
Contents

Creating Web & Mobile Apps 4

About This Manual . 4

Chapter 1—Tutorial 6

Starting Omnis . 7

Creating a New Library . 8

Creating a Database Session . 9

Opening a Database Session . 12

Viewing your Tables . 13

Viewing your Data . 13

Making a Schema . 15

Editing a Schema . 17

Creating a Desktop Form using a wizard . 18

Creating a Web Form from scratch . 30

Creating a Web Form using a wizard . 50

Testing your Web Form . 60

Changing the form theme . 65

Summary . 65

Chapter 2—JavaScript Remote Forms 66

Creating JavaScript Remote Forms . 66

Remote Tasks . 70

Remote Objects . 81

Remote Form Properties . 82

Remote Form Instances and Methods . 91

Remote Form Events . 93

Testing JavaScript Remote forms . 95

Client Methods . 98

Client Commands . 104

Remote Menus . 111

Context Menus . 112

Subform Sets . 113

Using Subform Palettes . 122

Running JavaScript in the Client . 125

Styled Text . 126

Animations . 127

Time Zones and Dates . 128

PDF Printing . 128

Toast Messages . 135

1

Chapter 3—JavaScript Components 136

Example Apps and Code . 136

JavaScript Components . 136

Creating JavaScript Components . 140

Component Properties . 141

Component Events . 153

Component Icons . 156

Component Fonts . 165

Drag and Drop Data . 165

Copying data . 171

Side Panels . 171

Tab Order . 173

Accessibility . 174

JS Themes . 177

Active and Enabled Properties . 183

Creating Customized JavaScript Components . 184

JavaScript Component Templates . 185

Position Assistance . 185

Group Selection & Object Properties . 188

Activity Control . 189

Background Shape . 190

Bar Chart Control . 193

Button Control . 196

Camera Control . 198

Chart Control . 201

Check Box Control . 208

Color Picker . 210

Combo Box Control . 212

Complex Grid . 214

Data Grid Control . 218

Date Picker Control . 235

Device Control . 241

Droplist Control . 249

Entry Field . 252

File Control . 260

Floating Action Button . 264

Gauge Control . 267

HTML Object . 272

Hyperlink Control . 275

Label Object . 277

2

List Control . 277

Map Control . 282

Native List . 288

Native Slider . 291

Native Switch . 292

Navigation Bar Control . 292

Navigation Menu Object . 295

Page Selector . 302

Paged Pane . 303

Picture Control . 304

Pie Chart Control . 305

Popup Menu Control . 307

Progress Bar Control . 308

Radio Button Group . 309

Rich Text Editor . 311

Scroll Box . 315

Segmented Bar . 317

Slider Control . 319

Split Button . 320

Subform Control . 322

Switch Control . 325

Tab Bar Control . 325

Tile Grid . 327

Timer Control . 331

Toolbar Control . 332

Trans Button Control . 336

Tree List Control . 337

Video Player . 342

External Components . 344

Chapter 4—JSON Components 349

JSON Control Object . 351

JavaScript . 358

Chapter 5—Ultra-thin Omnis 358

HTML Forms and Remote Tasks . 358

Using Task Methods to Process Requests . 360

Returning Content to the Client . 362

Persistent Remote Tasks . 364

Multipart Form Data . 365

Direct Client Connections . 366

3

Chapter 6—Localization 367

Localization for the JavaScript Client . 367

Chapter 7—Deploying your Web & Mobile Apps 371

Server Installation and Licensing . 371

Editing Your HTML Pages . 372

Setting up the Omnis App Server . 375

Setting Up Your Web Server . 384

Creating Standalone Mobile Apps . 389

Serverless Client . 392

Push Notifications . 401

Omnis App Manager . 402

Headless Omnis Server . 403

MultiProcess Server . 407

Creating Web & Mobile Apps

Using Omnis JavaScript Client

Omnis Software Ltd

Released May 2023
Updated Jun 2023 Revision 35439
Updated Oct 2023 Revision 35659

About This Manual

Thismanual describes all the features in Omnis Studio that allow you to create applications that will run in a web browser on desktops
and mobile devices, including tablets and phones. It describes how you create JavaScript Remote Forms, using the JavaScript Client
and the JavaScript Components, for displaying your application in a browser or standalone app, as well as setting up the Omnis App
Server for deploying your applications, either on your own server or in the cloud.

The information in this manual applies to all editions of Omnis Studio including the Community Edition, which allows you to create
web and mobile applications using the Remote forms and JavaScript Client.

You will also need to consult parts of the Omnis Programming manual that describe Libraries and Classes, general Omnis program-
ming techniques including SQL and List programming, aswell as using the Studio Browser, MethodEditor, Code Editor and theOmnis
Debugger.

The Omnis Reference manuals contain information about all the Commands and Functions available in Omnis Studio, plus there
is a comprehensive Help system, available from within the Omnis IDE using the F1 key, which contains a complete list of all Omnis
Notation including all properties and methods.

If you are new to Omnis Studio

If you are new to Omnis Studio, you may like to work through the Tutorial which shows you how to connect to a SQLite database
(provided in the download), and create a JavaScript Remote Form to browse the data in a web browser.

Alternatively, you may like to attend one of our free online training sessions in the Omnis Academy to help you to get to know Omnis
Studio, including the “Omnis Studio Basics” course which introduces you to all the main tasks in building a web application in Omnis
Studio; more information and registration is available on the Omnis website.

If you are evaluating Omnis Studio or wanting to prototype a web or mobile application quickly and easily, you may like to download
the Community Edition: for more information and to register for the Community Edition, please go to our website.

4

02jsremoteforms.html#chapter-2javascript-remote-forms
03jscomps.html#chapter-3javascript-components
/developers/resources/onlinedocs/Programming/00about.html
/developers/resources/onlinedocs/CommandRef/index.html
/developers/resources/onlinedocs/FunctionRef/index.html
01tutorial.html#chapter-1tutorial
https://www.omnis.net/developers/online-training/
https://www.omnis.net/community-edition/

When you start Omnis Studio

When you start Omnis Studio you will see the Studio Browser; if this is not visible, press the F2 key onWindows or Cmnd-2 onmacOS.
Under theHub section you can look at example Omnis applications listed under theApplets and Samples options: you can open each
example in your web browser or within Omnis itself, and you can examine the Omnis code in the associated library under the Project
Libraries option in the Studio Browser (note you can open & run the sample apps in the Community Edition but access to the code is
limited).

Copyright info

The software this document describes is furnished under a license agreement. The software may be used or copied only in accor-
dance with the terms of the agreement. Names of persons, corporations, or products used in the tutorials and examples of this
manual are fictitious. No part of this publication may be reproduced, transmitted, stored in a retrieval system or translated into
any language in any form by any means without the written permission of Omnis Software.

© Omnis Software, and its licensors 2023. All rights reserved.

Portions © Copyright Microsoft Corporation.

Regular expressions Copyright (c) 1986,1993,1995 University of Toronto.

© 1999-2023 The Apache Software Foundation. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Specifically, this product uses Json-smart published under Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0)

© 2001-2023 Python Software Foundation; All Rights Reserved.

The iOS application wrapper uses UICKeyChainStore created by http://kishikawakatsumi.com and governed by the MIT license.

Omnis® and Omnis Studio® are registered trademarks of Omnis Software.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows Vista, Windows Mobile, Win32, Win32s are registered trademarks, and
Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other countries.

Apple, the Apple logo, Mac OS, Macintosh, iPhone, and iPod touch are registered trademarks and iPad is a trademark of Apple, Inc.

IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation.

ICU is Copyright © 1995-2023 International Business Machines Corporation and others.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company Ltd.

Portions Copyright (c) 1996-2023, The PostgreSQL Global Development Group

5

Portions Copyright (c) 1994, The Regents of the University of California

Oracle, Java, and MySQL are registered trademarks of Oracle Corporation and/or its affiliates

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc.

Acrobat is a registered trademark of Adobe Systems, Inc.

CodeWarrior is a trademark of Metrowerks, Inc.

This software is based in part on ChartDirector, copyright Advanced Software Engineering (www.advsofteng.com).

This software is based in part on the work of the Independent JPEG Group.

This software is based in part of the work of the FreeType Team.

Other products mentioned are trademarks or registered trademarks of their corporations.

Chapter 1—Tutorial

The first section of this tutorial shows you how to create the data classes for an Omnis application to browse a picture database. The
database contains sample client designs for a fictional design company including TV program identities, music album covers, and
book jackets. You could, however, use the application to store any type of picture data, such as a library of your own favorite books or
photos. To use the application for your own data, you need to work through the tutorial to create the application (library file) and then
create your own database file.

Further sections of the tutorial show you how to create a JavaScript Remote Form so you can view the picture database in a web
browser on your desktop, or on a mobile device, such as a phone or tablet.

What will you learn?

The tutorial shows you how to create the Omnis class structure required tomatch the data structure in an existing database (a SQLite
database file available in the zip download), and how to create a JavaScript Remote Form to browse the data in a web browser, either
on a desktop computer or a mobile device. The first part of the tutorial will take about an hour to complete, but you can pause at any
stage and return to it at a later time, as long as you remember to open the database session using the SQL Browser each time you
start Omnis Studio if you wish to browse through the data.

Download & install the Files

If you haven’t already done so, you need to download the development version of Omnis Studio. For this tutorial, you can use the free
90-day trial version of the Professional edition, or the Community edition, which you can also download for free; both editions require
registration.

Professional edition: www.omnis.net/developers/free-trial

Community edition: www.omnis.net/community-edition

Note that some sections of the tutorial cannot be completed using the Community Edition, since they relate to desktop classes only,
but these can be skipped easily and you can create the web-based features without restriction.

