X or earlier libraries need to be converted to run in Omnis Studio

11.X. ONCE A STUDIO 10.0, 10.1 or 10.2 LIBRARY HAS BEEN OPENED
WITH OMNIS STUDIO 11.X IT CANNOT BE OPENED WITH STUDIO 10.x –
THE CONVERSION PROCESS IS IRREVERSIBLE.

Converting 8.x or earlier Libraries

ALL VERSIONS OF OMNIS STUDIO 11.X WILL CONVERT EXISTING
VERSION 8.1.X, 8.0.X, 6.1.X, 6.0.X AND 5.X LIBRARIES – THE
CONVERSION PROCESS IS IRREVERSIBLE.

DISCLAIMER: OMNIS SOFTWARE LTD. DISCLAIMS ANY RESPONSIBILITY FOR, OR LIABILITY

RELATED TO, SOFTWARE OBTAINED THROUGH ANY CHANNEL. IN NO EVENT WILL OMNIS

SOFTWARE BE LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES HOWEVER THEY MAY ARISE AND EVEN IF WE HAVE BEEN

PREVIOUSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

macOS Support
Omnis Studio 11.2 is certified to run on macOS 15 (Sequoia) (released in Sept 2024),
as well as macOS 14 (Sonoma) and macOS 13 (Ventura). Support for Monterey, Big
Sur and Catalina is no longer provided.

When you start Omnis Studio, it will check the version of macOS and will not run if it is
older than macOS 13 (Ventura). In this case, Omnis Studio will be marked with a
disabled icon.

Windows 32-bit Support
Omnis Studio 11.2 revision 38721 or above is no longer certified to run on Windows
32-bit architecture. Therefore, installers for development on Windows 32-bit are no
longer provided.

http://www.omnis.net/

About This Manual

8

Enter Data Mode
A reported issue with the Enter Data command and the window Close box has been
resolved in Omnis Studio 11.2 revision 39959. See the Enter Data Mode section below
for more details. (Revision 39959, ST/FU/917)

VCS API
The way you access the VCS API has changed in Omnis Studio 11.2 revision 39628.
See the VCS API section below for more details. (Revision 39610, ST/VC/837)

NULL values sent to the JS Client
In previous revisions of Omnis Studio, the Omnis server converted NULL values of
several data types to Empty or 0 when sending variables to the JavaScript Client. In
Omnis Studio 11.2 revision 39291 or above, all NULL values are retained when sent to
the client. (Revision 39291, ST/JS/3713)

macOS Tree Restructure
On macOS, the application tree in Omnis Studio 11.2 has been restructured to adhere
to the Apple best practice guidelines. See the notes under the ‘macOS Tree
Restructure’ section and in the Appendix in this guide for more information. (Revision
38518, ST/IN/281)

Subform Client Commands
The subform set/dialog/palette parameters string now expects a comma as the
separator regardless of $prefs.$language. (Revision 38303, ST/JS/3528)

A fault in the subform set/dialog/palette client commands (e.g.
$clientcommand('subformdialogshow',…) meant that comma parameter separators
were failing when the language in $prefs.$language was set to anything other than
English.

This has been fixed and using a comma as a parameter separator in the subform
set/dialog/palette client commands now works as expected. Therefore, if you have
created a workaround for this issue, your code may not work now and if this is the case
it will need to be amended.

 Software Support, Compatibility and Conversion Issues

 9

What’s New in
Omnis Studio 11.2

Omnis Studio 11.2 provides new and enhanced JavaScript Components and
Remote forms, increasing the richness and usability of your web and mobile apps. New
Bookmarks for methods have been added to make coding in Omnis quicker and
easier. And Support for AI has been enabled via our unique HTTP Worker object to
enable you to add a wealth of dynamic and intelligent features to your applications.

The following is a summary of the enhancements in Omnis Studio 11.2
Revision 40173:

❑ JavaScript Components
Subformset Panels: a new JavaScript control to display a number of subforms as
vertical, expandible panels, allowing you to create more compact UIs.
Field Border Icons: new properties to add icons to the left or right borders of JS
entry fields, adding to the richness of the UI for your web and mobile apps; left
icons are also available for Droplists and Combo boxes.
Scroll Shadows: you can now apply a shadow to various lists, grids, and
containers to indicate that they have extra scrollable content.
Component Icons: there’s a new set of ‘feather’ icons that you can use in your
apps, and the SVG Themer tool allows you to theme a batch of SVG icons, saving
you time.
Native List: a new property to add extra height to the end of a Native list, plus
buttons can be added to group headings, and button accessories can now take an
icon.
Toolbar Control: a new property and event have been added to Toolbars allowing
you to add a “back” function to the side menu of a toolbar allowing you to add
navigation functions to your web and mobile apps.
Plus there have been enhancements to Data Grids, the Chart control, the Html Link
control, Date pickers, the Nav Menu object, Tree lists, and more.

❑ JavaScript Remote Forms
Overriding the Browser History: you can now interact with the web browser’s
history stack using new form methods, to add navigation events inside your web
and mobile apps, overriding the default Back function in the browser.
Customizing Keyboard Shortcuts: you can now intercept keyboard presses in a
remote form or on individual controls and modify them with your own event handling
methods.
Interacting with the Clipboard: new methods allow you to read the last item of
data on the end user’s clipboard, or copy some data to the end user’s clipboard.
Subform Palettes: new options have been added to hide the arrow on subform
palette dialogs, if required, plus you can show a cutout around the target to
highlight it.
PDF Printing: new functions in the PDF Device allow you to embed files and data
into PDF files.

What’s New in Omnis Studio 11.2

10

❑ Debugging Methods
Method Bookmarks: you can now add Bookmarks to methods or to individual
method lines which allow you to mark significant places in your code and easily
locate them via the new Bookmarks manager window.

❑ Omnis Environment
macOS Tree Restructure: on macOS the application tree has been restructured to
adhere to best practice guidelines from Apple, which will improve verification
speeds when Omnis first starts up.

❑ Window Components

Border Icons: there is a new event for Entry fields to detect when Border icons
have been clicked (also for Token Entry fields, Combo boxes & Drop lists).
OBrowser: there is a new property in OBrowser to toggle the scroll zoom feature,
and you can set cefSwitches to the Omnis configuration file.

❑ Report Programming

Enterable Report Fields: there is a new property for report fields allowing end
users to enter and save text in the entry fields in a PDF report.

❑ OW3 Worker Objects

Using AI in Omnis: you can now access AI features via the provider’s API using
the HTTP Worker, including support for Google’s Gemini, OpenAI, and Anthropic,
including a new sample app in the Hub to demonstrate how you can use AI in
Omnis.

❑ Omnis VCS

VCS API: the way you access the VCS API has changed, using the $getapiobject()
method, allowing a simpler syntax for VCS API method calls.

❑ Functions

There’s a raft of new functions including:
bool() converts a value to a Boolean.
coalesce() and coalesceempty() return the first non-NULL or non-Empty
parameters from a list of values.
FileOps.$copy() and $move() allow you to copy or move files and folders.
FileOps.$joinpath() to join a number of path segments.
idletime() returns the number of milliseconds since the mouse or keyboard was last
used.
Omnis PDF Device.$embeddata() and $embedfile() allow you to embed files and
data into PDF files.
rcedit.$get… functions return information about files (Windows only).

 JavaScript Components

 11

JavaScript Components
Subformset Panels
The Subformset Panel is a new JavaScript control that allows you to display a number
of subforms as vertical, expandible panels. (Revision 38468, ST/JS/3467)

The Subformset Panel control allows a set of subforms to be displayed as a group of
expandible and collapsible panels within its border. Each panel consists of a title bar,
with optional expand/collapse and close buttons, and an associated subform arranged
vertically within the control.

The end user can expand and collapse each panel to view or hide the content of its
subform by clicking on the minimize icon (drop arrow) or by double-clicking the title bar,
and panels can be removed by clicking on the close icon. Individual panels can be
dragged by the user to change their order on the screen.

Creating a Subformset Panel

To create a Subformset Panel and setup its panels, set the $panelcount property under
the Panel tab in the Property Manager to the number of panels you want to include in
the control. To setup each panel, set the $currentpanel property to each panel in turn
and for each panel enter the name of a subform class (remote form) in the
$panelclassname property.

To ensure all the panels stretch to fit the width of the control, you can set $parentwidth
to kTrue; this overrides widths set for individual panels in $panelwidth.

You need to set $minbutton to kTrue to add a button to expand and collapse the
content of each panel. If you want the end user to be able to remove subforms, you can
add a close button to each panel by setting $closebutton to kTrue.

What’s New in Omnis Studio 11.2

12

General Properties

The Subformset Panel Control has some properties that are generic to all the panels,
including:

Property Description

$closebuttoniconid if selected, the default close button icon will be replaced with the
selected icon

$font the font of the title text of each panel title bar

$fontsize the font size of the title text of each panel title bar. The size of the
button icons in the title bar will be proportional to the size of the
title text

$minbuttoniconid if selected, the default minimize / restore button icon will be
replaced with the selected icon

$restoreiconid if selected, and the $minbuttoniconid property is also selected, the
minimize icon will be replaced by the restore icon when a panel is
collapsed

$textcolor the text color for the title text of all the panels. This value can be
overridden for individual panels by means of the $paneltextcolor
property in the Panels tab

$titlebackcolor the default background color for the title text of all the panels. This
value can be overridden for individual panels by means of the
$paneltitlecolor property in the Panels tab

$titlebarheight overrides the default titlebar height of 24 pixels (0 in the Property
Manager)

$tooltipsactive if true, any tooltips which have been defined for individual panels
will be displayed when the panel titlebar is hovered

The following properties in the Action tab in the Property Manager determine the
behavior of the panels:

Property Description

$closebutton if true a close button is shown on the panel title. If the user clicks the
close button the panel and subform are removed.

$esctoclose if true the panels in the set can be closed by pressing the Escape
key.

$minbutton if true a minimize button is shown on the panel title. The user can flip
the expanded / collapsed status of the panel by clicking on the
button. Alternatively, the user can double-click on the titlebar to
achieve the same functionality.

$minbuttonistitle if true the minimize button icon is removed and the whole title bar
becomes the minimize button.

$openmax if true $panelheight is ignored and open panels expand to the full
height of the control. The title bars of any collapsed panels will not
show until the open panel has been collapsed.

$openmin if true the subform panels in the set are initially opened in the
minimized state.

$parentwidth if true the individual $panelwidth for each panel is overridden, and its
width is set to fill the width of the control.

 JavaScript Components

 13

Property Description

$preventdrag if true the user will not be able to drag the panels to re-order them.

$scrollable if true allows subforms to scroll. Only affects non-responsive
subforms as responsive subforms are scrollable by default.

$singleopen if true the panels are initially displayed with the first panel only
expanded ($openmin must be set to false).

Panel Properties

The ‘Panel’ tab in the Property Manager contains properties that apply to the panel
specified in $currentpanel. First set $panelcount to specify the number of panels in the
control.

Property Description

$currentpanel panel specific properties are assigned to the current panel; set
this in design mode to assign panel properties

$movepanel allows you to move a panel in design mode; the current panel
moves to the position specified by the number entered and the
panels after this are bumped down

$panelclassname the classname of the subform (remote form)

$panelcount the number of panels in the control

$panelheight the height of the subform panel when it is in the expanded
state

$panelid an optional unique ID character string used to identify the
panel

$panelsubformparams an optional comma-separated list of parameters that can be
passed to a subform

$paneltitle the title text of the panel

$paneltitletooltip an optional character string displayed when the title bar is
hovered. The $tooltipsactive property must be set to true

$panelwidth the width of the subform panel if $parentwidth is set to false

Colors and Icons

The colors of the panel title text and panel title background are determined by the
general $textcolor and $titlebackcolor properties. To assign colors to individual
panels, the colors can be overridden by the specific color properties $paneltextcolor
and $paneltitlecolor in the ‘Panel’ tab.

The default minimize and close button icons can be overridden by selecting an icon in
the $minbuttoniconid and $closebuttoniconid properties.