To work through the tutorial, you will need to download and extract the project files from this ZIP archive: tutorial.zip. The archive
contains a SQLite database file called Pics.db (the Pics.db-journal file is also required), and a PNG image file. Place the files from the

6

https://www.omnis.net/developers/free-trial/
https://www.omnis.net/community-edition/
tutorial.zip

zip in the \welcome\tutorial folder in the writable part of the Omnis tree you installed. Alternatively, you can place the tutorial files on
your Desktop.

On Windows, you will find the ‘tutorial’ folder in the writable part of your Omnis installation, found in the ‘AppData\Local’ folder, for
example:

C:\Users\<username>\AppData\Local\Omnis Software\ Omnis Studio <version>\welcome\tutorial

To find the ‘AppData\Local’ folder, you may need to enable hidden folders in the Windows File Manager and then navigate to the
Omnis folder via Users\<username>\AppData\Local.

On macOS, you will find the Omnis files, including the ‘tutorial’ folder, in the Application Support folder, for example:

/Users/<username>/Library/Application Support/Omnis/Omnis Studio <version>/welcome/tutorial

To find the Application Support folder, click on the ‘Go’ menu in the macOS Finder, then hold down the ‘Option’ key and select the
‘Library’ option. There you will find the ‘Application Support’ folder and within that the ‘Omnis’ folder.

Tutorial Libraries

If you are using the Professional Edition (or the free trial), you can open and examine the libraries in the final folder in the ‘\wel-
come\tutorial\’ folder in the Omnis folder; note you cannot open these libraries in the Community Edition.

The PICS.LBS library in the final folder contains the same classes as covered in this tutorial. The PICS2.LBS library has the same classes
with some extra classes, including aQuery class, a Report class, and aMenu class that enhance theDesktop aspects of the application.
You can open these libraries and examine the code in both, or you can copy code from these into your tutorial library to save timewhen
completing the different exercises.

Mouse and Keyboard Usage

In this tutorial, all mouse and key combinations are given in shorthand for all supported platforms, with the Windows shortcut first.
So “Press Ctrl/Cmnd-T”means you press Ctrl-T underWindows, or press Cmnd-T onmacOS. Similarly, “Press F2/Cmnd-2”means you
press the F2 key under Windows, or press Cmnd-2 on macOS, or if your keyboard has function keys you can use Fn+F2 on macOS.

Context Menus

Many of the design tools and class editors in Omnis have Context Menus that provide useful options that speed up development and
navigation. To show a context menu, when using a two-button mouse or trackpad, click the Right button on the window or editor
and select an option, or when using a single button pointer, hold down the Ctrl button and click the pointer; both thesemethods will
be described in the tutorial as a “Right-click”.

Starting Omnis

To create anOmnis Studio application, you need to use theDevelopment version. Once you have created your web ormobile app, you
would run it in conjunction with the App Server version of Omnis Studio for which you need separate end-user client licenses (a free
Web license is provided with the Community Edition). The Development version has all the design editors and debugging facilities
that you need to help you build an application, but also allows you to test your application in a browser in “runtimemode” as you build
it, without having to compile your app. During this tutorial, you will be using the Development version.

Studio Browser

When you start Omnis Studio you will see the Studio Browser, which is the main window from which you can access all the other
tools and class editors in Omnis Studio. Initially you will see the Project Libraries option (highlighted below), where you will create a
new Omnis library file. If you are new to Omnis or you are evaluating it, youmay like to look in the Hubwhich contains many example
libraries and sample code which you may find useful.

The above screen is the Studio Browser on macOS, but it will look identical on Windows, except for obvious differences in border or
window style: since Omnis Studio is cross-platform, you should note that every part of the IDE performs in exactly the same way, with
only minor differences in key strokes or menu/toolbar options.

7

Figure 1:

If you cannot see the Studio Browser press the F2 key on Windows, or Cmnd-2 on macOS. Under Windows, you can click on the
Browser button (compass icon) on the main Omnis Studio toolbar, or you can select the Browser option from the View menu on
the Omnis menubar. To show the main Omnis menubar on Windows you need to press the Alt key. On macOS, you can select the
Browser option from the View menu on the Omnis menubar, or to show the Omnis toolbar, select the Toolbars option from View
menu, show the View toolbar, click OK, and then you can click on the Browser button.

Creating a New Library

The starting point for your Omnis application or project is anOmnis library. A library stores all the classes in your application, including
the web forms, data classes, and so on. If you want to edit an existing library, you can open it using the Open existing project library
option in the Studio Browser.

You can import an Omnis library from a set of JSON files using the Create project library from JSON option, e.g. you can get sample
Omnis libraries in JSON format from our GitHub repository at: https://github.com/OmnisStudio. However, for this tutorial, you will
create a new blank library using the Create New Project Library section in the Studio Browser.

To create a new library:

• Press F2/Cmnd-2 or click on the Studio Browser to bring it to the top, then click on the Project Libraries branch in the Folders
tree list; this should be selected by default when you first start Omnis

• Under the Create New Project Library section, click on the Blank option, as shown below (note the Desktop option is hidden in
the Community edition)

TheWeb and Mobile option creates a new library containing a new Remote form and a Remote task, but in this tutorial we are going
to build a library and Remote form from scratch or use the Class wizards to automate some parts of the process. If you are evaluating
Omnis Studio, and haven’t got time to work through the tutorial, you may like to try theWeb and Mobile option and examine the
Remote form and other classes it creates for you automatically.

• Having clicked the Blank option, navigate to the <Omnis Software>\welcome\tutorial folder in the writable part of your Omnis
installation (or wherever you placed the tutorial files from the zip download).

On Windows, you may want to place the tutorial files in your ‘AppData\Local’ folder to allow read/write access to them (note that you
may need to enable hidden folders in the Windows File Manager to access the AppData folder). On macOS you can save your library
in the Documents folder or on the Desktop.

8

https://github.com/OmnisStudio

Figure 2:

• In the New Library dialog, type the name pics.lbs, including the .LBS extension, and click on OK/Save.

When you create or open a library it appears in the Studio Browser. To view the contents of a library you expand the ‘Project Libraries’
branch of the Folders tree list (on the left) and click on the library name, in this case the pics library; an alternative way to expand (or
contract) a branch in the Folders tree list is to double-click on the name.

Figure 3:

The classes that belong to the selected library are listed to the right of the Folders tree list in the Browser list. Using the Viewmenu
on the Browser window toolbar, you can change the display to Large Icons, Small Icons or Details (the default view). The following
screenshot shows the Studio Browser in Large Icons view, which might be easier while you work through the Tutorial.

Note that your library initially contains a Startup_Task which is used to initialize the library when it starts up (i.e. when it is opened),
as well as a folder containing some System Classes that are required to setup or configure a library. If you are using the Community
Edition, your library will also include a Remote_Task class which will be listed in the Studio Browser.

Creating a Database Session

Before you start to build your application (project library), you need to open a session to the SQL database, to access the data you
are going to use. In this case, you are going to connect your session to an existing SQLite database, provided in the download, that
is already populated with data. However, you could use a database from another vendor, such as Oracle, Sybase, DB2, or MySQL, or
some other data source connected via ODBC (your edition may restrict which database/s you can use). You can use the SQL Browser

9

Figure 4:

during development to set up, modify and examine your database, or multiple databases on different servers, and you can use the
SQL Browser to move database tables from one server or data source to another.

• Click the SQLBrowser option in the Folders tree list in the Studio Browser and then select the SessionManager option to display
all the defined session templates.

Figure 5:

Note that some of the session templates may not appear if your edition of Omnis Studio does not support a particular database, or
you do not have the necessary clientware installed, but you should see templates for PostgreSQL and SQLite in all editions of Omnis
Studio.

• Click the New Session option (in the options list in the middle) to create a new session template.

The Modify Session window will open which contains all the information needed to connect to your database. (Not all the fields on
the session template are needed for all databases.)

10

• TypePicSess in the SessionNamebox, selectSQLite from theDBMSVendor list, selectSQLITEDAM from theDataAccessModule
list; in this case, the DB Version is not required.

Figure 6:

Now you need to connect this session template to the SQLite database available in the zip download. On the Modify Session win-
dow, the Host Name box needs to contain the path to the SQLite database file that you wish to use, in this case the Pics.db file you
downloaded.

• Click the Select Data File button, located to the far right of the Host Name box (as shown highlighted above)

• Navigate to the ‘pics.db’ database file (provided in the zip download) located in the <Omnis Software>\welcome\tutorial folder
in the writable part of your Omnis installation (or wherever you placed the file)

Under Windows, it will be located in AppData\Local such as:

C:\Users\<username>\AppData\Local\Omnis Software\Omnis Studio <version>\welcome\tutorial
On macOS, look for the ‘tutorial’ folder in the Application Support folder, such as:
/Users/<username>/Library/Application Support/Omnis/Omnis Studio <version>/welcome/tutorial

11

• When you have located the pics.db database file on your system, click OK and the path to this file will appear in the Host Name
box.

Figure 7:

Note that there is also a NewData File button on theModify Session window that you can use to create a new empty SQLite database,
but for this tutorial you will use the existing database file, as above.

• Now press the OK button to save the session template.

The new PICSESS session template will appear in the list of available session templates.

Figure 8:

1. Click on the Back option to exit the Session Manager

Opening a Database Session

To open the database session:

• Make sure the SQL Browser option is selected, then click on the Open Session option

You should see your PICSESS session template displayed in the list of sessions.

12

Figure 9:

• Select the PICSESS option to open the session, which is now shown highlighted.

The PICSESS session appears under the SQL Browser branch of the Folders tree list and the Tables and Views icons are displayed on
the right. (Different databases may contain different database objects.)