Passing Parameters

The Subformset Panel Control has the facility to pass a set of parameters to its
subforms. The $panelsubformparams property is a comma-separated list of
parameters that can be passed to each subform.

Events

The Subformset Panel control reports the following events. The evPanelOpened event
reports the panel that has been expanded from the collapsed state, while the
evPanelCollapsed event reports the panel that has been collapsed from the open
state. The evPanelRemoved event reports the panel that has been removed from the
set.

What’s New in Omnis Studio 11.2

14

For each of these events the pPanelID parameter returns the unique ID of the panel,
and the pPanelPosition parameter returns the position of the panel in the set.

Methods

The Subformset Panel control has the following methods:

❑ $addpanel(cPanelID, cPaneltitle, cPanelclassname, cPanelsubformparams,
iPaneltextcolor, iPaneltitlecolor)
adds a new panel at the end of the subform set.

❑ $removepanel(cPanelID)
removes the panel denoted by cPanelID.

❑ $openpanel(cPanelID)
opens the panel denoted by cPanelID.

❑ $collapsepanel(cPanelID)
collapses the panel denoted by cPanelID.

The methods that require cPanelID use the IDs assigned to each panel in $panelid.

In addition, the Subformset Panel control has the $showpanel() method which can be
used when the control is enabled as a Side Panel ($sidepanel is kTrue).

Field Border Icons
The $bordericonstyle property, the $setbordericonstyle() method, and the
evBorderIconClicked event have been added to JS Entry Fields to allow you to add
icons to the left or right borders of the fields, as well as the left side of Combo boxes
and Drop lists. (Revision 39977, ST/JS/3766)

Aria accessibility labels have been added to Field Border Icons, as specified in the
$bordericonstyle property, plus the $setbordericonstyle() method has a new optional
parameter cAriaLabel to specify the aria label for the icons. (Revision 40101,
ST/JS/3776)

The pEvAfterFired parameter has been added to evBorderIconClicked. It is kTrue if
clicking the border icon triggered evAfter for the field. (Revision 40117, ST/JS/3778)

The $bordericonstyle property, the $setbordericonstyle() method, and the
evBorderIconClicked event have been added to JavaScript Entry Fields to allow you
to add icons to the left or right borders of fields. This enhancement also applies to
Droplists and Combo Boxes, where icons can be added to the left side of the field only,
due to the drop arrow icon on the right. Border icons are available in existing revisions
for Window class Entry Fields and the implementation for JS Entry fields is largely the
same.

 JavaScript Components

 15

Field border icons can be added to Entry fields using the $bordericonstyle property,
which only applies when the field border style in $effect is set to kJSborderPlain. The
icon size is larger for Entry fields in the JavaScript client, that is, 20x20 pixels
compared to 16x16 in Window classes.

The single property $bordericonstyle stores the settings for the left and right icons,
which you can specify in the Property Manager.

When setting $bordericonstyle you can also set the Aria accessibility label for the right
and left icons.

The $setbordericonstyle() method allows you to set the left or right icon for a JS Entry
Field as defined in the $bordericonstyle property, and has the following syntax:

❑ $setbordericonstyle()
$setbordericonstyle(bLeftIcon [,cIcnIDname, iIcnTintColor, iBackTintColor, iAlign,
cAriaLabel]) sets $bordericonstyle of the left or right icon using the following
parameters:
bLeftIcon set to kTrue for the left icon, kFalse for the right icon
cIcnIDname is the name or ID of the icon, e.g. the name of an SVG icon or a path
using the iconurl() function
iIcnTintColor is the color of the icon, e.g. primary theme color
iBackTintColor is the background color, e.g. the default is the background color of
the field
iAlign is the vertical alignment of the icon within the field, a constant, either
kJsVertCenter (the default), kJsVertBottom, or kJsVertTop
cAriaLabel is the aria accessibility label used if the icon is clickable

You can enable the evBorderIconClicked event (in $events for the control) to make
the border icons active or clickable. If evBorderIconClicked is enabled, border icons
can be clicked and tabbed to, otherwise they are inactive and for display only. The
event has the parameter pLeftBorderIcon. If true, the left border icon was clicked, or if
false, the right border icon was clicked. The pEvAfterFired parameter is kTrue if clicking
the border icon triggered evAfter for the field.

What’s New in Omnis Studio 11.2

16

Scroll Shadows
You can now apply a shadow to various lists, grids, and containers to indicate that they
have scrollable content – the shadow will appear on the relevant edge of the control to
show that there is more content that can be scrolled. (Revision 39756, ST/JS/3714,
ST/JS/3741 for the first raft of JS controls, and Revision 40151, ST/JS/3788 scroll
shadow added to the Subform control)

Scroll shadows are fading shadows that can be added to various JavaScript
components to indicate when part of the content is hidden and can be revealed by
scrolling. There are two scroll shadow properties:

$scrollshadowwidth indicates the width (depth) of the shadows in pixels. A zero value
(the default) means there are no scroll shadows.

$scrollshadowcolor is a color value including alpha (opacity), selected using the
alpha color picker.

The following JavaScript components support scroll shadows:

List Control Native List Data Grid

Complex Grid Droplist Combo Box

Edit Control Picture Paged Pane

Scroll Box Subform Control Tile Grid

Tree List

Component Icons
Feather Icon Set

A new set of SVG icons called ‘feather’ has been added to Omnis Studio. (Revision
39034, ST/JS/2798)

A new set of SVG icons called ‘feather’ has been added to Omnis which can be used
for JavaScript components as an alternative to the existing ‘material’ icon set. To use
the feather icon set, you need to add the name ‘feather’ to the $iconsets library
property (via the Property Manager), after which the feather icon set will be available in
the Select an Icon dialog alongside the existing icon sets including material.

The feather icon set contains over 200 SVG icons which are suitable for a broad range
of business use cases. They have been ‘themed’ using the SVG Themer tool (available
in the Tools>>Add Ons menu) and therefore support JS Themes (see also batch
theming below).

The icons in the feather icon set are issued under the MIT License, so you are free to
use them in your Omnis applications but with the proper attribution in your product
licensing.

SVG Themer Tool

You can now theme a batch of SVG icons using the SVG Themer tool (available in the
Tools>>Add Ons menu), making it easier and quicker to add a new icon set for use
with JS Themes; in previous revisions you could only theme one icon at a time.
(Revision 39111, ST/AD/210)

You can theme and export a batch of SVG icons using the SVG Themer tool. In this
case, you can open a number of SVG image files, make a selection from the list or
select all the files (using Ctrl/Cmnd+A), adjust the Set Fill Color and Set Stroke Color
options as required, and click Export to theme and export all the files.

 JavaScript Components

 17

IMPORTANT: note that when exporting a batch, any files in the destination folder with
the same name as the exported files will be automatically overwritten without a
prompt to overwrite the files, so you may want to place the exported themed files in
a separate folder if you wish to retain the original SVG image files.

If you are creating a new icon set, the icons need to be placed in a folder in the
‘iconsets’ folder in the Omnis tree, and the folder name of the icon set needs to be
added to the $iconsets library property. You can then select the icon for a component
by setting its $iconid property in the Select an icon dialog.

Icon Naming

When specifying $iconid for SVG icons, the icon set name is now added to the icon
name in the format setname.iconname. (Revision 39060, ST/HE/2073)

When you select an icon from the Select an Icon dialog the icon set name is now
added to the icon name using the format iconsetname.iconname, where iconsetname
is the name of the icon set containing the icon. This avoids any conflict where different
icons with the same name may exist in different icon sets. For example, to reference an
icon called ‘archive’ in the ‘material’ icon set, the full name material.archive is used and
Omnis will identify the icon in the correct icon set. This format of naming icons does not
apply when using the old PNG icons with numeric icon IDs.

Note when using the new naming, you can still append a custom size to the icon name
in the format setname.iconname+WxH when specifying $iconid in the Property
Manager or in code, e.g. material.account_box+60x60 to display the icon at 60x60
pixels.

Native List
Extra Scroll Height

The $extrascrollheight property has been added to the JS Native List. (Revision
39920, ST/JS/3760)

The $extrascrollheight property specifies the extra scroll height added to the end of a
Native list. This could be useful to allow space for a Floating Action Button to be
displayed over the top of a Native list, for example.

What’s New in Omnis Studio 11.2

18

Native List Buttons

You can now add buttons to the group headings in Native Lists, plus button
accessories can now take an icon (or image) URL as their content. (Revision 39773,
ST/JS/3740 & ST/JS/3748) The following example shows the use of icons buttons and
icons in a Native List:

Native Lists have two new properties: $groupaccessorytypecol and
$groupaccessorycontentcol, which can be set to column numbers in your main
(grouped) list which contain values for the group heading's accessory type, and its
content, respectively (these cannot have the value 1 or 2, as they are reserved for the
group name and item list).

You can set $groupaccessorytypecol to kJSNativeListAccessoryTypeButton to add a
button to the group heading (no other accessory type is currently supported).

$groupaccessorycontentcol can be set to text or an icon/image URL, the image being
detected by the URL ending with a .png/.jpg/.jpeg/.svg extension.

If you are not using a URL generated using the iconurl() function, you can specify a
size to render the image at by including a URL parameter specifying this with the
format _<w>x<h>.

E.g. https://omnis.net/developers/resources/favicon.png?_20x20

You can specify a separate tint color for themed SVG icons by including a "color" URL
parameter, e.g. con(iconurl("add+24x24"),"&color=red"). Otherwise, the icons will use
the color resolved as the $buttontextcolor.

When a group heading accessory is clicked, evClick will be fired. The pWhat
parameter will be kJSNativeListPartGroupAccessory, and pGroup will be the group
number.

Toolbar Control
The $backbutton property and evBackClick event have been added to the JS Toolbar
control to allow you to add a “back” function to the side menu in a JS Toolbar control.
(Revision 39791, ST/JS/3753)

You can now add a 'back' button to the left side of a JS Toolbar control by setting
$backbutton to kTrue. In this case, if the side menu is visible ($sidemenu is kTrue),
the hamburger menu is replaced by the back button. When the back button is visible
and is clicked, the new evBackClick event is triggered.

You could use this property and event to add a “back” function to the side menu in a
toolbar. For example, you could use an option in the side menu to navigate to a

 JavaScript Components

 19

different form, change the hamburger menu to show the back button by setting
$backbutton, then when this is clicked return to the original form and hide the back
button.

Data Grid
Filtering the Grid

The $filteronkeypress property has been added to the Data Grid to control when
filters are applied to the grid data – in previous revisions, the filtering took place on
each key press. (Revision 39953, ST/JS/3618)

If $filteronkeypress is set to true, the grid is filtered on every keypress (the default, to
maintain behavior from previous revisions). If false, filtering takes place when the Enter
key is pressed or when the focus leaves the field.

Disabling Grid Cells

The $enablecell method has been added to the Data Grid control to prevent specific
cells from being edited. (Revision 39803, ST/JS/3695)

The $enablecell(pRow,pCol,pDataColumnName) method is called before a cell is
made editable, so return kFalse to disable editing for the cell. This method can be client
or server executed.

Grid Cell Tooltips

You can now display tooltips for individual cells in a Data Grid. (Revision 39004,
ST/JS/3545)

The $gettooltip() client-executed method is called when a grid cell is hovered. The
returned string is displayed as the tooltip for the cell. The method has the following
parameters pHorzCell, pVertCell, pDataColumnName to identify which cell has been
hovered over.

Pick Lists

The $picklistrowheight property has been added to the Data grid control to allow you
to set the row height in pick lists. You could set this to the same value as the row height
for the data grid, e.g. 44 which is the default grid row height. The pick list row height will
not be less than the font height. (Revision 39006, ST/JS/3492)

Date Picker

If either of the Data Grid properties $editdatetext or $columneditdatetext is true, the
Date picker button is no longer treated as a separate tab stop. You can open the Date
picker using Alt + Down arrow, or by clicking on it. (Revision 39082, ST/JS/3685)

If you want the old behavior, where the Date picker is a separate tab stop, you can set
the JavaScript variable 'alwaysTabToDatePicker' to true on the data grid. For example:
Calculate lDataGrid as $cinst.$objs.datagrid1

JavaScript:lDataGrid.alwaysTabToDatePicker = true;

Drag and Drop

The evDrop, evCanDrop and evWillDrop events have a new parameter pColNum to
report the column number for the dropped data. (Revision 38661, ST/JS/1345)

The Data Grid control has a new parameter, pColNum, representing the column
number of the cell in which the data will be dropped. The parameter is available for the
evDrop, evCanDrop and evWillDrop events.