Viewing your Tables

Note that if you have quit and restarted Omnis Studio, then you will need to reopen your database connection/session, as above, to
continue this tutorial.

To view the tables contained in the PICS database:

• Expand the PICSESS branch of the Folders tree list and click on Tables in the tree list, or double-click on Tables icon in the
Browser list; you will see theMyPictures table in the SQLite PICS database

Figure 10:

• To view the column structure and indexes in the MyPictures table, double-click theMyPictures table in the Browser list (ignore
the other system tables).

1. Close the Alter Table window by clicking on Finished or the close box.

Viewing your Data

To view the contents of the MyPictures table:

13

Figure 11:

14

• Select theMyPictures table and click on the ShowData option, or right-click on the table and select ShowData from the context
menu.

• Expand the Interactive SQLwindow, resize the Pic_Image column (by dragging the vertical line in the table header), and scroll
down to view the data.

Figure 12:

Note the Interactive SQL tool has entered the SQL needed to view the whole of the MyPictures table (SELECT * FROM MyPictures),
but you can use this tool to return whatever data you like by entering your own SQL statements and clicking on the Run button. For
example, you could add an ‘Order By Pic_Category’ clause, then click Run to sort the data on Pic_Category; in this case the Books
would appear at the top.

• When you have viewed the data, close the Interactive SQL window.

Now you have used the SQL Browser in the Development version of Omnis Studio to create the PicSess session, and to explore the
tables and data in the database, you need to provide a way for your library to access the data in the database, using that session
information.

Making a Schema

Note that if you have quit and restarted Omnis Studio, then you will need to reopen your database connection/session, as described
in the ‘Opening a Database Session’ section, to continue this tutorial.

To allow your library to access the data in the MyPictures table you must first create a Schema class in your library that defines the
column structure of the table.

Make sure that the Libraries branch of the Folders tree list is expanded so that you can see the PICS library in the tree list (see below).

Thenmake sure that the SQL Browser branch of the Folders tree list is expanded so that you can see Tables under the PicSess session
in the tree list.

• Click on the Tables branch of the Folders tree list to select it; you will see the tableMyPictures listed in the Browser list.

• Drag theMyPictures table from the list of tables and drop it on the PICS library in the Folders tree list to create a schema class;
drop the table when the PICS library is highlighted, as shown.

• Click on the PICS library in the Folders tree list.

15

Figure 13:

Figure 14:

16

You should see a new schema class calledMyPictures appear in the Browser list.

This schemaclasswas createdbyOmnis automatically tomatch thedefinition of thedatabase tablewhen youdropped theMyPictures
table onto the PICS library. (If you create your own app using your own database, you could do the same using the tables in your
database, that is, drag a table onto your library to create a schema class.)

Editing a Schema

To edit the schema class:

• Double-click the MyPictures schema class in the Browser list to open the schema editor. Alternatively, click the MyPictures
schema class and then select theModify option.

The ‘Server table or view’ box at the top of the schema editor contains the name of the database table MyPictures that is related to
this Omnis schema class. Each of the entries in the schema contains the name and Omnis data type of one of the columns in the
table. Note the data type is the equivalent Omnis data type to that of the column defined in the SQLite database table.

Figure 15:

To ensure that certain kinds of queries execute in themost efficientmanner it is recommended that one column in each table should
be designated as the Primary Key. It is important that the value of the primary key column in each row is unique because it is used
to identify a particular row of data when it is to be updated or deleted. In other words, only one row in each table should contain a
specific value in the primary key column.

• Locate the Pic_ID row (it should be row 5, as above) in the schema class and make sure the value of the Primary Key property
is set to kTrue (As you use Omnis Studio, you will meet many constants such as kTrue, all of which by convention start with the
letter “k”). Omnis should have done this automatically since it tries to identify the primary key

In addition, Omnis sets the No nulls column to kTrue, so the value is incremented automatically every time a new record is entered.

When you have finishedmodifying a class in Omnis you can simply close the editor window to save it, or you can use the Save option
from the File menu, or press Ctrl/Cmnd‐S. You can also select the Auto Save option from the File menu to force Omnis to save any
updates automatically.

1. Close the MyPictures schema class to save it.

17

Figure 16:

Creating a Desktop Form using a wizard

IMPORTANT: the following section shows how you can create a desktop form, so if you are only interested in creating aweb ormobile
app (or you are using the Community Edition), you can skip this section and jump to the section ‘Creating aWeb Form from scratch’,
or the ‘Creating aWeb Form using a wizard’ section.

Having created the data structure for your database (the MyPictures schema), you can create a window or form to browse and insert
data locally using awindow class.

Remember, if you have quit and restarted Omnis Studio, then you will need to reopen your database session, as described in the
‘Opening a Database Session’ section.

• Click the Pics library in the Folders tree list in the Studio Browser and select the Class Wizard option on the left of the Browser
list to display all the available wizard types.

• Now click on theWindow… option on the left of the Browser list to display the available window class wizards.

• Click the SQL FormWizard in the Browser list.

• At the bottom of the Browser window type the class name PicsWindow and press the Create button.

The radio buttons on the Omnis Class Wizard allow you to select the style of form to create. Select the first radio button that reads
“One field per column based on schema or query class”.

Note that if different text is displayed next to the first radio button, you have selected the wrong type of wizard so you should press
the Cancel button on the wizard window and choose the SQL FormWizard.

• Press the Next button to move on to the stage where you will choose the data structure to be used to create the form.

Note that if at this point you get themessage “There are no file classes available for selection. Please create a file class in your library
and try again”, you have selected the wrong type of wizard so you should press the OK button and choose the SQL FormWizard.

18

Figure 17:

Figure 18:

19

Figure 19:

• Click the check box to select theMyPictures schema and press the Next button to move on to the stage where you will choose
the database connection that will be used to access the data.

Note that if at this point you get the message “There are no SQL sessions available for selection. Please use the SQL Object Browser
to open a session and try again”, you need to cancel the wizard and open a database connection, as described earlier.

• Enable the switch to select the PICSESS database session and press the Next button to move on to the final stage.

• Press the Finish button to create the form.

Note that at any timeprior to pressing the Finish button you canpress thePreviousbutton to goback and reviewor change a selection.

Editing a Desktop Form

After the wizard has finished creating the form, the Window Class Editor will open with the new PicsWindowwindow class in design
mode, ready for you to modify as you wish. The Component Store (on the left-hand side) and Property Manager (on the right) are
opened automatically.

• Resize the window (and/or reposition/resize any fields if necessary) so that you can see all of the fields, for example, you can
widen the image field (Pic_Image).

The Component Store (left) is a palette containing the objects and fields that you can add to the forms and windows in your library,
while the Property Manager (right) lets you view andmodify the values of properties of the currently selected object, e.g. in this case,
the window class. At this stage, you do not need to use these tools.

Adding some code

Before you can open thewindowanduse it to insert data, youmustmake a small change to the Insert button. Doing thiswill introduce
you to the OmnisMethod Editorwhich is an all-purpose tool with built-in debugger for adding Omnis code to the objects and classes
in your library.

The Pic_ID column in the SQLite database we are using is an INTEGER data type with a Primary Key, known as an INTEGER PRIMARY
KEY, which will store a unique integer value automatically. The “trick” is to insert the value of Pic_ID asNULL and SQLite will insert the
next available numeric value; in effect the value of Pic_ID is incremented by 1 automatically and the new value is inserted. If you delete
a data record the value of Pic_ID in that record is never reused; SQLite will always use a new unique value when inserting a new row.

20

Figure 20:

21

Figure 21:

22

Figure 22:

23

Figure 23:

• Assuming you have the PicsWindow open in designmode, double-click on the Insert button, or Right-click on the button and
select Field Methods… (or select the button and press Shift-F8)

The Omnis Method Editor and Code Editor will open and the $event method behind the Insert button will be highlighted. This
method will be executed when you click on the button; in this case themethod inserts the current values in the iSqlRow variable into
the database, and it’s before this line you need to make a small addition.

• Click anywhere in the second line of code ‘Do iSqlRow.$insert() Returns lReturnFlag’ and press Ctrl-I/Cmnd-I to insert an empty
line above.

Note you can press Ctrl/Cmnd-+ to increase the font size in the Code Editor.

• With the cursor on the empty line, press “c” to locate the Calculate command: the Code Assistant will drop down from the code
line and display a list of commands starting with the letter “C”.

• In this case, the Calculate command is the first command in the list so, assuming Calculate is selected, press the Return key to
enter the command.

• As soon as you select the Calculate command, the cursor is placed in the code line where a field or variable name is required. If
you know the variable name, and in this case the column name, you can enter the text: iSqlRow.Pic_ID (this is the row variable
and column name containing some data).

• Alternatively, you can use theCode Assistant: to do this, type the first letter of the variable, in this case “i”, and select the iSqlRow
variable name from the list that drops down

You can select the variable namewith the pointer, or to keep your hands on the keyboard, use theUp orDown Arrow keys tomove up
and down in the list and press the Return key to confirm your choice, in this case select iSqlRow. This variable is contained in the form
and was added automatically by the SQL form wizard – when the form is opened the variable will contain the current row of data.

• Having selected the variable name from the Code Assistant (or entered the namemanually), type a dot (period), then enter the
database column name, in this case, Pic_ID – the complete text should be: iSqlRow.Pic_ID

24

Figure 24:

Figure 25:

25

Figure 26:

Figure 27:

Figure 28:

26

• Press the Tab key to move the cursor to the end of the line to enter the Calculation, then enter #NULL

To enter #NULL you can type “#” (Shift+3 or Option/Alt+3 or Fn+Option+3 on a Mac keyboard) and the Code Assistant will display all
the “hash variables”, or in this case, type “#N” and use the Down Arrow and Return keys to select “#NULL” from the Code Assistant.

#NULL is a so-called “hash variable”, a built-in Omnis variable (constant), that represents a NULL value. The line of code you added to
the Insert button ensures that whatever value is entered into the field in the open window, just before the row of data is inserted, the
value of Pic_ID in the window is set to NULL and SQLite will insert a new value automatically. The complete code line is:

Calculate iSqlRow.Pic_ID as #NULL

Your method should now look like the following:

Figure 29:

• When you have finished editing the method, close the Method Editor by clicking on the close box, and then save your library
usingCtrl/Cmnd-S, click on the Savebutton on themainOmnis toolbar, or select Save from the Filemenu (or if youhave enabled
Auto Save in the File menu, the class will be saved automatically).

Testing a Desktop Form

Now you can test the form you have created to ensure that in runtime mode it performs as expected. To do this:

• Click on the Test button in the Design bar to test or open the window class

• Alternatively, you can press Ctrl/Cmnd-T to test or open a form or window, or you can Right-click on the window background
and select Open Window

This will create a window instance on the screen. The window is opened on top of the design window. Note that when you press
Ctrl/Cmnd-T to test your form you must first make sure that the design window for PicsWindow is the top window and not some
other Omnis window such as the Component Store or Property Manager.

• Press theNext button on the open window to see the first row of data in the MyPictures table: click Next again to cycle through
the data.

If you don’t see any data in your form, check that the database session is open (for example, if you have closed and reopened Omnis,
then resumed the tutorial, you will need to open the database session again via the SQL Browser, as described in an earlier section in
this tutorial).

• Press the Next button to cycle through the other rows of data in the MyPictures table.

When you are developing a form, you can press Ctrl/Cmnd-T at any time to switch between the design mode and runtime (open
mode), and back to design mode again.

27

Figure 30:

28

Inserting some data

Next you can insert a new record in the database. To insert data (a record), first enter some data into the fields as follows (the precise
details are not important for this test, but do insert the PNG image into Pic_Image and insert the correct text in Pic_URL):

Field Data to enter…

Pic_Category Book
Pic_Name Science in Chaos
Pic_Image Insert ‘11bookchaos.png’ from the tutorial folder you downloaded: to do this, use

the Paste from File option, available from the Edit menu (you might need to
press Alt or Option under Windows to show the menu bar including the Edit
menu): you may need to select the PNG image type to see the file.

Pic_Desc Cover art for Bob Zurich’s latest science book
Pic_ID leave this field blank; a new unique value of Pic_ID will be inserted for you

automatically
Pic_URL images\tutorial\11bookchaos.png (this is not required for the desktop window,

but this information is required when viewing the data in a web browser created
in the next part of the tutorial)

• When you have entered the new data record, click on the Insert button to insert or “save” the record.

Figure 31:

Important note: Your formmust be in open/runtime mode to test it and edit/enter data.

• After you have clicked (once only) on the Insert button, click on Next until you cycle through to the new record you just entered.

• Close the pics window and the design window.

29

Creating a Web Form from scratch

In this section, you will build a remote form “from scratch” starting with a blank form and adding controls one by one. Alternatively,
you could use the SQL JavaScript Form Wizard which automates the whole process and is much quicker. So, to save yourself time,
you may like to go straight to the ‘Creating aWeb Form using a wizard’ section, ignoring the following section.

In this section of the Tutorial, you are going to create a JavaScript-based web form (called a “Remote form class” in Omnis) to browse
your database in a desktop web browser. You can deploy the remote form on the Omnis App Server* & Web Server to allow anyone
to look at your picture database in a browser on a desktop computer or mobile device (*this would require a Web license to run your
app, which is available for free with the Community Edition, or for a license fee with other editions).

Remember, if you have quit and restarted Omnis Studio, then you will need to reopen your database session, described in the
‘Opening a Database Session’ section, to complete this section.

To create a remote form from scratch (i.e. not using a wizard):

• Click the PICS library in the Folders tree list on the Studio Browser window to show the New class options.

• Click on theNewClass option in the Studio Browser, then theRemoteForm option; name the new classPicsWebform and press
Return.

Figure 32:

The new Remote Form will appear in the Studio Browser (note that if you are using the Community Edition there will also be a Re-
mote_Task class).

1. Double-click on PicsWebform to open it in design mode.

When you design a remote form the Component Store will open automatically docked to the left side of the Remote form editor. It
contains 40 or so ready-made JavaScript components, arranged in functional groups, which you can drag and drop onto your remote
form.

The remote formhas two layoutbreakpoints, set to 320and768,whichare shown in theDesignbar of theRemote formeditor; there are
also options to show theMethods for the form and to Test the form in a web browser (you can use these later). The layout breakpoints
allow the layout of the form to change at runtime as the size of the client browser changes (mobile or desktop). If necessary, enlarge
the form design window and click on 768 to select it.

You will add some fields and other controls to the design layout for the 768 layout breakpoint, and later in this section you can adjust
the layout for the 320 breakpoint, so your form can be displayed on phones as well.

30

Figure 33:

Adding Fields to a Web Form

You can add fields to your form by dragging icons from the Component Store and dropping them onto the form.

• Press F3/Cmnd-3 to bring the Component Store to the top, click on the Entry Fields group and locate the Entry Field control.

Figure 34:

• Drag the Entry Field control from the Component Store and drop it onto your form, somewhere near the top-left corner (as
shown below).

An Entry Field control is placed on your form and assigned a default name, but you can change it using the Property Manager.

• Press F6/Cmnd-6 to bring the Property Manager to the top.

Hiding and Showing Properties

TheAdvanced option in the Property Manager will be disabled (off) when you first launchOmnis, so the Property Manager will display
a simpler subset of properties: for the purposes of the tutorial, all the properties you need should be visible with Advanced disabled.

Once you are familiar with Omnis, as well as the components and their properties, you might like to enable the Advanced option to
show all properties whenever the Property Manager is opened.

31

Figure 35:

Figure 36:

32

Changing a Property

• Locate the name property in the list of properties in the Property Manager (you may need to scroll the list).

• Click in the cell next to the name property, delete the name assigned by Omnis automatically and enter Pic_Name

Figure 37:

• In the remote form, drag the right end of the entry field to make it wider (if necessary, drag the border of the remote form itself
to resize it).

Your form should look something like the following.

Figure 38:

The minimum height of the current layout is set to 2 pixels below the bottom of the lowest control on the form and this is adjusted
automatically as you add ormove components. Theminimumheight is stored in the $layoutminheight remote formproperty for each
layout breakpoint, while the padding is stored in $layoutpadding (default is 2). The minimum height of the remote form is shown as
the white area enclosing all the controls on the form.

33

Adding Code and Further Fields to a Form

Next you need to add a dataname or variable name to the edit field you have created to associate the entry field with a column in
your database.

Before you can addadataname to the edit control, youneed to addaRowvariable to the form thatwill link your form to theMyPictures
table in your database. You can add just the variable alone, or you can add or copy the code needed in the form, which contains the
required variables, and then add the variable(s) directly in the code.

If you are using the Community Edition of Omnis Studio, you can jump to the ‘Pasting in the code…’ section below and enter the code
and variables manually.

Otherwise, if you are using the Professional Edition of Omnis Studio, or the free trial, you can copy the code from the PicsWindow
(window class) you created in the previous section of this tutorial, or if you did not complete that section you can grab the code from
one of the pics.lbs or pics2.bs library in the ‘final’ folder.

To copy code from a window class: (not for Community edition users)

• Press F2/Cmnd-2 to bring the Studio Browser to the top and double-click the PicsWindow class to open it in design mode.

• Double-click somewhere on the background of PicsWindow (not on a field) to open the OmnisMethod Editor for the form.

• Make sure the $construct method is visible and selected (see below), then select all the lines of code in the $construct method
and Copy them (press Ctrl/Cmnd-C or use the Edit>>Copy menu option).

Figure 39:

• Close the Method Editor and close the PicsWindow class.

• Double-click on the PicsWebform remote form to open it in design mode and double-click on the background of the remote
form to open theMethod Editor for this class (not the Pic_Name entry field).

• Make sure the $construct method is visible and selected under Class methods (on the left), then click on the first line in the
right pane of the Code Editor and Paste the code you copied

When you paste a method or some code containing any variables from one class to another in Omnis, the variables and their defi-
nitions are also copied across. Therefore, you will notice that in the Variable pane, Omnis has created the iSqlRow instance variable
(under the Instance tab) and the lSessionName local variable (under the Local tab).

Pasting in the code

If you did not create the PicsWindow window class (or are using the Community edition), you can copy the code text from this page
(using the Copy icon, top right of the code box), and create the variables yourself.

• Copy the following code:

Calculate lSessionName as 'PICSESS'
If $root.$sessions.[lSessionName]
Do iSqlRow.$definefromsqlclass('MyPictures')
Do iSqlRow.$sessionobject.$assign($root.$sessions.[lSessionName].$sessionobject) Returns #F
Do iSqlRow.$select() Returns #F

34

Figure 40:

If flag false
Do $cinst.$showmessage(con(iSqlRow.$statementobject.$nativeerrorcode,' - ',iSqlRow.$statementobject.$nativeerrortext),'SQL Error')

End If
Else
Do $cinst.$showmessage(con('Session ',chr(39),lSessionName,chr(39),' does not exist.'),'SQL Error')

End If

Next you need to paste the code in the correct place in the PicsWebform.