What’s New in Omnis Studio 11.2

20

JS Chart Control
The $xlabelpadding and $ylabelpadding properties have been added to the JS Chart
control to improve the display of the X and Y axis labels on the chart. (Revision 40131,
ST/JS/3781 and Revision 40138, ST/JS/3785)

The $xlabelpadding and $ylabelpadding properties allow you to specify the amount
of extra space between labels on the X or Y axes, to allow you to improve the display
of chart labels when you have a lot of data points and the labels would otherwise be
very cramped. The properties are specified as a number of pixels, but the number is
used in conjunction with the default label spacing to arrive at a “best fit” arrangement of
the labels.

As labels must be associated with a discrete data point, adding padding by setting
$xlabelpadding and $ylabelpadding may result in an uneven distribution of labels, for
example, labels may be placed at positions "0, 3, 6, 10, 13", and so on.

In most cases the X axis will always show the first and last label, so the full extent of
the range of data points can be seen. However, when using a large value for setting
the X axis label padding, the last label may not be shown, so as a special case you can
set $xlabelpadding to > 9999 to force only the first and last label to be shown.

Html Link Control
Link URL

When the link URL properties in the HTML Link Control are empty, the URL will now
default to the link text. (Revision 39433, ST/JS/3705)

If the $linkurl, $linkurlname, or $linkedobject properties are empty, the URL for the Html
Link control defaults to the text from $text or $dataname, provided the text has a valid
URL format (http://... or https://...).

Events

The default event behavior for evClick in the Html Link control can now be overridden
in the $event method using the Quit event handler (Discard event) command. (Revision
39413, ST/JS/3717)

Date Pickers
Date picker popups now use the client locale's default for the first day of the week.
(Revision 39601, ST/JS/3733)

Date pickers for Entry fields and Data Grids (not the Date picker control) will now use
the standard first day of the week from the client browser's locale when in the calendar
view. In previous revisions the first day of the week defaulted to Sunday.

Navigation Menu Object
Two new properties $::iconcolor and $cascadeiconcolor have been added to the
Navigation Menu Control to allow you set the color of the SVG icons in the control. This
enhancement applies to the JavaScript (Remote form) and Window class Nav Menu
controls. (Revision 39578, ST/JS/3720)

The $::iconcolor property specifies the color of the SVG icon on the top level menu
specified in $verticalcascadeiconid.

The $cascadeiconcolor property specifies the color of the SVG icons on the cascaded
menus, specified in $horizontalcascadeiconid, $closeboxiconid and
$hotcloseboxiconid.

 JavaScript Components

 21

In the JS client component, kColorDefault conforms to the default text color rules, while
in the Window class control kColorDefault causes the icon colors to follow the text
color.

Tree Lists
You can now set the size of the icons in a Tree List using "iconID+k32x32" in the list
definition. (Revision 38825, ST/JS/2095)

Droplists
The $selectonopen property is now set to kFalse by default in all new Droplists (when
added from the Component Store), which means the first line in the droplist is not
selected when the form is opened and evClick is not generated. $selectonopen was set
to kTrue by default in previous revisions. (Revision 38830, NC/JS/3625)

Tab Bar Control
The $currenttab property of the Tab Bar control can now be set to 0, which has the
effect of deselecting all tabs. (Revision 39794, ST/JS/3750)

JS Themes
The kJSThemeColorWindowChrome theme color has been added, which can be used
to color the window surrounding the JS client when displayed in a browser on a mobile
device. (Revision 40152, ST/JS/3789)

The kJSThemeColorWindowChrome theme color is used to color the window
surround, including the status bar, the 'unsafe area' (around the notch etc), and the
address bar if the JS client is displayed in a browser app on a mobile device.

This color is unique in the JS Theme Editor, in that you can clear its value to set it to
the Default color, that is, no color will be applied to the window surround.

Note that on Android, this does not take effect if you are using a dark theme on your
device.

Component Names
It is possible to assign a numeric name to $name for a component in your code using
the notation, but this is not recommended. If you do this, a warning will be added to the
trace log, and in this case, you should change your code to not assign numeric names.
(Revision 39215, ST/NT/821)

JavaScript component names (and other class components) cannot start with a
number and cannot contain only numbers, so when naming a component in the
Property Manager (i.e. changing $name) Omnis will not allow numeric names.

What’s New in Omnis Studio 11.2

22

JavaScript Remote Forms
Overriding the Browser History
You can now interact with the web browser’s history stack using various new form
methods, for example, to add navigation events inside your remote form which are
triggered when the user clicks the Back or Forward browser buttons. (Revision 39275,
ST/JS/2121)

There is a new sample app called JS History in the Samples section of the Hub in the
Studio Browser which shows how you can use the browser history to track clicks in a
Tab bar on a remote form.

The History stack

The History stack is a list of pages or states that a user navigates through within a
browser session. History states can be added to the session history stack or replaced
but cannot be removed. Rolling back history therefore involves moving the user back
through the history stack, so forward navigation will still be possible after a rollback.
Pushing a new state onto the stack does, however, invalidate any states that are ahead
of the user’s current position in the stack. Note that session history persists between
page reloads.

Interacting with the History

The browser history buttons can be overridden by adding a new state to the history
stack using the $pushhistorystate() remote form method, which can be client- or
server-executed. When the user uses the browser Back or Forward buttons to
navigate through the history, the $applynewhistory callback method will be called.

❑ $pushhistorystate(wRow, [bReplaceState=kFalse])
wRow is a row and should contain the information needed for you to restore your
application to this state. This could be as simple as the current tab number of a tab
control, as shown in the sample app. You can replace the current history state
instead of adding it to the history stack by specifying bReplaceState as kTrue.

❑ $applynewhistory()
receives the row wRow from $pushhistorystate as a parameter. Custom code
should be added to this form method to determine the behavior to be applied on
browser navigation. For example, the tab number could be assigned to the
$currenttab property of a tab control, as in the sample app. Return kTrue to indicate
you have handled the history change. This will prevent $applynewhistory being
called on any other forms for this history navigation event.

Note that $applynewhistory will be called on all open forms until one returns kTrue, and
that the order in which forms are called is not guaranteed.

In the sample app, when the end user clicks on a Tab bar the tab number is added to
the browser history using $pushhistorystate(), so when the user clicks on the Back
button in the browser, Omnis cycles back through the tabs in the correct order
according to the browser history.

Rolling Back the History

The $rollbackhistory form method can be used to move the user back through the
custom history states that have been added using $pushhistorystate(). $rollbackhistory
can be client- or server-executed.

❑ $rollbackhistory([iCount=0, bPreventNotify=kFalse])
iCount is the number of custom states to go back. The default value is zero, which
takes the user back to the beginning of custom history. If bPreventNotify is
specified as kTrue, $applynewhistory will not be called at the end of the rollback.

 JavaScript Remote Forms

 23

In the sample app, a home button uses $rollbackhistory without a parameter to jump
back to the beginning of the history stack, in effect going back to the initial tab.

Customizing Keyboard Shortcuts
You can now intercept keyboard presses in a remote form or on individual controls and
modify them with your own event handling methods. (Revision 39937, ST/JS/3008)

The new $keyboardshortcut client-executed method allows keyboard events to be
intercepted either in the remote form or on a JS control, which allows you to add
custom behavior to a keyboard event where one or more of the modifier keys are
pressed. The $keyboardshortcut method can be called on a remote form instance by
overriding the default form method or can be added to a JavaScript control.

The $keyboardshortcut method has the following parameters:

❑ pSystemKey
If the pressed key is a system key, the value is the keyboard constant value
representing the pressed key, such as kBack. If the pressed key is not a system
key the value is 0.

❑ pCharacterKey
If the key is a character key the value is the uppercase version of the character
pressed. If the pressed key is not a character the value is an empty string.

❑ pModifiers
Is the sum of the following keyboard modifier constants, representing the state of
these modifiers at the point the system or character key was pressed: kJSModShift,
kJSModCtrl, kJSModAltOrOption, kJSModCmd.
These values produce a "bitmask" where each value in the sum sets a different
binary bit in the number. You can use the binary bitand() function to see whether
the kJSMod... values' bits are set. For example, the following code would determine
if the control key is pressed, where lControlKey is a Boolean variable:

 Calculate lControlKey as bitand(pModifiers,kJSModCtrl)<>0

❑ pFocusedControl
Is a reference to the current active control, or null if no control is focused. It cannot
be assigned to an instance variable, but its properties, such as
pFocusedControl.$name, can be assigned to an instance or local variable

The $keyboardshortcut method should return kTrue to specify that you have handled
the keyboard shortcut, and do not want the default behavior to occur. For example, the
following code will result in the default keyboard shortcut behavior for ctrl + “S” being
overridden and $somemethod() being called instead:
If pCharacterKey="S"&lControlKey=kTrue

 Do $cinst.$somemethod()

 Quit method kTrue

End If

An attempt is first made to call $keyboardshortcut on the current active control (or top
form if no control is active), and successively up the stack of container controls and
forms until a control / form is encountered whose $keyboardshortcut method (if it
exists) returns kTrue.

Web Browser or Operating System shortcuts using the same key combinations may
take precedence. Therefore, you are advised to test your methods thoroughly to ensure
your custom shortcuts are not already used by the OS or browser.

What’s New in Omnis Studio 11.2

24

Interacting with the Clipboard
Reading Data from the Clipboard

The $readclipboard() and $onclipboardread() methods have been added to remote
forms to allow you to read the last item of data on the end user’s clipboard. (Revision
39979, ST/JS/3767)

The $readclipboard() remote form method allows you to read the last item of data on
the end user’s clipboard, which in turn calls the $onclipboardread() remote form
method, passing it three parameters:

❑ pSuccess
A boolean value indicating whether the clipboard read has been successful

❑ pPlainText
A character value. If pSuccess is true, pPlainText is the value of the ‘text/plain’
MIME type of the clipboard content. If there is no plain text data on the clipboard,
pPlainText will be an empty string. If pSuccess is false, pPlainText is the associated
error message

❑ pExtraData
A row containing any other MIME types associated with the data (for example
‘text/html’, ‘image/png’). The column headings are the MIME types, with the values
being the data value corresponding to the MIME type. Html text data is a Character
type, while images are represented as Binary data

Both $readclipboard() and $onclipboardread() can be either client- or server-executed.

The following example code in $onclipboardread() would assign the value of some
clipboard plain text to iText if the read is successful, or send an error message to the
trace log if not:
If pSuccess=kTrue

 Calculate iText as pPlainText

Else

 Send to trace log [con("error: ",pPlainText)]

End If

As another example, if the clipboard item is an image, the binary string associated with
the image can be assigned to iImageData in the following code:
Calculate iImageData as pExtraData.["image/png"]

Html text may be sanitized depending on the browser to prevent malicious content from
being pasted into the document.

For security reasons, $readclipboard() will only work if called within a secure context
and from a user interaction such as a button click. In Chrome, the browser’s clipboard
permissions may need to be changed to ‘Allow’ or ‘Ask’. In Safari and Firefox, when the
method is called a Paste option is displayed, which will need to be clicked by the end
user to proceed with the clipboard read.