• Double-click on the PicsWebform remote form to open it in design mode (if it’s not already open)

• Double-click on the background of the remote form (not the Pic_Name entry field) to open theMethod Editor for the class.

• Make sure the $construct method is visible and selected under Class methods (on the left, see below), then click on the first
line in the right pane of the Code Editor and paste the code text you copied

Figure 41:

At this stage the code text contains the variable names (for lSessionName and iSqlRow) but they need to be defined. You will notice
that since the code contains undefined variables it is not color coded, but you can fix this next. To do this:

• Click anywhere within the lSessionName name.

• At the bottom of the Code Editor window, click the Fix button (the button with Check mark icon), which opens the Create
Variable dialog.

35

Figure 42:

Figure 43:

36

In theCreate Variabledialog for lSessionName, ensure that Local is selected for Scope,Character for Type, and click onCreate Variable
to create the lSessionName local variable. Omnis chooses the scope and type automatically based on the name and context of the
code.

The lSessionName is now defined and should have its correct syntax color coding in the Code Editor.

• Next click anywhere within the iSqlRow variable name in the code

• At the bottom of the Code Editor window, click on the Fix button, and define the iSqlRow variable with Instance as the Scope
and Row as the Type, and click on Create Variable:

Figure 44:

Now that you have defined the variables, the iSqlRow and lSessionName variables should appear under their respective tabs (Instance
and Local) in the Variables pane, and your code should look like the following, including the syntax color coding:

Figure 45:

So what does this code do? The $construct method will be executed when the remote form is opened (in the client web browser), so
you can use this method to initialize the form and perform any other functions. The three lines of code starting ‘Do iSqlRow…’ inside
the first If statement in the $construct method do the following:

37

• The first line defines the row variable iSqlRow based on theMyPictures Schema class in your library (using the $definefromsql-
class method), which itself links to the table in your SQLite database.

• The next line of code creates a session object based on the session template called PICSESS you created previously in this tutorial
(using the $sessionobject property).

• The third line of code performs a SELECT on your database which creates a results set of data (using the $select method).

The other code in the $construct method is for handling errors.

• Close the Method Editor; your PicsWebform should still be open

• Click on the Pic_Name field in your PicsWebform to select it, then press F6/Cmnd-6 to open the Property Manager (or bring it
to the top).

• Locate the Dataname property in the Property Manager which should appear in the top panel of the Property Manager under
the Data heading

• Enter the dataname: iSqlRow.Pic_Name

You can type the variable name and column name in full, or to use the Code Assistant, type the first letter of the variable name, in this
case “i”, and select the variable name from the popup, then add a “dot” (full stop/period) and type the column name Pic_Name.

Figure 46:

Pic_Name is a column in the iSqlRow variable that is linked to the Pic_Name column in the MyPictures table in the database.

You need to create some other fields in the form, but rather than creating them from scratch you can copy the Pic_Name field and
change the properties of each field.

38

• Click on thePic_Namefield andcopy it usingCtrl/Cmnd-C thenCtrl/Cmnd-V topaste a copy (or use theEdit>>Copy / Pastemenu
options). Alternatively, you can hold down the Ctrl key (on Windows) or Alt/Option key (on macOS), click inside the Pic_Name
field and drag it to a new position to duplicate it

• With the NEW field selected, press F6/Cmnd-6 to open the Property Manager (or bring it to the top), and change the following
properties of the new field:

dataname = iSqlRow.Pic_Category
name = Pic_Category

• Make the Pic_Category field narrower and move it to the right, so its top edge is level with the Pic_Name field.

The Position Assistance (shown as dotted lines, as above) will help you line up the controls by their top edges; when the dotted line
appears you can release the control and it will snap into position.

• Select the Pic_Category field, copy and paste it onto the form (using Ctrl/Cmnd-C then Ctrl/Cmnd-V), and change the properties
of the new field using the Property Manager (F6/Cmnd-6) as follows:

dataname = iSqlRow.Pic_Desc
name = Pic_Desc
issingleline = disable (or turn off) the issingleline property so the field will allow multiple lines of text, which is required for
longer text content; this sets the property $issingleline to kFalse

• Make the Pic_Desc field a little deeper and place it under the Pic_Category field; the Position Assistance (dotted lines & auto
snap) will help you line up the left edges of the controls.

Now you need to create a further field.

• Copy and paste the Pic_Category field again (using Ctrl/Cmnd-C then Ctrl/Cmnd-V), move it down and place it under the
Pic_Desc field

You can use the Position Assistance to line up the left edges of the fields and to distribute them equally in a vertical direction.

• Change the properties of the new field, again using the Property Manager (F6/Cmnd-6), as follows:

dataname = iSqlRow.Pic_ID
name = Pic_ID

Your form should look something like the following:

Adding a Picture and a Button to a Form

Next you need to add a Picture control to your form. You can find the Picture control in the Media group in the Component Store,
which should be docked to the left of the Remote form editor.

• Locate the Picture control in theMedia group in the Component Store

• Drag the Picture control from the Component Store and drop it onto your remote form, placing it under the Pic_Name field.

• Resize the Picture control by dragging its handles, and use the Position Assistance to line up the left edge with the Pic_Name
field, and its top edge with the Pic_Desc field.

• Make sure the Picture control is selected, and press F6/Cmnd-6 to open the Property Manager.

39

Figure 47:
40

Figure 48:

• Change the properties as follows (you can type the variable name iSqlRow or select it from the Code Assistant, then add a dot
(fullstop/period) and add the column name Pic_URL):

dataname = iSqlRow.Pic_URL
name = Pic_Image

The Pic_URL column contains the location (relative path) of each picture referenced in the SQLite database.

Next you need to create a Button in your form to allow the end user to load each data record, that is, each row in the database.

• Locate the Button control in the Buttons group in the Component Store

• Drag the Button onto your form and drop it under the Picture control.

• With the button selected, press F6/Cmnd-6 to open the Property Manager (or bring it to the front), and change its properties
as follows:

name = Next
text = Next

You need to add some code to the Next button; you can copy the code text from here:

On evClick
Do iSqlRow.$fetch() Returns lStatus
If lStatus=kFetchFinished=kFetchError
Do iSqlRow.$select()
Do iSqlRow.$fetch() Returns lStatus

End If
Calculate iOldRow as iSqlRow

(Alternatively, if you are using the Professional Edition or free trial, you can copy the code from the Next button on the PicsWindow
window class you created previously in this tutorial, or from one of the pics libraries in the ‘final’ folder; you’ll need to copy the code
from the $event method for the Next button.)

• Double-click on the Next button in the PicsWebform remote form to open the Method Editor for the button.

Note when you double-click on an object, Omnis will open the Method Editor and select the object’s $event method, in this case,
$event for the Next button on your form. This method will contain the code that will be executed when the end user clicks on the
button, i.e. it is the event method for the button.

41

Figure 49:
42

Figure 50:

Figure 51:

43

Figure 52:

Figure 53:

44

Figure 54:

• Select the whole of the first line of code including On evClick (click in the code line and press Ctrl/Cmnd-A to select all) and
paste the code from the clipboard replacing the whole of the existing line.

Note that if you copied the code from this page you will need to create the local variable lStatus type = Character, and the instance
variable iOldRow type = Row. (If you copied the code from the Next button in the PicsWindow class, the variables will also have been
copied automatically, so you can skip the next part about creating the variables.)

To create the variables, click in the variable name in the Code Editor, click on the Fix button (at the bottom of the Code editor window),
and create the variable in the Create Variable dialog, remembering to select the correct Scope and Type for each (although Omnis
will try to select these for you automatically).

This is the definition for lStatus:

This is the definition for iOldRow:

The iOldRow and iSqlRow variables are needed to load or “fetch” each successive row of data from the database (in the result set from
the database SELECT).

Your Method Editor should look the same as the following, including the syntax color coding for the variables you defined:

(If you copied the code from the PicsWindow window class you can delete the last line of code ‘Do $cwind.$redraw’ since it will have
no effect in a web form, or you can comment it out by clicking anywhere in the line (or selecting the whole) and pressing Ctrl/Cmnd-/.
A # symbol is added to the line and it becomes inactive code.)

• Close the Method Editor for the PicsWebform.

Adjusting the form for a Mobile Device

At present the fields on your PicsWebform are positioned to be displayed in a browser on a desktop computer or tablet (on the 768
layout breakpoint), but you can reposition the fields on the 320 breakpoint so the same remote form can be displayed on different
devices, including mobile phones.

• Open the PicsWebform in design mode, or click on it to bring it to the top.

• Click on 320 in the Design bar at the top of the Remote form editor to select the 320 layout breakpoint.

To tidy up the fields on the 320 breakpoint layout you can start with the layout from the 768 breakpoint you already designed (at this
stage the fields are randomly placed).

45

Figure 55:
46

Figure 56:

Figure 57:

47

Figure 58:

Figure 59:

48

Figure 60:

Figure 61:

49

• Right-click on the background of the form and select the Copy Layout from Breakpoint option and select the 768 option

Figure 62:

• Drag the lower edge or corner of the remote form to make the form larger, that is, increase its height.

• Drag the Next button down (or position it at the top if you would prefer), then resize and re-position all the other fields to fit the
width of the 320 layout breakpoint; you can use the Position Assistance to help you line up the controls (as shown below).

Your remote form should look something like the following:

To test your remote form in a web browser, the library needs a Remote Task, which handles the client connections at runtime when
you test or deploy your application. However, when you test a remote form, and if your library does not contain a Remote task, one
will be created for you automatically and assigned to your Remote form.

So you can skip to the Testing your Web Form section.

Creating a Web Form using a wizard

If you have created a web form from scratch, described in the previous section, you can skip this section; go to the Testing your Web
Form section.