Copying Data to the Clipboard

The $copytoclipboard() method has been added to remote forms to allow you to copy
some data to the end user’s clipboard. (Revision 39448, ST/JS/3330)

The $copytoclipboard() form method has the following parameters:

❑ $copytoclipboard(vDataToCopy[,cMIMEType='text/plain',bDataIsBinary=kFalse])
copies vDataToCopy to the user's clipboard, either character or binary depending
on the value of bDataIsBinary; cMIMEType is the MIME type of the data which
defaults to "text/plain"

If Chrome is being used, the end user can change the permission level for the
clipboard in the privacy and security settings. The default is "Ask", but the user could
also change the permission level to "Allow" or "Block". However, whatever the
permission level that the user has set, the $copytoclipboard method will work without

 JavaScript Remote Forms

 25

interruption if it has been initiated by the user, for example by clicking a button – "Ask"
or "Block" will only be active if the $copytoclipboard method has been called other than
by user interaction. Permissions do not apply in Firefox or Safari.

For example, a character variable iText holds the text entered into an Edit Control.
When a button is clicked, the text is copied to the user's clipboard as text. The code
behind the button would be:
On evClick

 Do $cinst.$copytoclipboard(iText)

If the text held by iText is html, which needs to be rendered as rich text, the code
behind the button would be:
On evClick

 Do $cinst.$copytoclipboard(iText,"text/html")

In the following example, a binary variable iImageData holds the binary data of an
image. When a button is clicked the image data in iImageData is copied to the
clipboard. The code behind the button would be:
On evClick

 Do $cinst.$copytoclipboard(iImageData,"image/png",kTrue)

Subform Palettes
Palette Arrow

The kSFSPaletteHideArrow flag has been added to the subform palette options to
hide the arrow if required. (Revision 38681, ST/JS/3571)

When using the "subformpaletteshow" client command to open a subform palette, you
can use the kSFSPaletteHideArrow flag in the iPositionFlags row parameter to hide the
arrow normally shown on the palette window.

Show Overlay

A cutout has been added around the target for palette dialogs when overlay is shown.
(Revision 39808, ST/JS/3757)

If you pass the bShowOverlay parameter as kTrue to the "subformpaletteshow" client
command ($clientcommand), then if it points at a control (or a sub-element of the
control), a cutout will be made in the overlay around that element, to highlight it.

Control Name

Subform Palette dialogs now open centered in the browser window if no valid control
name is given. (Revision 38693, ST/JS/3610)

If the control name given in the cControl parameter of the "subformpaletteshow" client
command is not found (or you omit the name), the palette dialog will be centered in the
browser window, and the arrow is not displayed since there is no control for it to point
at.

PDF Printing
Embedding Files and Data

Two new functions $embedfile() and $embeddata() have been added to the Omnis
PDF Device to allow you to embed files and data into PDF files. (Revision 38713,
ST/EC/1901)

$embedfile()

The $embedfile() function allows you to embed a file in a PDF file, such as an XML file.
If cName is omitted, the name of the file in cFilePath is used.
Omnis PDF Device.$embedfile(cFilePath[, cName])

What’s New in Omnis Studio 11.2

26

$embeddata()

The $embeddata() function allows you to embed the data in cData with the given name
cName in a PDF file.
Omnis PDF Device.$embeddata(cData, cName)

Setting the Document Info

The $setdocinfo method now allows you to set the producer and creator of the output
PDF file. (Revision 39956, ST/EC/1942)

The cProducer and cCreator parameters have been added to the $setdocinfo method
to allow you to add the PDF producer and creator. The full syntax for the method is
now:

$setdocinfo(cAuthor[,cTitle='',cSubject='',cKeywords='',cLanguage='en-
GB',cProducer='Omnis Studio PDF Device',cCreator='Omnis Studio'])

❑ cProducer
is the software that generated the PDF, the default is Omnis Studio PDF Device.

❑ cCreator
is the software that created the content of the PDF, the default is Omnis Studio.

Push Notifications
Configuration and error handling for push notifications have been improved with the
addition of new parameters for the 'openpush' client command, and a new client
method $pushclosed which is called if a push connection closes. (Revision 38643,
ST/JS/3561)

The 'openpush' client command (executed using $clientcommand) has two new
optional row() parameters iMaxTries and cRetryCodes.

❑ iMaxTries
The max number of times a request will automatically be tried, if it returns a http
status code matched by cRetryCodes. -1 Means unlimited. Default is 5.

❑ cRetryCodes
HTTP status codes to treat as 'temporary errors'. These will be retried
automatically, up to iMaxTries times before reporting an error. This is a string
containing comma-separated codes and/or code ranges, e.g. "404,500-599" means
any responses with http status code 404 or anywhere between 500 and 599 will
automatically be retried. Default is 500-599.

The timeout period of each request is 60 seconds, so it can take multiple minutes for
an error to be reported, if you have more than a few iMaxTries. Timeouts are a normal
part of push connections – if the server hasn't pushed anything back, the requests will
keep being sent and timing out until it does.

In addition, there is a new client-executed method $pushclosed which can be
implemented for remote forms and is called (on all forms) if a push connection closes.
Return kTrue from the method to prevent the default behavior.

$pushclosed has two parameters:

❑ pErrorCode
Non-zero values indicate it was closed due to an error.
0 means it was closed by calling the 'closepush' $clientcommand.
> 1 means pErrorCode is the http status code which caused the error. An error
message will be displayed, unless you return kTrue to prevent the default behavior.
-1 means a transport error, i.e. the request could not be delivered.

❑ pWillRestart
If true, the default behavior will be to restart the push connection. Return kTrue to
prevent this.

 JavaScript Remote Forms

 27

Construct Row Variable
Headers Column

A new headers column containing the HTTP headers received from the JavaScript
client has been added to the construct row variable for remote tasks and forms.
(Revision 39230, ST/JS/3690)

The $construct row variable in a remote task now has an additional column named
headers, containing a row with each column matching a name-value pair for each
HTTP header received from the client, e.g. Host: developer.mozilla.org will include the
header 'host' as the column name with the 'developer.mozilla.org' as the value. The
header name is lowercased and all hyphens are removed, e.g. Accept-Language
becomes acceptlanguage.

Note a further enhancement was made in revision 39589 – any spaces at the
beginning of the header values are now stripped out.

Any spaces at the beginning of the header names in the headers construct row value
are now removed. (Revision 39589, ST/PF/1475)

Cookies Column

A new column named cookies has been added to the construct row variable that
contains the cookies available in the client browser. (Revision 38472, ST/TC/043)

The $construct row parameter in a remote task now has an additional column named
cookies, containing a row with each column matching a name-value pair for each
cookie, for example cookie1=hello will result in a row with the column name 'cookie'
and 'hello' as the value.

Return Methods
A Promise is now returned from calls to server-executed methods from the client if
there is no _return method setup. (Revision 38819, ST/JS/3622)

The default behavior now, when calling a server-executed method from the client, is to
return a Promise, unless there is a matching ..._return method, in which case it will call
back to the return method when complete (the behavior in previous revisions).

The return value from the server method will be passed through as a parameter in the
Promise's "then" function. This allows you to chain your asynchronous logic in the
same method, maintaining context and continue to use variables defined in the outer
method. For example:
Do $cinst.$myServerMethod() Returns lPromise

JavaScript: lPromise.then((returnVal) => {

JavaScript: lRetVal = returnVal; // Assign the parameter to a local variable

that Omnis code knows about

Do $cinst.$showmessage(lRetVal,"Server Method Complete")

JavaScript: });

Date Parsing
The Date Parser in Omnis tries to convert a string representation of a date or date/time
value to an Omnis Date/time format. Date string parsing has been improved and now
falls back to Short date/time formats. (Revision 39079, ST/JS/3684)

The Short date/time format depends on the browser locale, so for GB English it is
D/M/y, and for US English it is M/D/y, for example. Therefore, an end user could enter
"3/5" into any Date or Date/time field, and it might be converted to "3 May 2024" or
“March 5 2024”, for example.

What’s New in Omnis Studio 11.2

28

HTTP Server
The HTTP Server built into Omnis now supports IPv6. (Revision 38474, ST/WT/1881)

The HTTP Server in Omnis Studio allows you to test the Remote forms in your web
and mobile applications. The HTTP Server on macOS already supports IPv6, but IPv6
support has been added for Omnis running on Windows and Linux.

There is a new item “IPv” in the ‘server’ group in the Omnis Configuration file
(config.json). The values can be 4 for IPv4, 6 for IPv6, and 64 for a dual-stack IPv6
socket, that is, an IPv6 socket which has support for IPv4 on the same socket. By
default, IPv4 will be used.

Layout Minimum Height
The minimum value of $layoutminheight has been reduced to 10 (the previous
minimum value was 100). (Revision 38276, ST/LR/057)

The value range of $layoutminheight is now 10 to 32000 inclusive. Note it is set to 0 by
default (as in previous revisions), which means the layout height is 2 pixels below the
lower edge of the bottom-most component on the remote form.

Debugging Methods
Method Bookmarks
You can now add Bookmarks to methods or to individual method lines which allow you
to mark significant places in your code and easily locate them. (Revision 39442,
ST/CE/245)

You can show Bookmarks in the Method Editor by checking the Show Bookmarks
option in the View menu (enabled by default). Bookmarks are stored in a new system
table called #BOOKMARKS which is in the System Classes folder and can be edited in
the Bookmarks editor.

To add a bookmark, Right-click on the method name or in the margin of a method line
(where breakpoints are normally shown). When creating a bookmark, you can give the
bookmark a name, description and choose a color. Bookmarks added to a method line
can be moved up or down using drag and drop.

All Bookmarks for the current library are listed in the Bookmark editor which you can
open by double-clicking on a bookmark in the Method Editor, by selecting the ‘Open

 Omnis Environment

 29

Bookmarks’ option in the View menu, or by double-clicking on the #BOOKMARKS
system table in the Studio Browser. You can update, delete, or jump to a bookmark
from the Bookmarks list. When jumping to a bookmark, the bookmark is highlighted
briefly.

Exporting Method Bookmarks

When exporting a library to JSON, the bookmarks are exported. However, the
bookmarks system table #BOOKMARKS is not exported. In this case, bookmarks are
exported as part of the method, and when importing the library from JSON, the
bookmarks table is rebuilt.

Method Bookmarks and the VCS

When you attempt to add or edit a bookmark in a library that has been checked out of
the Omnis VCS, the #BOOKMARKS system table must be checked out. The VCS will
do a check when you select either the Bookmark Line or Bookmark Method option, or
try to edit a bookmark, to see if #BOOKMARKS is still read-only. If so, the VCS will
prompt you to check it out. If the checkout fails, or you cancel the checkout dialog, a
message will pop up indicating the bookmark cannot be added or edited while the class
is read-only.

If #BOOKMARKS does not exist in the corresponding VCS project (e.g. an existing
library which has not yet had the class checked in), the class's $showascheckedout
property is toggled and a message confirms this. You then need to ensure that the
#BOOKMARKS class is checked into the VCS.

Omnis Environment
macOS Tree Restructure
On macOS the application tree has been restructured to adhere to the Apple best
practice guidelines. This will improve verification speeds when Omnis first starts up.
(Revision 38518, ST/IN/281)

As a consequence of the macOS tree restructuring, you should be aware that many
files have changed location which may have an effect on the functioning of your
application or the deployment process you use. You should read the following sections
for details of the changes and make any necessary adjustments to your application or
deployment setup.

Only the main core Mach-O binary executable is now inside the Contents/MacOS
folder.

Any external component previously existing in the external, xcomp and jscomp folders
is now placed in the Contents/PlugIns folder. An external component will be identified
by its file suffix which will be one of u_external, u_xcomp or u_webdesign. The
wesecure and weshared bundles are also now placed into PlugIns.

Third-party components should be placed in the Contents/PlugIns folder if part of the
application bundle.

Components can still be placed in the legacy xcomp and jscomp folders within a user’s
application data folder as well as the PlugIns folder. Where there is a component with
the same name in the PlugIns folder of the user’s application data this will be loaded
instead of the duplicate in the legacy xcomp or jscomp folder.

The Contents/Helpers directory now contains any binary which supplements the use of

Omnis Studio and is not directly loaded. This will contain binaries for nodejs (the node

packages and other files remain in Resources), crashpad, Omnis load sharing and web
server plug-ins.

What’s New in Omnis Studio 11.2

30

All other non-binary files which were previously present in Contents/MacOS have been
moved into Contents/Resources. The original custom directory names will persist, e.g.
/Contents/Resources/firstruninstall

See the Appendix at the end of this document for specific changes in the online docs
regarding the macOS tree restructuring.

DAMs

The DAM components now locate their client libraries from a set of predetermined
paths which are the recommended locations for installing or bundling third party
libraries.

For more details see Tech note: TNSQ0043 – Loading External macOS Libraries

Notarization

The Notarize option in the Deployment tool has been updated and now uses the
notarytool command to notarize your application. (Revision 38542, ST/AD/326)

Older revisions of the Deployment tool use the altool command, but this will no longer
work since Apple has removed support for altool. You can however notarize the bundle
built with the Deployment tool using the notarytool command as follows:
xcrun notarytool submit <path-to>/<app-name>.dmg --apple-id <developer-email>

--team-id <team-id> --password <app-specific-password> --verbose –wait

SQL Query Builder
Query Builder Manager

A Query Builder Manager has been added to the SQL Query Builder toolbar and the
query time has been added to the Results tab. (Revision 38339, ST/SS/448)

The new Query Builder Manager lists the queries you have saved in the Query Builder
and is accessed via a new button next to the list of queries in the Query Builder toolbar.
In the Query Builder Manager, you can search for queries using the Find button, and
you can amend a query’s description.

When you Run a query, the time taken to run the query is now shown in the status bar
of the Results window.

Export Options

The Export Statement and Export Results options have been added to the context
menu in the SQL Query Builder. (Revision 39455, ST/SS/469)

Omnis Configuration
The $getconfigjson() and $setconfigjson() methods ($root.$prefs) have an additional
optional boolean parameter bBaseConfig, to control whether the methods operate on
the userconfig.json (the default) or the config.json configuration file. (Revision 38344,
ST/FU/896)

The syntax for the updated methods is:

❑ $getconfigjson([bBaseConfig=kFalse])
Returns userconfig.json as a row when bBaseConfig is set to kFalse or is omitted
(or empty if userconfig.json could not be parsed). If bBaseConfig is kTrue, returns
config.json instead.

❑ $setconfigjson(wConfigJson[, bBaseConfig=kFalse])
Sets userconfig.json to the supplied row when bBaseConfig is set to kFalse or is
omitted. If bBaseConfig is kTrue, sets config.json instead.

By default the $get and $set methods will operate on userconfig.json when
bBaseConfig is set to kFalse or is omitted. You can operate on the base config.json by

https://www.omnis.net/developers/resources/technotes/tnsq0043.jsp

 Window Components

 31

setting bBaseConfig to kTrue; however you should avoid editing config.json directly, so
in general you should update userconfig.json.

Note that userconfig.json overrides settings in config.json, so if a setting is present in
both config.json and userconfig.json, the userconfig.json value will be used.

Menu Theme Colors
The setting colormenuselectedtext has been added to the ‘menu’ section of the
appearance.json theme file which controls the color of the text of the currently selected
line in a menu. (Revision 39255, ST/MC/279)

The colormenuselectedtext theme color allows you to adjust the color of the text of the
currently selected line in a menu (Menu Class). This can be changed by setting the
$appearance property (an Omnis preference) in the Property Manager. This is
available for Windows only.

Omnis Task Bar
On Windows only, when the task bar is shown, the context menu on the task bar now
includes an option Show Fullnames to show or hide the library part of class names.
There is also a new option taskBarShowsFullClassnames in the ‘windows’ section of
the Omnis configuration file to set this option, which you can set in the Configuration
Editor. (Revision 38883, ST/HE/2068)

Studio Now Sample Libraries
There is a new 'Studio Now' filter in the Samples section in the Hub to show sample
libraries that have been added to the latest Studio Now release. (Revision 38502,
ST/BR/463)

Window Components
Border Icons
Border icons in Entry fields now respond to clicks. This applies to controls that support
$bordericonstyle including Entry fields, Token Entry fields, Combo boxes, and Drop
lists (Revision 38829, ST/BE/1821)

Clicking on a border icon now generates the event evBorderIconClicked. The event has
the parameter pLeftBorderIcon. If true the left border icon was clicked, or if false the
right border icon was clicked. For example:
On evBorderIconClicked

 If pLeftBorderIcon

 Popup menu MyOptionsMenu

 Else

 Send to trace log Right Icon Clicked

 End If

What’s New in Omnis Studio 11.2

32

OBrowser
Scroll Zoom

The $allowscrollzoom property has been added to OBrowser to toggle the scroll zoom
feature. (Revision 39299, ST/EC/1893)

The $allowscrollzoom property allows you to toggle the scroll zoom feature within a
browser window inside OBrowser. When set to kTrue (the default), the end user can
zoom in and out of the browser content by holding down the Ctrl key while scrolling the
mouse wheel. If $allowscrollzoom is set to false, this zoom functionality is disabled.
Note that when a browser page is cached, the current zoom size of the content is also
cached. This means that the page will be rendered at that scale, even if the zoom
functionality was disabled.

CEF Switches

You can now add cefSwitches with values to the “obrowser” item in the Omnis
configuration file, edited using the Configuration Editor. (Revision 38461, ST/EC/1895)

You can define cefSwitches with values in the config.json. For example, to enable web
socket connections from any origin, add the following:
"cefSwitches": [

 "remote-allow-origins=*"

],

Entry Fields
Various properties have been added to control the text font size and color of animated
content tips. (Revision 39021, ST/WC/600)

The properties $labelcolor, $labelfontsize, and $labelhottextcolor have been added
to Entry fields and Combo boxes to control the text color and size of the floating
content tip labels. By default, these map to a font size of 0 and kColorDefault to
maintain behavior in previous revisions where the color of the label text is the same as
the field text and the font size is 80% of the edit field.

Tab Strip
The scroll speed of a vertical Tab Strip has changed so, by default, the control uses the
number of tabs and the size of the control to determine the scroll speed, plus there are
some new config items to control the scroll speed and behavior. (Revision 38500,
ST/WO/2836)

You can control the scroll speed using the new tabstripSpeedToScroll item in the
‘defaults’ section of config.json. The default is 0 which uses the new scroll speed, or
you can enter the number of milliseconds you would like the scroll animation to use;
600ms was the default in previous revisions.

You can control whether the control scrolls when clicked using the new
tabstripScrollsOnClick item in the ‘defaults’ section of config.json. When set to false
(the default), the control scrolls as the pointer enters the scroll buttons. When set to
true the scroll buttons must be clicked to scroll the control. In this case, the Tab Strip
will scroll an average tab height per click and is not animated.

 Report Programming

 33

Masked Entry Field
The $passwordchar property has been added to the Masked Entry Field. (Revision
39799, ST/WO/2860)

You can use '*' in $passwordchar in a Masked Entry Field to replace characters with
asterisks to hide the field content (black dots are not supported for masked entry
fields).

Pushbuttons
The style of pushbuttons set to kSystemButton in $buttonstyle has changed on macOS.
(Revision 39811)

For headed lists and tree lists, $buttonstyle is the style of the header button, either
kSystemButton or kUserButton. On macOS, the kSystemButton button style now uses
the style of a native system pushbutton with a flexible height. If the height exceeds that
of a regular size button the button keeps the same style.

In previous revisions, the behavior was to use the square system style when the height
was taller than a regular size button. To enable the legacy behavior, set the new
$squaresystembuttons root preference to kTrue.

Headed List
A new property $showcolumnslinesifempty has been added to Headed Lists to show
column lines when the list is empty; this only applies when $showcolumnlines is also
kTrue. (Revision 39451, ST/WO/2858)

Report Programming
Enterable Report Fields
Report entry fields have a new property $enterable allowing the end user to enter and
save text in a PDF report. (Revision 38452, ST/EC/1849)

You can allow the end user to enter and save text in a field in a PDF report by setting
its $enterable property to kTrue. When the end user opens the PDF report, the field is
active and enterable and once text has been entered the PDF can be saved. Note this
only applies to PDFs that have been generated using the Omnis PDF Device.

Note that if the enterable report field is empty when it is printed, and the $nolineifempty
property is set to kTrue, then the whole line including the enterable field will not be
included in the report. In this case, it is advisable to set $nolineifempty for enterable
report fields to kFalse (which is the default).

The PRIobjectStruct has also been updated with a new mEnterable member which
external component developers could use to make their own enterable fields.

What’s New in Omnis Studio 11.2

34

OW3 Worker Objects
HTTP Worker Object
Using AI in Omnis

You can access AI models via their APIs using the Omnis HTTP Worker. An example
application called HTTP AI has been added to the Samples section of the Hub in the
Studio Browser to demonstrate how you can access various AI models. Note that you
will need to get an API key from the respective AI provider to use their service, which
may incur charges, or a free demo key may be available. (Revision 39432, ST/TU/054)

In the example, Omnis uses the HTTP Worker to make restful calls to the API of the
respective AI service. Object classes are provided to make calls to Google’s Gemini,
OpenAI, and Anthropic, which inherit the HTTP Worker object – support for AI Vision is
also included which allows you to analyze and interpret the content in image data. In
each of these object classes, $runprompt is called to build the request in JSON format
and make the restful call. On completion, $completed is called and passes the results
to $ai_completed or $ai_error in the calling window instance. An additional object class
oAIFunctions is provided where methods prefixed with $ai_ may be added for use with
function calls as demonstrated in the example.

Note that the AI configurations that you add in the example app are added to the
userconfig.json configuration file in a group named 'ai', including the API key which is
stored in plain text.

Header Content Type

The content-type header ‘application/json’ is now added automatically when content is
converted from a row or list parameter. (Revision 39412, ST/EC/1922)

HASH Worker Object
The $initsignature method has a new optional parameter iSignatureType to allow you
to select the RSA or ECDSA signature type. (Revision 39415, ST/EC/1902)
In addition, the bBlind parameter is now set to kTrue by default. (Revision 39456,
ST/EC/1928)

The syntax for the $initsignature method is now:

❑ $initsignature(vData, iHashType, vPrivateKeyPEM [,bBlind=kTrue,
iSignatureType=kOW3signatureRSA])

Where iSignatureType can be kOW3signatureRSA (the default) or
kOW3signatureECDSA. The latter enables ECDSA signatures, such as ES256, ES384
and ES512 depending on the hashing algorithm selected in iHashType (SHA256 for
ES256, SHA384 for ES384, SHA512 for ES512).

When using a ECDSA signature, the PEM private key used for signing must also be an
elliptic curve of the correct type for ES256, 384 or 512. The $initverifysignature method
can verify both RSA and ECDSA signatures.

When bBlind is kTrue (now the default) the RSA encryption used to generate the
signature uses blinding.

OAUTH2 Worker Object
PKCE

The $pkceentropy property has been added to the OAUTH2 Worker to control the code
verifier length for PKCE. (Revision 39423, ST/EC/1925)

The $pkceentropy property controls the code verifier length for PKCE and takes an
integer value between 43 (the default) and 128.

 Omnis VCS

 35

$completed callback method

The pRow in the $completed callback method for the OAUTH2 Worker Object has a
new column called state, which contains the value you set up in the $oauth2state
property. (Revision 38315, ST/EC/1889)

The state column contains the value you set up in the $oauth2state property. This
helps you to identify which user the callback belongs to. For example, where multiple
OAuth2 workers are used to authenticate multiple mobile devices, you could set a
UUID in the $oauth2state property and keep a list of username:uuid until the
$completed callback, where you can match up the token received.

LDAP Worker Object
The $init method in the LDAP worker can now accept the cUser and cPassword
parameters as either Character or Binary; this enhancement is to accommodate names
with umlauted characters. (Revision 39596, ST/EC/1921)

When Character is used, Omnis sends cUser and cPassword as UTF-8. When Binary
is used, Omnis sends cUser and cPassword using whatever encoding is required by
the server, e.g. CP1252 is required by some servers.