Having created the database session and data structure (the MyPictures schema), you can create a Remote Form to browse the data
in a web browser on your desktop computer or on amobile device. The previous section described how to create a Remote form from
scratch (and adding fields manually), but this section describes how you can create a Remote form using a Remote Form Wizard; if
you are evaluatingOmnis Studio then using awizardwill speed up the development process allowing you to assess Omnis in a shorter
time.

Remember, if you have quit and restarted Omnis Studio, then you will need to reopen your database session, described in the
‘Opening a Database Session’ section, to complete this section (if the PicSess session is open it will be listed in the SQL Browser
as highlighted below).

• Click the Pics library in the Folders tree list in the Studio Browser and select the Class Wizard option.

• Now click on the Remote Form… option in the Browser list to display the available remote form class wizards (some of these
options will not appear in the Community edition).

50

Figure 63:

Figure 64:

51

Figure 65:

• Select the SQL JavaScript Form option in the list, enter the class name PicsWebForm and press the Create button.

Figure 66:

Next you need to select a Remote task, and since you are creating a Remote form and your library does not contain a Remote task,
Omnis will create one for you automatically.

• Select the Use Existing Remote Task option (the default option).

• Select the Remote_Task (this will be created for you automatically).

• Click on Next after selecting a remote task

Next in the Class wizard screen, you need to choose the style or layout of the remote form; the radio buttons allow you to select the
style of remote form to create.

The “One field per columnbased on schema or query class” option should be selected by default, which creates a simple form to allow
you to browse the data in a single database table, like the one used in this tutorial.

If you havemore time, andwant to explore Omnis Studio a littlemore, you can come back to this stage of the tutorial and try the other
form layouts, such as the Display or Enterable grid-based form; note the Parent / Child option requires two schema classes linked in a
parent/child relationship.

52

Figure 67:

53

Figure 68:

54

• Make sure the “One field per column based on schema or query class” option is selected and click on Next.

Note that at any time in the wizard process you can press the Previous button to go back and review or change a selection. Next you
need to select the SQL class and fields you want to include in your remote form.

Figure 69:

• Click on the check box to select the MyPictures schema, then click on the arrow (>) icon to view the fields (columns) in the
schema and deselect the Pic_ID and Pic_URL options since we do not need to display them on the remote form (this step is
not essential but simplifies your form).

• Press the Next button to move on to the stage where you will choose the database connection that will be used to access the
data.

Note that if at this point you get the message *“There are no SQL sessions available for selection. Please use the SQL Object Browser
to open a session and try again*“, you need to cancel the wizard and open the PicSess database connection, as described earlier in
the ‘Opening a Database Session’ section, and then restart this section.

55

Figure 70:

56

• Enable the switch to select the PICSESS database session and press the Next button to move on to the final stage.

• Press the Finish button to create the remote form.

The new JavaScript Remote form is created for you and opened in design mode; the 768 layout breakpoint is selected and the Com-
ponent Store is docked to the left side of the Remote form editor. A Remote_Task has also been created.

Figure 71:

Omnis has added all the required fields andbuttons, and created 2 form layouts (shown in theDesignbar at the top) to cater todesktop
browsers (768 breakpoint) andmobile devices (320 breakpoint); click on each layout to see how the controls have been arranged.

You can click on theMethods button in theDesign bar to examine the codeOmnis has added automatically during thewizard process;
close the Method Editor window(s) when you’ve finished. Omnis has added an Upload button (shown with ellipsis, to the right of the
Pic_Image control) and code to allow you to upload an image; when you test the form you can enter a new record including the PNG
image provided in the zip (this is described later).

Adding some code

Before you can open the remote form and use it to insert data, youmustmake a small change to the Insert button. ThePic_ID column
in the SQLite database you are using is an INTEGER data type with a Primary Key, known as an INTEGER PRIMARY KEY, which will
store a unique integer value automatically. The “trick” is to insert the value of Pic_ID as NULL and SQLite will insert the next available
numeric value; in effect the value of Pic_ID is incremented by 1 automatically and the new value is inserted. If you delete a data record,
the value of Pic_ID in that record is never reused; SQLite will always use a new unique value when inserting a new row.

• Assuming you have the PicsWebForm open in design mode, double-click on the Insert button, or Right-click on the button
and select Field Methods… (or select the button and press Shift-F8) to display themethods for the fields or controls on the form.

TheOmnisMethodEditorwill open and the$eventmethodbehind the Insert buttonwill be highlighted. Thismethodwill be executed
when the end user clicks on the button; in this case the method inserts the current values in the iSqlRow variable into the database,
and it’s before this line you need to make a small addition.

• Click anywhere in the second line of code ‘Do iSqlRow.$insert() Returns lReturnFlag’ and press Ctrl-I/Cmnd-I to insert an empty
line above.

57

Figure 72:

Figure 73:

58

• With the cursor on the empty line, press “c” to locate the Calculate command: the Code Assistant will drop down from the code
line and display a list of commands starting with the letter “C”. In this case, the Calculate command is the first command in the
list so, assuming Calculate is selected, press the Return key to enter the command.

Figure 74:

• As soon as you select the Calculate command, the cursor is placed in the code line where a field or variable name is required. If
you know the variable name, and in this case the column name, you can enter the text: iSqlRow.Pic_ID (this is the row variable
and column name containing some data).

• Alternatively, you can use theCode Assistant: to do this, type the first letter of the variable, in this case “i”, and select the iSqlRow
variable name from the list that drops down

You can select the variable name with the pointer, or to keep your hands on the keyboard, use the Up or Down Arrow keys to move
up and down in the list and press the Return key to confirm your choice, in this case select iSqlRow. This variable is contained in
the remote form and was added automatically by the Remote Form Wizard – when the form is opened the variable will contain the
current row of data.

Figure 75:

• Having selected the variable name from the Code Assistant (or entered the name manually), type a dot (full stop/period), then
enter the database column name, in this case, Pic_ID – the complete text should be: iSqlRow.Pic_ID

• Press the Tab key to move the cursor to the end of the line to enter the Calculation, then enter #NULL: you can type “#” (Shift 3
or Option/Alt 3 on a mac keyboard) and the Code Assistant will display all the “hash variables”, or in this case, type “#N” and use
the Down Arrow and Return keys to select “#NULL” from the Code Assistant.

#NULL is a so-called “hash variable”, a built-in Omnis variable (constant), and represents a NULL value. The line of code you added to
the Insert button ensures that whatever value is entered by the end user into the field in the remote form, just before the row of data
is inserted, the value of Pic_ID in the remote form is set to NULL and SQLite will insert a new value automatically (you may not have
included the Pic_ID field on the form, in which case, this line of code is still needed to ensure a correct value for Pic_ID is entered into
the database automatically). The complete code line is:

Calculate iSqlRow.Pic_ID as #NULL

59

Figure 76:

Figure 77:

Your method should now look like the following.

• When you have finished editing the method, close the Method Editor (by clicking on the close box), and then save your library
using Ctrl/Cmnd-S, select Save from the Filemenu, or click on the Save button on the main Omnis toolbar.

Testing your Web Form

If you created your remote form from scratch it may look different from the JavaScript remote form created using the wizard (i.e. it
only has a Next button), but testing a remote form is the same. Remember, if you have quit and restarted Omnis Studio, then you
will need to reopen the PicSess database session, as described earlier in the ‘Opening a Database Session’ section.

• If the PicsWebform form is not open in design mode, double-click on it in the Studio Browser to open it.

• To test a Remote form, you can click on the Test button in the Design bar in the Remote form editor

• Alternatively, to test a remote form you can press Ctrl/Cmnd-T at any time, or Right-click on the background of the form and
select Test Form.

Your remote form should open in your default web browser, such as Chrome, Safari, Firefox, or Edge. However, you can test a Remote
form in adifferent browser (other than your defaultwebbrowser), by Right-clicking on thebackgroundof a Remote formand selecting
the Select Browser and Test Form option, then choosing the browser.

• In your web browser, click on the Next button and each data record should be displayed.

If the data is not displayed this may be because the Pics database session is not open (maybe you closed Omnis Studio and returned
to the tutorial later). If you need to open the database session, close the browser tab, return to Omnis Studio, click on SQL Browser in
the Studio Browser, click on theOpen Session option, then click onPicSess to open the database session, as described in the ‘Opening
a Database Session’ section.

Having re-opened the PicSess session, return to your PicsWebform in design mode, click on the Test button (or press Ctrl-T) to open
it in your web browser and try clicking the Next button again, or if the PicsWebform form is still open in your web browser you can
return to the browser and Refresh/Reload the web page.

60

Figure 78:

Figure 79:

61

Inserting some data

Assuming your PicsWebForm is open in your web browser (and that you have added the code to the Insert button, described in the
previous section), then you can insert a new record into the database. To insert data you must first enter some data into the fields
as follows:

Field Data to add

Pic_Category Book
Pic_Name Science in Chaos
Pic_Image Use the Upload button to insert the

‘11bookchaos.png’ from the tutorial folder you
downloaded in the zip file

Pic_Desc Cover art for Bob Zurich’s latest science book

Note that you did not include the Pic_ID and Pic_URL columns on the form; Pic_ID will be inserted automatically using the code you
added to the Insert button.

• Next you must click on the Insert button to insert or “save” the record.

Click on the Next button to cycle through the data and you should see the record you just inserted.

Figure 80:

Test HTML page

When you test a remote form, using the Test button (or Test Form option or Ctrl/Cmnd-T), Omnis creates an HTML page for you
automatically, containing the JavaScript client; in this case the page is called ‘PicsWebform.htm’ and is placed in the html folder

62

inside the Omnis Studio tree (the browser connects to the page using your ‘Localhost’ and a random test port setting). The test HTML
page displays your remote form by connecting to your development version of Omnis Studio and the Pics library you have created.