Omnis VCS
VCS API
The way you access the VCS API has changed. You should now use the $getapiobject
method to access the VCS API methods. (Revision 39610, ST/VC/837)

To call the VCS API methods you first need to use the $getapiobject() method to
return an object reference to the VCS API, for example:

Do $root.$modes.$getapiobject('VCS') Returns iAPIObjRef

Once the object reference has been generated, all calls to the API can be made using
this reference, allowing a simpler syntax for method calls. For example, to call the
$logon method, you can use:

Do iAPIObjRef.$logon(cUSERNAME, cPASSWORD, nTokenTime, cToken, cErrors,

rSessionOrSessionPoolRef, cDBName) Returns bStatus

This new approach means that you can no longer logon using any defined session
templates. Instead, you have to use a reference to either a logged on SQL session or a
session pool (e.g. $sessions.MY_VCS_SESSION or
$sessionpools.MY_VCS_SESSIONPOOL) specified in the rSessionOrSessionPoolRef
parameter. This allows you to logon to a session via code.

See VCS API in the online docs for full details including the new syntax for all the VCS
API methods.

Note that the old method of accessing the VCS API using $dotoolmethod() and the $x_
API methods will continue to work, but you are advised to use the new method going
forward.

$buildProject method

$buildProject VCS API method now allows classes to be locked or excluded in the
build. (Revision 39788, ST/VC/842)

The $buildProject method has two new list parameters, excludeClassList and
lockClassesList. Both are defined with cClassName and cClassType (e,g. wTest,

https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=Programming/15vcs.html#vcs-api&revision=39610

What’s New in Omnis Studio 11.2

36

kWindow) and contain a list of classes to either exclude from the build or to be built
locked.

Update from VCS
The Update from VCS option is now available when you right-click on individual or
selected classes and folders in the Studio Browser. (Revision 38480, ST/VC/829)

A new context menu option Update from VCS is available at class level in the Studio
Browser. Note the existing Update from VCS hyperlink option checks the whole library.
Therefore, if you only want to update the selected class(es) or folder(s), you can use
the new context menu option.

Update Local Library
The Update Local Library option is now available in the VCS to update the local
library relating to the selected project. (Revision 38498, ST/VC/817)

A new hyperlink and context menu option Update Local Library allows you to update
the local library with latest changes from the current, selected project. It is the
equivalent of the 'Update from VCS' option except that it pushes any updates to the
relevant local library.

VCS Privileges
The Privileges window in the VCS has been updated and now allows you to set
privileges for all the classes in a folder or for a whole project. (Revision 38290,
ST/VC/818)

The Privileges window in the Omnis VCS now displays a tree of classes, including all
classes within a folder. Classes or folders can be selected or deselected individually.
There is also a new second pane which lists all the privileges that have been set for the
current project. In addition, it is now possible to set privileges at a project level, with
new hyperlink and context menu options to initiate this. Note that when these options
are used, the tree only shows the project name, not the individual classes within it.

Window Programming
Enter Data Mode
A reported issue with the Enter Data command and the window Close box has been
resolved in this revision of Omnis Studio 11.2. (Revision 39959, ST/FU/917)

For all versions of Omnis Studio up to and including 10.22, when closing a window, the
Enter Data command was left on the command stack if not duly processed. To cancel
the command correctly, you had to use the standard OK or Cancel buttons or catch the
window close event and execute a command such as Queue Cancel to terminate the
Enter Data command.

In Omnis Studio 11, a change was made such that the close box automatically
cancelled the Enter Data command, but this change could potentially break legacy
applications. This latest revision of Omnis Studio 11.2 reverts to the 10.2x behavior.

There is a new configuration item enterDataCancelOnWindowClose, in the ‘defaults’
section of config.json, that controls if Enter Data mode is cancelled when a window
closes. This is set to false by default, which is the recommended state. Any code in
Studio 11 that used the above anomaly should be modified to process the Enter Data
command correctly when closing a window.

 Libraries and Classes

 37

The deferUserWindowClosure item, also in the ‘defaults’ section of config,json, has
been set to false in this revision as this was causing some windows to ghost during a
closing process.

Form and Report Wizards
The Omnis Form Wizard and Omnis Report Wizard are now available in the Studio
Browser when the Datafiles option is enabled in the IDE Options – they were missing
from previous revisions of Studio 11.x. (Revision 39098, ST/HE/2085)

The Omnis Form Wizard and Omnis Report Wizard allow you to create a form
(window class) or report class based on an Omnis File class that links to an Omnis
datafile. The wizards are only available when the Datafiles option is enabled in the IDE
Options in the Studio Browser.

Note these wizards and file classes should only be used in legacy apps that use Omnis
datafiles, and not for new applications.

Libraries and Classes
Recent Libraries
You can now remove a library from the Recent Project Libraries list in the Studio
Browser by right-clicking on the item in the list and selecting Remove from list.
(Revision 38463, ST/BR/460)

There is also a new option ‘Add Samples to 'Recent Project Libraries' in the IDE
Options in the Hub to control whether the sample libraries (available under the
Samples option in the Hub) are added to the Recent Project Libraries list. This is
disabled by default so sample libraries are not added to the recent library list.

Exporting Libraries to JSON
When exporting a library to JSON and the fullexportimport preference option is set to
kFalse, various VCS-related properties are now excluded from JSON export. (Revision
39976, ST/IE/254)

The following VCS-related properties are excluded from the JSON export when the
fullexportimport option (part of the $exportimportjsonoptions root preference) is false:

❑ Library properties:
$vcsbuilddate, $vcsbuildersname, $vcsbuildnotes

❑ Class properties:
$vcsrevision, $showascheckedout

File Classes
The file class editor now includes userinfo for each field in the file class which can be
used to store data of any type for the field. This maps to fileclass.field.$userinfo.
(Revision 39035, ST/BE/137)

What’s New in Omnis Studio 11.2

38

SQL Programming
Cancelling a long-running fetch
You can cancel a long-running fetch by pressing the system break keys (Ctrl+Break on
Windows or Cmnd+. on macOS). (Revision 39995, ST/*A/177)

$fetch() will also update a Working message window, and the Repeat Count will display
the number of rows fetched so far. In this mode, the Cancel button will also terminate
the fetch. The fetch list will retain any rows that have already been added.

List Programming
Searching Lists
You can now find a line in a list using the $search() method without setting the selected
line to the line found using a new parameter bSetCurLineWhenNotSelecting. (Revision
39424, ST/FU/905)

A new optional parameter bSetCurLineWhenNotSelecting has been added to the
$search() method. The syntax is now:

$search(calculation [,bFromStart=kTrue, bOnlySelected=kFalse,
bSelectMatches=kTrue, bDeselectNonMatches=kTrue,
bSetCurLineWhenNotSelecting=kTrue])

When bSetCurLineWhenNotSelecting is passed as false (the default is kTrue), and the
select/deselect options are false, the search is completed, the found line number is
returned but the found line is not selected.

JSON
JSON Object Methods
Adding Missing Members

Some of the JSON Object methods have a new parameter to ensure missing objects
are created automatically. (Revision 39226, ST/EC/1799)

The following JSON Object methods have an optional third parameter
bAddMissingMembers. When this is passed as kTrue, the method creates the missing
members (objects only), i.e. {}; when omitted defaults to kFalse. The following methods
have the new parameter:

$setstring(), $setbool(), $setinteger(), $setfloat(), and $setobject(). For example, the
syntax for $setstring() is now:

❑ $setstring(cMember,cString[,bAddMissingMembers=kFalse])
Sets specified member to JSON string with value cString. When
bAddMissingMembers is passed as kTrue, creates the missing members (objects
only), defaults to kFalse. Returns true for success.

In addition, the following External SDK methods also have a new
pAddMembersIfMissing parameter:

qlong ECOupdateJSON(EXTfldval &pJSONList, EXTfldval &pMemberIdFval, EXTfldval
*pValueFval, EXTfldval *pMemberNameToAddOrRemove, EXTfldval &pErrorText,
qbool pAddMembersIfMissing = qfalse);

 Functions

 39

qlong ECOupdateJSONEx(EXTfldval& pJSONList, EXTfldval& pMemberIdFval,
EXTfldval* pValueFval, EXTfldval* pMemberNameToAddOrRemove, EXTfldval&
pErrorText, qlong pFlags = 0, qbool pAddMemberIfMissing = qfalse);

Passing the pAddMemberIfMissing parameter as qtrue will create the missing
members (objects only); defaults to qfalse.

Call ECOupdateJSON with non-null pValueFval and pMemberNameToAddOrRemove
to add new member pMemberNameToAddOrRemove (with value pValueFval) to
existing member identified by pMemberIdFval. With pAddMemberIfMissing set to true
to pre-create the missing members.

Column Types

The iOptions parameter and kOJSONoptionAllowAnyType constant have been added
to the $listtoobjectarray() JSON Object method to allow you to use column types other
than the simple column types supported in previous revisions, namely integer, number,
boolean, string. (Revision 39102, ST/FU/735)

The syntax of JSON.$listtoobjectarray() is now:

❑ $listtoobjectarray(lList [,iEncoding=kUniTypeUTF8, &cErrorText,
iOptions=kOJSONoptionNone])
iOptions can be one of the following constants: kOJSONoptionNone (the default) or
kOJSONoptionAllowAnyType which would allow you to use column types, such as
Row, beyond the simple column types (integer, number, boolean, string) supported
in previous revisions

In addition, the ECOsaveToJSONObjectArray_AllowAnyTypes function has been
added to the External SDK that works just like ECOsaveToJSONObjectArray, but it
allows any type as columns, like the kOJSONoptionAllowAnyType.

Functions
bitand() and bitor()
The bitand() and bitor() functions can now be executed on the client. (Revision 39932,
ST/JS/3761)

bitclear()
The lastBitNumber parameter of the bitclear() function is now optional. If lastBitNumber
is omitted, the value in firstBitNumber is used allowing you to clear a single bit.
(Revision 38248, ST/FU/893)

Syntax

bitclear(binary,firstbitnumber[,lastbitnumber=firstbitnumber])

You should note that bit numbers are zero-indexed and bit 0 is the most significant bit.

bool()
There is a new function bool() which converts a value to a Boolean. (Revision 38265,
ST/FU/891). The bool() function can now be executed on the client. (Revision 39946,
ST/JS/3762)

Function group Execute on client Platform(s)

General YES All

Syntax

bool(pValue)

What’s New in Omnis Studio 11.2

40

Description

Converts pValue to Boolean. In effect, it returns the ‘truthiness’ of a value.

Example
Do bool(#NULL) ## would return kFalse

If kTrue|bool(#NULL) ## Would resolve to true

 …
End If

If bool(lObjRef) ## Would resolve to true if lObjRef was set to an

instance, and false if unset

 …
End If

coalesce()
Note the coalesce() function was added in Revision 38856 (ST/FU/901) but its
operation has been changed in this revision; the following is the revised definition. Plus
the coalesceempty() function has been added. (Revision 39293, ST/FU/907)

The coalesce() and coalesceempty() functions can now be executed on the client.
(Revision 39949, ST/JS/3763)

Function group Execute on client Platform(s)

General YES All

Syntax

coalesce([pvalue …]])

Description

Returns the first non-NULL parameter from a list of values.

coalesceempty()

Function group Execute on client Platform(s)

General YES All

Syntax

coalesceempty([pvalue …])

Description

Returns the first non-NULL and non-Empty parameter from a list of values.

FileOps.$copy()
Two new static functions $copy() and $move() have been added to the FileOps
external package, while the existing functions $copyfile and $movefile have been
deprecated and should not be used for future development. (Revision 39607,
ST/FU/909)

The $copy() and $move() functions operate similarly to the old $copyfile and $movefile
functions, but offer improved syntax and broader applicability, since they operate on
both files and folders. Additionally, they include new parameters to create missing
paths, replace existing files, and merge content, which by default are set to false.

 Functions

 41

Function group Execute on client Platform(s)

FileOps NO All

Syntax

$copy(cFromPath,cToPath[,bCreatePath=kFalse,bReplace=kFalse,bMerge=kFalse])

Description

Copies the file or folder specified in cFromPath to cToPath.

FileOps.$move()

Function group Execute on client Platform(s)

FileOps NO All

Syntax

$move(cFromPath,cToPath[,bCreatePath=kFalse,bReplace=kFalse,bMerge=kFalse])

Description

Moves the file or folder specified in cFromPath to cToPath.

If bCreatePath is kTrue, the $copy or $move functions will automatically create any
missing folders in the path specified by the pToPath parameter.

When bMerge is kTrue, and the destination is a file, the contents of the source file are
appended to it. If the destination is a folder, the files and subfolders from the source are
merged with those in the destination.

If bReplace is kTrue, the destination file or folder is deleted before the source is copied
or moved.

When bReplace and bMerge are both kTrue, and the destination is a file, replace takes
precedence over merge, meaning the destination file is removed before the source is
copied or moved. If the destination is a folder, merging occurs, but existing files in the
destination are overwritten by those from the source.

Note: for destination folders that do not exist to be recognized as folders, they must
end in the platform-specific filepath separator, otherwise they will be interpreted as
files.

FileOps Worker Objects

The $init functions for the Copy and Move FileOps Worker objects have also been
updated, with the addition of the bCreatePath, bReplace, and bMerge parameters.

FileOpsCopyWorker:

$init(cFromPath, cToPath [,vTag,bCreatePath=kFalse, bReplace=kFalse,
bMerge=kFalse])
Initializes the object so it is ready to copy the file or folder specified in cFromPath to
cToPath.

FileOpsMoveWorker:

$init(cFromPath, cToPath [,vTag,bCreatePath=kFalse, bReplace=kFalse,
bMerge=kFalse])
Initializes the object so it is ready to move the file or folder specified in cFromPath to
cToPath.

What’s New in Omnis Studio 11.2

42

FileOps.$joinpath()
The $joinpath() function has been added to the FileOps external package to allow you
to join a number of path segments. (Revision 38859, ST/EC/1910)

Function group Execute on client Platform(s)

FileOps NO All

Syntax

FileOps.$joinpath(cSegment, ...)

Description

Joins all given segments in cSegment together using the platform-specific separator as
delimiter. Zero-length segments are ignored.

On Windows only, if / is found in the final joint path, it will be replaced with the Windows
path separator: \\

FileOps Workers
Tag parameter

The FileOps Workers (Copy, Delete, Move) now have an extra last parameter vTag
added to their $init methods. This works exactly as the tag parameter for the JavaScript
and Python Workers. (Revision 38270, ST/EC/1885)

If supplied, the vTag parameter is some data that is passed to $completed in the
column __tag of the row parameter. This can be used for example to identify the caller
when the worker object is shared by several instances.

Thread Lock

The lock on the main thread caused when cancelling a FileOps worker has been
removed. (Revision 38285, ST/EC/1886)

The lock on the main thread when a FileOps worker is cancelled, that is, either directly
through a call to $cancel, or through the FileOps worker variable going out of scope,
has been removed. However, you should note that the FileOps worker will still execute
in the background even when cancelled, as it did before in previous revisions.

FileOps.$writefile()
A new parameter bCreateParentDirectories has been added to the FileOps.$writefile
function to create the directories in the path. (Revision 39410, ST/FU/911 &
ST/FU/912)

The syntax for FileOps.$writefile is now:

FileOps.$writefile(cFilePath,vVariable [,iEnc=kUniTypeUTF8, bBOM=kTrue,
bReplace=kTrue, bCreateParentDirectories=kFalse])

When bCreateParentDirectories is kTrue (the default is kFalse), FileOps.$writefile will
create the directories in the path before attempting to write the file.

In addition, FileOps.$writefile will use the default parameters when any of the
parameters are null.

 Functions

 43

idletime()
There is a new function idletime() that returns the elapsed time in milliseconds since
the keyboard or mouse was used. (Revision 38495, ST/FU/897)

Function group Execute on client Platform(s)

Date and Time NO All

Syntax

idletime()

Description

Returns the number of milliseconds elapsed since the mouse or keyboard was last
used.

Omnis PDF Device.$embeddata()
Two new functions $embedfile() and $embeddata() have been added to the Omnis
PDF Device to allow you to embed files and data into PDF files. (Revision 38713,
ST/EC/1901)

Function group Execute on client Platform(s)

Omnis PDF Device NO All

Syntax

Omnis PDF Device.$embeddata(cData, cName)

Description

Embeds the data in cData with given name cName in the PDF file.

Omnis PDF Device.$embedfile()

Function group Execute on client Platform(s)

Omnis PDF Device NO All

Syntax

Omnis PDF Device.$embedfile(cFilePath[, cName])

Description

Embeds the file in the PDF. If cName is omitted, the name of the file in cFilePath will be
used.

OREGEX.$replace()
There is a new external component named OREGEX providing $replace() and
$replaceall() regex supported functions. (Revision 38706, ST/EC/1900)

Function group Execute on client Platform(s)

REGEX NO All

Syntax

OREGEX.$replace(cSource, cTarget, cReplace [, iFlags, &cErrorText])

Description

Searches for a match in cSource using pattern in cTarget and replaces the matched
substring with cReplace.

What’s New in Omnis Studio 11.2

44

OREGEX.$replaceall()

Function group Execute on client Platform(s)

REGEX NO All

Syntax

OREGEX.$replaceall(cSource, cTarget, cReplace [, iFlags, &cErrorText])

Description

Searches for all matches in cSource using pattern in cTarget, and replaces the
matched substrings with cReplace.

For both functions, the optional iFlags parameter is the sum of kORegEx... constants
which determine how the regular expression engine will behave. The flags can be
summed together, e.g. kORegExCaseInsensitive+kORegExMatchNotNull. They are:

Constant Description

kORegExMatchNotNull Do not match empty sequences

kORegExMatchContinuous Only match a sub-sequence that begins at first

kORegExFormatNoCopy Do not copy unmatched strings to the result when
replacing

kORegExCaseInsensitive Character matching performed without regard to case

kORegExMultiline ^ shall match the beginning of a line and $ shall match
the end of a line when using ECMAScript engine, not
available on Windows

For both functions, the optional cErrorText parameter provides further information
about any error that is generated.

rcedit.$getapplicationmanifest()
Some new static methods have been added to the rcedit external component to return
various information about files (note rcedit is available on Windows only). (Revision
38316, ST/EC/1891)

Function group Execute on client Platform(s)

rcedit NO All

Syntax

$getapplicationmanifest(cFileName)

Description

Returns the manifest from the exe/dll in cFileName.

rcedit.$getfileversion()

Function group Execute on client Platform(s)

rcedit NO All

Syntax

$getfileversion(cFileName)

 Functions

 45

Description

Returns the file version from the exe/dll in cFileName.

rcedit.$getproductversion()

Function group Execute on client Platform(s)

rcedit NO All

Syntax

$getproductversion(cFileName)

Description

Returns the product version from the exe/dll in cFileName.

rcedit.$getresourcestring()

Function group Execute on client Platform(s)

rcedit NO All

Syntax

$getresourcestring(cFileName, iKey)

Description

Returns the resource string with key iKey from the exe/dll in cFileName. You need an
integer to identify the string. These can be inspected with tools such as Resource
Hacker.

rcedit.$getversionstring()

Function group Execute on client Platform(s)

rcedit NO All

Syntax

$getversionstring(cFileName, cKey)

Description

Returns the version string with key cKey from the exe/dll in cFileName. The key could
be some of the standard Windows PE keys, e.g.:

Comments
CompanyName
FileDescription
FileVersion
InternalName
LegalCopyright
LegalTrademarks
OriginalFilename
PrivateBuild
ProductName
ProductVersion
SpecialBuild

What’s New in Omnis Studio 11.2

46

replace() and replaceall()
The replace() and replaceall() functions now have an optional fourth parameter to
control whether a case-sensitive or case-insensitive replace is performed. (Revision
38261, ST/FU/892)

Syntax

replace(source-string,target-string,replacement-string[,case-sensitive=kTrue])

replaceall(source-string,target-string,replacement-string[,case-sensitive=kTrue])

If case-sensitive is kTrue (the default), or is omitted, a case-sensitive replace is
performed. If passed as kFalse, a case-insensitive replace is performed.

Deploying Your Apps
Server Configuration
The discardRequestsContaining item has been added to the ‘server’ section of the
Omnis Configuration file. (Revision 39233, ST/PF/1464)

The discardRequestsContaining item is an array of strings, where each string will be
matched against a requested URL by the Omnis server and if it matches, the request is
discarded. By default, the array contains the string:
 "discardRequestsContaining": [

 "../"

]

This means that any requests received by the Omnis Server that contain ../ anywhere
in the URL path will be discarded and an error returned to the client.

Firstruninstall
A hidden option has been added to disable the firstruninstall folder from copying over if
the data folder already exists on Windows or macOS. (Revision 38834, ST/IN/296)

Omnis now checks for a file named "disable_fri.txt" in the root of the data folder, and if
this file exists, Omnis does not copy files from the firstruninstall folder. Omnis does not
read the file’s contents, just checks if "disable_fri.txt" exists.

External Component SDK
Functions
A new SDK function ECOisClosingProgram has been added which returns a qbool:
qtrue if Omnis is currently in its shut-down procedure, else qfalse. (Revision 39784,
ST/EC/1940)

 macOS Tree Restructure

 47

Appendix
The following changes have been made to the Omnis Online docs with regards to the
macOS Tree Restructuring in Omnis Studio 11.2 Revision 38542. This may assist you
in making any necessary adjustments to your application or deployment setup on
macOS.

macOS Tree Restructure
Online Documentation changes

Creating Web & Mobile Apps

 Chapter 2 - JavaScript Remote Forms

 PDF Printing

 Supporting Files

The blue text was replaced by the red text.

 The PDF Device component is available for Windows and
macOS and is located in the ‘xcomp’ folder and is loaded automatically.

 is loaded automatically. It is located in the ‘xcomp’ folder on
Windows and the ‘PlugIns’ folder on macOS.

Updated doc:

 Chapter 7 - Deploying your Web & Mobile Apps

 Setting up the Omnis App Server

 Server Logging

 logcomp is the name of the logging component to use, that is,
"logToFile" which references the logtofile.dll component in the logcomp folder of the
Studio tree.

 references the logtofile component located in the logcomp folder
in the Windows and Linux Studio tree and the PlugIns folder in the macOS tree.

Updated doc:

Omnis Programming

 Chapter 10 - Report Programming

 HTML Report Device

https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=WebDev/02jsremoteforms.html#supporting-files&revision=38518
https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=WebDev/07deployment.html#server-logging&revision=38518

Appendix

48

 The Omnis Studio Print Manager API has been made public, allowing
you to create your own custom printing devices as external components and place
them in the XCOMP folder.

 in the external component folder (PlugIns on macOS and XCOMP on
other platforms).

Updated doc:

 Chapter 17 - Deployment

 Deployment Tool

 macOS

 The second screen allows you to specify the bundle’s startup
folder, iconsets (for the library), xcomp and icons folders, as well as the option to pre-
serialise the bundle or add a custom read/write directory.

 iconsets (for the library), PlugIns and icons folders,

Updated doc:

 The label on the 3rd entry field should be Additions to /PlugIns.

 Code Signing Omnis

 An application can only be signed if its code portion remains unchanged.
For the Omnis application, the code portion is located in the Omnis package, e.g.:

 The Studio application will only retain a valid signature if the contents of
the signed application package remain unchanged, i.e. altering this folder will break the
signature,

 The code text in the following box should be replaced with this:

 Omnis\ Studio\ 11\ x64.app/Contents

Updated doc:

 Firstruninstall and Application Support Folders

 To do this, when Omnis starts up it will check for the existence of
a folder called ‘firstruninstall’ in the macOS folder in the Omnis package.

 called ‘firstruninstall’ in the Resources folder

Updated doc:

https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=Programming/10reports.html#html-report-device&revision=38518
https://www.omnis.net/developers/resources/onlinedocs/index.jsp?detail=Programming/17deployment.html#macos&revision=38518
https://www.omnis.net/developers/resources/onlinedocs/index.jsp?detail=Programming/17deployment.html#code-signing-omnis&revision=38518
https://www.omnis.net/developers/resources/onlinedocs/index.jsp?detail=Programming/17deployment.html#firstruninstall-and-application-support-folders&revision=38518

 macOS Tree Restructure

 49

 Updating Components

 Either type of component can be placed in:

 ~/Library/Application Support/ Omnis/\Omnis\ Studio\ 11\
x64/PlugIns/

 Where there is a component with the same name in PlugIns this
will be loaded instead of the duplicate in the legacy folder.