You can view the source for the test HTML page in your browser to see the embedded JavaScript client object – look for the <div> with
id=omnisobject1, and some of the other parameters that relate to the name of the library (data-omnislibrary=“pics”) and the remote
form you created (data-omnisclass=“PicsWebForm”).

<div id="omnisobject1" style="position:absolute; top:0; left:0;
width:100%; height:100%;" data-webserverurl="_PS_"
data-omnisserverandport="" data-omnislibrary="pics"
data-omnisclass="PicsWebForm" data-themename="default"
data-appid="pics.PicsWebForm" data-dss="'js320x480Portrait',
'js768x1024Portrait'" data-param1="" data-param2=""
data-commstimeout="0"></div>

Viewing a different layout

Next you can resize your desktop web browser, that is, make it narrower, and the form will switch to display the layout for the 320
breakpoint. It will look something like this (if you used the Remote form wizard):

Figure 81:

You can animate the transition between the two layouts, by setting the animatelayouttransitions property.

63

• Close your web browser (or tab) and open the PicsWebform remote form in Omnis in design mode

• Click on the background of the form and open the Property Manager or bring it to the top by pressing F6/Cmnd-6

• Enable the Advanced option at the bottom left of the Property Manager to show all the properties and tabs

The animatelayouttransitions property is not shown under the basic view mode (when Advanced is disabled); when you switch to
Advancedmode, all the properties and group tabs will appear in the Property Manager to categorize different types of properties. For
a Remote form, you will see General, Appearance, Methods, and Action tabs.

• To locate the animatelayouttransitions property, you can click on the Action tab and select the property

• Alternatively, you can enter ‘anim’ or ‘animate’ into the property Search at the top of the Property Manager to find the animate-
layouttransitions property.

Figure 82:

• Enable the animatelayouttransitions property (set it to kTrue).

If you want to locate other properties in the Property Manager, you need to clear the search by clicking the X icon next to the search,
or deleting the search string.

• Open the remote form again in your web browser using the Test button (or Ctrl/Cmnd-T) and try changing the size of your
desktop web browser; this time, the controls and buttons will glide smoothly between different layouts.

Viewing your form on a mobile device

Resizing your desktop web browser is a quick way to test the different layouts in a remote form, but you can test the form on amobile
device, or any other computer or tablet.

During development and testing you can load the form on any device that is within the same local networkWLAN. To do this, you can
enter a test URL into the web browser on your mobile or tablet, but replace the Localhost IP address (127.0.0.1) with the IP address of
your development computer itself, that is, the computer that is running Omnis Studio and the Pics library.

First, you’ll need to open the form in the desktop browser on your development computer to find out the test URL.

• If the Remote form is not already open, click on the Test button (or Ctrl/Cmnd-T) to open it.

64

Figure 83:

Make a note of theURL in thewebbrowser of your development computer, or just leave open the browser, and have ready yourmobile
phone or tablet, or any other computer within the current WLAN.

Next you need to find out the IP address of your development computer.

• On aWindows PC, you can use the ‘ipconfig’ command in the Command prompt to find your IP address, while onmacOS you
can use ‘ifconfig’ in a Terminal window.

• Open the web browser on your mobile device or tablet and enter the same URL displayed in the browser on your development
computer, but replace the local host IP (127.0.0.1) with the IP address of your development computer. (You could try this in your
desktop browser first and then send the link to your phone.)

The URL will be something like the following (the port number and IP address will be different, otherwise the URL should have the
same format):

http://192.168.1.130:49984/jschtml/PicsWebform.htm

When you submit the test URL on your mobile device the PicsWebform remote form will open, but this time Omnis detects that the
form is on a mobile device and displays the correct layout.

Changing the form theme

When you create a remote form a ‘default’ color theme is selected and applied to the controls and form background automatically,
but you can change the theme in the remote quite easily. You need to return to your remote form in design.

• If the PicsWebform form is not open, double-click on it in the Studio Browser to open it; or if it is already open, bring it to the
front.

• Press Ctrl-J, or select the JavaScript Theme option in the Viewmenu.

• Select a different theme, and the colors used in the remote form will change; the ‘vintage’ theme is selected in the following
screen.

Note that the JS Theme is a global setting so the selected theme will be applied to all the remote forms in your library (or any other
open libraries); you can write code in your remote form to set the JS Theme to be used on the client.

• Click on the Test button (or press Ctrl/Cmnd-T) to open the Remote form.

• Alternatively, you could reload or reopen the form on your mobile device to see how the form looks with a different theme; the
following screen shows the mobile form with the Vintage theme.

Summary

This tutorial does not cover the process of deploying your application to the web, but hopefully it has given you an insight into how
quick and easy it is to create and test remote forms in a web or mobile app using Omnis Studio.

For more information about deploying your web application, refer to the Deployment chapter.

65

file:///C:/Users/andrews/AppData/Roaming/Microsoft/Word/07Deployment.html

Figure 84:

Chapter 2—JavaScript Remote Forms

To create a web or mobile application in Omnis Studio, you need to create a Remote Form class using the JavaScript Components
available in the Component Store in design mode. At any stage during the design process, you can test a Remote form by clicking
on the Test button in the Design bar in the form, or by pressing Ctrl/Cmnd-T. Alternatively, you can Right-click on the background of
a Remote form and select the Test Form option, to open the form in your default web browser, or you can select the Select Browser
and Test Form option to select the browser in which to test the Remote form. The following screenshot shows the jsCharts Remote
form in design mode in the JS Charts sample app:

When you Test (open) a Remote form in design mode it will open in a web browser on your development computer. The remote
form you created will be opened in a simple HTML template file in your web browser using the JavaScript Client and rendered using
JavaScript and CSS created for you automatically. This is the JS Charts remote form opened in a web browser (you can view this app
under the Samples section in the Hub in the Studio Browser).

To test or open a remote form, yourOmnis library also needs to have aRemote Task classwhichwill handle the remote form instance(s)
and any current connections to web or mobile clients. If your library does not contain a Remote task and you create a new Remote
form (using a wizard, for example), Omnis will create a Remote_Task for you automatically; see Remote Tasks later in this chapter.

JavaScript Remote Forms and Remote Tasks are discussed in this chapter, while the individual JavaScript Components are described
in the next chapter.

Creating JavaScript Remote Forms

You can create a new Remote form class in the Studio Browser using the New Class>>Remote Form option, or the Class Wiz-
ard>>Remote Form option. The first option creates a blank remote form ready for you to drop in JavaScript components from the
Component Store, while the second option launches the Remote FormWizard, which helps you build a complete form, step-by-step
(based on an existing Schema or Query class, and a SQL session).

If you create a new library in the Studio Browser using theWeb and Mobile option, the new library will contain a Remote form (and a
Remote task) ready for you to add your own JavaScript Components.

66

03jscomps.html#chapter-3javascript-components

Figure 85:

67

Figure 86:

Figure 87:

68

Creating a Remote Form using a Wizard

You can very quickly create a Remote form to access and browse your database using the Remote FormWizard. Before using the
Remote form wizard, you need to create a schema class in your library, to match the data structure in your database, and you need
open a session to your database. To create a Remote form using a wizard:

• Create and open a session to your database in the SQL Browser

• Create a Schema class based on your database table (drag a database table onto your library to create a schema class automat-
ically)

• Select your library under the Project Libraries option in the Studio Browser, and click on the Class Wizard option

• Click on the Remote Form… option to launch the Remote Form wizard

• Select the SQL JavaScript Formwizard (the default option), and step through thewizard, selecting your SQL session and schema
columns to include in the form

These steps are described in detail in the Tutorial, including the ‘Creating aWeb Form using a wizard’ section, so youmay like to work
through those sections if you want to try the Remote form wizard.

Creating a Blank Remote Form

You can create a blank Remote form and add JavaScript components and code yourself.

• Select your library under the Project Libraries option in the Studio Browser, and click on the New Class option

• Click on the RemoteForm option

• Name the New Remote Form and press Return

Remote Form Name

Like any other class in Omnis, the name of a new Remote form can be anything you like, but the name would normally take account
of its function within your application. The class name does not have to conform to any convention other than any conventions you
may like to use in your application to identify different class types: so, for example, your remote forms could be prefixedwith “js” (short
for JavaScript), such as “jsCustomerForm”.

You should note that the name of the Remote form class, plus the “.htm” extension, is used as the name of the HTML file which is
created when you test your remote form in a web browser in design mode. Therefore, you should restrict any characters used in the
name of your Remote form to only those normally allowed in a web context, or to be sure of removing all possible conflicts, you should
only usealphanumeric characters anddo not use spaces; you can use underscore to separatewords if required. A remote formname
cannot include the hash symbol (#) or other special symbols, since this may cause unexpected results in a web browser, or in the case
of #, the remote formmay not open in test mode at all. Omnis will warn you if you try to use any characters that are not allowed.

JavaScript Client

The JavaScript Client functionality is enabled by setting the $client property in a new remote form class. When you create a new
remote form, either a blank one or using the Remote FormWizard, Omnis will set the $client property to kClientJavaScript automat-
ically, so the JavaScript Client is the default client for your web and mobile apps.

In previous versions, the kClientiOS and kClientPlugin values of $client were available, but these options have been removed from the
Property Manager; in effect, the kClientJavaScript option is now the default or only possible value of $client.

JavaScript Components

When you edit a remote form in design mode, the Component Store will be displayed, showing different JavaScript components
in different groups. The following screenshot shows the Buttons group containing a number of related components, including the
Button, Check box, and Switch controls.