 Insert the above before this existing line:

 If the required folder does not exist it can be created by the user.

Updated doc:

 Patching a signed tree

 Components can be patched without re-signing into the xcomp
and jscomp folders of the user data location, e.g.:

 xcomp, jscomp and PlugIns folders

Updated doc:

 Update Manifest Files

 When Omnis starts, it reads the contents of the 'version' file in the root
of its installation files, that is '/Application/Omnis Studio
11.app/Contents/MacOS/version' on macOS

 which is located at '/Application/Omnis Studio
11.app/Contents/Resources/version' on macOS

Updated doc:

 Update on macOS

 When Omnis starts it will read an integer deployment version
number from a file called “version” in the Omnis application's macOS folder:

 Resources folder

 The code text in the following box should be replaced with this:

 /Applications/Omnis\ Studio\
11.2.app/Contents/Resources/version

https://www.omnis.net/developers/resources/onlinedocs/index.jsp?detail=Programming/17deployment.html#updating-components&revision=38518
https://www.omnis.net/developers/resources/onlinedocs/index.jsp?detail=Programming/17deployment.html#patching-a-signed-tree&revision=38518
https://www.omnis.net/developers/resources/onlinedocs/index.jsp?detail=Programming/17deployment.html#update-manifest-files&revision=38518

Appendix

50

Updated doc:

 The updates are specified in a set of files which should be
placed in a folder called “manifest” within the Omnis application's macOS folder.

 Resources folder

 The code text in the following box should be replaced with this:

 /Applications/Omnis\ Studio\
11.0.1.app/Contents/Resources/manifest/23071

Updated doc: (Scroll to view update)

Extending Omnis

 Chapter 7 - OW3 Worker Objects

 JavaScript Worker Object

 Npm is provided alongside Node.js in Omnis Studio. Insert after: On
Windows and Linux the nodejs folder is installed within clientserver\server. On macOS
the nodejs folder is installed within Resources and the node executable is installed in
Helpers.

 To launch npm you can run index.js inside the npm folder, e.g.

 ./node npm/index.js

 On Windows and Linux to launch npm you can run index.js inside the
npm folder, e.g.

 ./node npm/index.js

 On macOS if inside the npm folder then use the relative path to the node
binary, e.g.

 ../../Helpers/node npm/index.js

Updated doc:

Omnis Studio External Components

 Chapter 1 - Omnis External Components

 Creating your own External Components

https://www.omnis.net/developers/resources/onlinedocs/index.jsp?detail=Programming/17deployment.html#update-on-macos&revision=38518
https://www.omnis.net/developers/resources/onlinedocs/index.jsp?detail=Programming/17deployment.html#update-on-macos&revision=38518
https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=ExtendingOmnis/07webcomms.html#javascript-worker-object&revision=38518

 macOS Tree Restructure

 51

 Components in Omnis

 Loading Components

 On all platforms, external components are loaded from
the relevant sub-directory (xcomps, jscomps and logcomps folders) of both the Omnis
data folder and the Omnis program / Application folder.

 sub-directory (PlugIns, xcomps, jscomps and logcomps
folders) of

Updated doc:

 Getting Started with Generic

 Testing the Generic Component

 To use the component, place a copy in the XCOMP
folder of the Studio tree.

 XCOMP folder within the Studio tree on Windows and the
PlugIns folder within the Studio tree on macOS.

Updated doc: (scroll to view update)

 Debugging on macOS/Linux

 Change the target modules command line for macOS:
 target modules add /Applications/Omnis\ Studio\
11.app/Contents/MacOS/xcomp/myxcomp.u_xcomp/Contents/MacOS/myxcomp --
symfile /Users/user/Documents/

 OmnisSDKBuild/DebugSymbols/xcomp/myxcomp.u_xcomp.dSYM

 /MacOS/PlugIns/myxcomp.u_xcomp/

Updated doc: (scroll further to view update)

 Extending Generic

 After building the generic2 component close Omnis if it is still
running, and move the component into your XCOMP folder.

 your XCOMP or PlugIns folder

Updated doc: (scroll to view update)

 Chapter 14—DAM API Reference

 Developer Guide

 Building the DAM

https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=ExtcompSDK/01tutor.html#components-in-omnis&revision=38518
https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=ExtcompSDK/01tutor.html#getting-started-with-generic&revision=38518
https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=ExtcompSDK/01tutor.html#getting-started-with-generic&revision=38518
https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=ExtcompSDK/01tutor.html#extending-generic&revision=38518

Appendix

52

 Mac OSX

 To debug, the DAM needs to be built into the
Omnis.app/Contents/MacOS/xcomp folder.

 Omnis.app/Contents/MacOS/PlugIns

Updated doc:

 If the component fails to load on starting Omnis, you can
verify the integrity of the component by navigating to
 Omnis.app/Contents/MacOS/xcomp,

 Omnis.app/Contents/MacOS/PlugIns,

 Replace the screenshot showing the Contents folder.

Updated doc:

 Note the resource files which should be copied into the
component package during the build process. Localizable.strings and xcomp.rsrc are
generated by the Omnis resource compiler from the .RC files. xcomp.rsrc in particular
must be present in order for Omnis to recognise the package as an Omnis external
component.

 Localizable.strings is generated by the Omnis resource
compiler from the .RC files. This file must be present for Omnis to recognise the
package as an Omnis external component.

Updated doc: (scroll to view update)

 Omnis Resource Compiler

 Mac OSX

 Replace the code text in the box:

 gXcomp: 1

 COCOA VERSION 1.0CountResources(‘OCTY’)
= 64

 with:

 gXcomp: 1

 COCOA VERSION 2.0

Updated doc: (scroll further to view update)

https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=ExtcompSDK/14damapi.html#building-the-dam&revision=38518
https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=ExtcompSDK/14damapi.html#building-the-dam&revision=38518
https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=ExtcompSDK/14damapi.html#building-the-dam&revision=38518
https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=ExtcompSDK/14damapi.html#building-the-dam&revision=38518

 macOS Tree Restructure

 53

 Base classes

 tqfDAMbaseObj

 Remove these methods:

 tqfDAMbaseObj::setEnvFile()

 tqfDAMbaseObj::getEnvFile()

Updated doc:

JavaScript Component SDK

 Tutorial

 Building Generic

 C++ Component

 Mac

 You then need to copy the built component
(jsgeneric.u_webdesign) into the jscomp folder in the Omnis app package.

 into the PlugIns folder

 For example, if you want to place the component directly
into your jscomp PlugIns folder, you need to set the Installation Directory to
 “/Applications/Omnis.app/Contents/MacOS/jscomp”.

 “/Applications/Omnis.app/Contents/MacOS/PlugIns”.

Updated doc: (scroll to Mac section)

 Debugging

 Debugging a Component

 Mac

 Set the Debug value to the full path to the jscomp folder in your
Omnis app.

 Set the Debug value to the full path to the PlugIns folder in your
Omnis app.

 Replace the screenshot.

Updated doc: (scroll to view update)

https://www.omnis.net/developers/resources/onlinedocs/index.jsp?detail=ExtcompSDK/14damapi.html#base-classes&revision=38518
https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=JavaScriptSDK/02tutorial.html#building-generic&revision=38518
https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=JavaScriptSDK/03debugging.html#debugging&revision=38518

	What’s New in Omnis Studio 11.2
	About This Manual
	Software Support, Compatibility and Conversion Issues
	Serial Numbers and Licensing
	Library and Datafile Conversion
	Converting 10.x Libraries
	Converting 8.x or earlier Libraries

	macOS Support
	Windows 32-bit Support
	Enter Data Mode
	VCS API
	NULL values sent to the JS Client
	macOS Tree Restructure
	Subform Client Commands

	What’s New in Omnis Studio 11.2
	JavaScript Components
	Subformset Panels
	Creating a Subformset Panel
	General Properties
	Panel Properties
	Colors and Icons
	Passing Parameters
	Events
	Methods

	Field Border Icons
	Scroll Shadows
	Component Icons
	Feather Icon Set
	SVG Themer Tool
	Icon Naming

	Native List
	Extra Scroll Height
	Native List Buttons

	Toolbar Control
	Data Grid
	Filtering the Grid
	Disabling Grid Cells
	Grid Cell Tooltips
	Pick Lists
	Date Picker
	Drag and Drop

	JS Chart Control
	Html Link Control
	Link URL
	Events

	Date Pickers
	Navigation Menu Object
	Tree Lists
	Droplists
	Tab Bar Control
	JS Themes
	Component Names

	JavaScript Remote Forms
	Overriding the Browser History
	The History stack
	Interacting with the History
	Rolling Back the History

	Customizing Keyboard Shortcuts
	Interacting with the Clipboard
	Reading Data from the Clipboard
	Copying Data to the Clipboard

	Subform Palettes
	Palette Arrow
	Show Overlay
	Control Name

	PDF Printing
	Embedding Files and Data
	$embedfile()
	$embeddata()

	Setting the Document Info

	Push Notifications
	Construct Row Variable
	Headers Column
	Cookies Column

	Return Methods
	Date Parsing
	HTTP Server
	Layout Minimum Height

	Debugging Methods
	Method Bookmarks
	Exporting Method Bookmarks
	Method Bookmarks and the VCS

	Omnis Environment
	macOS Tree Restructure
	DAMs
	Notarization

	SQL Query Builder
	Query Builder Manager
	Export Options

	Omnis Configuration
	Menu Theme Colors
	Omnis Task Bar
	Studio Now Sample Libraries

	Window Components
	Border Icons
	OBrowser
	Scroll Zoom
	CEF Switches

	Entry Fields
	Tab Strip
	Masked Entry Field
	Pushbuttons
	Headed List

	Report Programming
	Enterable Report Fields

	OW3 Worker Objects
	HTTP Worker Object
	Using AI in Omnis
	Header Content Type

	HASH Worker Object
	OAUTH2 Worker Object
	PKCE
	$completed callback method

	LDAP Worker Object

	Omnis VCS
	VCS API
	$buildProject method

	Update from VCS
	Update Local Library
	VCS Privileges

	Window Programming
	Enter Data Mode
	Form and Report Wizards

	Libraries and Classes
	Recent Libraries
	Exporting Libraries to JSON
	File Classes

	SQL Programming
	Cancelling a long-running fetch

	List Programming
	Searching Lists

	JSON
	JSON Object Methods
	Adding Missing Members
	Column Types

	Functions
	bitand() and bitor()
	bitclear()
	Syntax

	bool()
	Syntax
	Description
	Example

	coalesce()
	Syntax
	Description

	coalesceempty()
	Syntax
	Description

	FileOps.$copy()
	Syntax
	Description

	FileOps.$move()
	Syntax
	Description

	FileOps.$joinpath()
	Syntax
	Description

	FileOps Workers
	Tag parameter
	Thread Lock

	FileOps.$writefile()
	idletime()
	Syntax
	Description

	Omnis PDF Device.$embeddata()
	Syntax
	Description

	Omnis PDF Device.$embedfile()
	Syntax
	Description

	OREGEX.$replace()
	Syntax
	Description

	OREGEX.$replaceall()
	Syntax
	Description

	rcedit.$getapplicationmanifest()
	Syntax
	Description

	rcedit.$getfileversion()
	Syntax
	Description

	rcedit.$getproductversion()
	Syntax
	Description

	rcedit.$getresourcestring()
	Syntax
	Description

	rcedit.$getversionstring()
	Syntax
	Description

	replace() and replaceall()
	Syntax

	Deploying Your Apps
	Server Configuration
	Firstruninstall

	External Component SDK
	Functions

	Appendix
	macOS Tree Restructure
	Online Documentation changes