See the JavaScript Components chapter for more information and example code for each JavaScript component.

69

01tutorial.html
01tutorial.html#creating-a-web-form-using-a-wizard
03jscomps.html

Figure 88:

Remote Form Design

When you create or modify a JavaScript Remote form class, the form design window is displayed in a Web Preview using the
Chromium web browser built into Omnis (using the Chromium Embedded Framework or CEF), so you can see how your form will
look at runtime in the end user’s web browser. Specifically, JavaScript controls (and JSON-defined controls) will look virtually the
same in designmode as they will do at runtime in a web browser, including the visual effect of any CSS styles you have applied to the
controls (using $cssclassname). In addition, your remote form and its controls will be displayed using the current JavaScript theme,
which you can change by pressing Ctrl-J and selecting a different theme: see JS Themes.

To render the Web Preview, an HTML file is generated using the jsctempl.htm template file in the ‘html’ folder in the Omnis tree, or
the file named in the $htmltemplate property in the design task, and placed in the ‘html/design’ folder; note the files in this folder are
only used for rendering the Web Preview in design mode and are not required when you deploy your application.

Note to pre-Studio 10.2 users: Using old design mode

You should note that there are a few differences between the Web Preview mode for remote forms and the form design mode in
previous versions, as follows:

• There is no design grid available in theWeb previewmode, so $showgrid is not present ($showgrid is not available if you switch
to the old design mode).

• Rulers are not supported in theWeb previewmode, so the remote form context menu does not have an option to show Rulers;
you can instead use Position Assistance to lineup and size the controls on your remote form.

• Design DPI scaling does not apply in the Web previewmode.

• The JS client uses box-sizing border-box, so the appearance of control borders may be different.

• It is possible an exception will occur in the JS client running in the new Web preview mode: this does not have any effect on
the validity of the remote form class. If this occurs, a message will be displayed for 5 seconds, and the error will also be logged
to the trace log. In this case, you should close and re-open the remote form editor after an exception.

Remote Tasks

To test or run your remote form in a web browser, your library must contain a Remote Task and the $designtaskname property of
your Remote form must be set to the name of a Remote task in the current library. When you create a new library or Remote form,
Omnis will in most circumstances create a Remote task for you; the following points summarize how this is handled:

• If you create a new library in the Studio Browser using theWeb and Mobile option, the library will contain a NewRemoteForm
and a Remote_Task and the $designtaskname property of the form will be set automatically.

70

03jscomps.html#js-themes

• If you create a new Remote form in an empty library (i.e. without an existing Remote task), and try to Test the form, a new
Remote_Task will be created automatically and the $designtaskname property will be set to that task.

• The Remote form wizard (SQL JavaScript Form) creates a new Remote_Task if a task class does not already exist in your library
and sets the $designtaskname property of the form automatically.

• If you try to open a remote form without a remote task in your library, or without $designtaskname being set to a remote task
name, Omnis displays an error message and the form will not open.

If your library contains multiple remote tasks, and you create a new Remote Form from the Studio Browser (using the New Class
option, not the wizard), the $designtaskname property will not be set, so you will have to assign the design task name manually
before you can test the remote form.

Creating Remote Task Classes using Wizards

For the purposes of prototyping and testing your web or mobile application, you can use the Remote tasks created for you auto-
matically. You will need to edit the Remote task when you are ready to deploy your application, or if you want finer control over the
processes in your web application. However, if youwant to create a Remote task, you can use one of the templates or wizards provided
in the Studio Browser.

To create an empty remote task

• Click on the New Class option in the Studio Browser and then the RemoteTask option

• Name the new Remote task and press Return

A suitable alternative would be the Plain remote task, described below.

To create a remote task using a class wizard

• Click on Class Wizard option in the Studio Browser and then the Remote Task option

• Select the wizard you want, name the new class and click on Create

The following wizards/templates are available:

• Plain Remote Task
creates an empty remote task containing an $event method with code for evBusy and evIdle events; this is suitable for running
JavaScript Remote forms.

• Monitor Remote Task
creates a task and remote form/window to monitor remote connections from within your application when deployed on the
Omnis App Server.

• HTML Report Task
creates a task to generate HTML reports on the fly

• Submit_Task
creates a task and standard HTML file containing a submit formwhich interacts directly with Omnis; note the HTML file created
using this wizard does not use the JavaScript Client.

$enablesenddata Property

Existing users should note that the remote task property $enablesenddata should be set to kFalse for all remote tasks controlling
JavaScript remote forms since the $senddata() method is not implemented for JavaScript remote forms. Therefore, this property is
not necessary in new web or mobile applications using the JS client and may not be shown in your version of Omnis Studio.

71

Plain Remote Task Wizard

The Plain Task wizard creates a basic template remote task that is suitable for linking to most simple remote forms. The Plain remote
task also has an $event() method containing a template event handling method that detects evBusy and evIdle events in the task.
You can add your own code to handle these events.

The Plain Remote Task has a $construct() method containing a parameter variable called pParams of type Row Variable. This row
variable receives all the parameters of the JavaScript Client, such as the remote form name, the client width and height, and the user
agent string: see below.

When you create a task using the Plain Task wizard you can specify the Inherit from Monitor task option. This option adds a set of
“monitor” classes to your library which allows you to record client connections associated with the new plain task you are adding to
your library. If you check the Monitor option, the wizard prompts you for details about the new monitor task. If your library does not
contain amonitor task, you need to specify the Create NewMonitor Task option. If, however, your library contains amonitor task, you
can specify the Use Existing Monitor Task option to add the new plain task you are currently adding to your library to the existing
monitor.

Monitor Remote Task Wizard

The Monitor wizard (or checking the ‘Inherit fromMonitor task’ option in the Plain Task wizard) creates a number of “monitor” classes,
including a new task and monitor Remote form and /or Window class, that allow you to record remote connections between web or
mobile clients and your application hosted on the Omnis App Server.

The wizard prompts you to enter the name of the new Monitor remote task and remote form for displaying the connection results
and activity: alternatively, the wizard can create a desktop window class, or both the remote form and window classes. In addition, an
extra pane allows you to identify the remote task in your library that needs to have the Monitor set for its superclass (this had to be set
manually in versions prior to Studio 10.x).

The Amend Startup Task option lets you add code to the Startup_Task in the current library to open the Monitor form/window at
startup; this is checked by default.

TheMonitor form/windowhas three panes. TheConnectionspane shows the connections groupedby remote formname. TheHistory
and Server Usage panes let youmonitor the traffic flow on your Omnis App Server and provide some general information about server
usage. You can print the server usage using the Print Report button.

Server Management Library

The Server Management Library contains the samemonitor classes that you can use tomonitor an instance of the Omnis App Server;
the servermgmt.lbs library is located in the /webserver folder under the main Omnis folder.

On Windows, the Server Management Library can display a tray icon; to enable the icon, you need to add the “showTrayIcon” item to
the “servermgmt” section of the config.json file and set it to true. If omitted, or set to false, the servermgmt.lbs does not show a tray
icon.

Remote Task Instances

When the JavaScript Client first connects to the Omnis App Server, Omnis creates an instance of the Remote Task Class associated
with the Remote form class to which the client is connecting (and specified in the $designtaskname property of the remote form).
Once the remote task class has been instantiated, next the Remote form instance is created. The $construct method of first the
Remote task and then the Remote form are run, so these methods can include any code you want to run prior to opening the form
(in the task construct method) or when the form is opened.

$order property

The $order property is an integer that uniquely identifies the remote task instance within the lifetime of the Omnis Server (since it
was started). The value will not be re-used for a different remote task until the Omnis Server is restarted. Also, values are unlikely to
be incremental.

72

Construct Row Variable

When a form is opened and the Remote task and Remote form instances are created, Omnis passes a parameter variable of type Row
to the $construct() method of the Remote task and then the Remote form (in that order); this is called the Construct Row parameter
variable. The row variable contains a column for each parameter of the JavaScript Client Object instantiated on the client: therefore, it
will include columns for OmnisLibrary name and OmnisClass name (as defined in your HTML file), as well as extra columns containing
additional information about the client object.

There is an example app called Construct row in the Samples section in the Hub in the Studio Browser showing how you can return
information from the construct row; the same app is available in the JavaScript Component Gallery.

The construct row variable will contain the following columns and typical values:

Column Description

OmnisLibrary <OmnisLibrayName> minus the .lbs
extension

OmnisClass <RemoteFormName>
e.g. jsRemoteForm

appid <OmnisLibrayName>.<RemoteFormName>

param1, 2, .. 9 Up to 9 pre-defined custom parameters
called param1, param2, etc, which
receive the values in the parameters
added to the JavaScript Client object in
your HTML page; you can add custom
parameters prefixed with “data-“ to
send further values to the remote task
or form $construct method,
e.g. data-param1=”123”
data-param2=“abc”, etc.

OmnisPlatform JSU, the JavaScript Client
JSscreenWidth The screen width of the client, e.g. 2048

for desktop
JSscreenHeight The screen height of the client, e.g. 1152

for desktop
JSscreenSize The initial setting of $screensize (only

applies to kLayoutTypeScreen based
forms in Studio 8.0 or earlier, so not
relevant for responsive remote forms)

JSDeviceInfo Device screen size (Width x Height) and
density, e.g. 1920x1080
(devicePixelRatio:1) for desktop with
standard monitor, 360x640
(devicePixelRatio:2) for mobile phone
with HD display

clientPlatform The platform on which the client is
running, one of the following strings:
‘Windows’, ‘macOS’, ‘Linux’, ‘iOS’,
‘Android’ or ‘Unknown’

userAgent The navigator.userAgent of the client,
which usually contains the browser
type and version (e.g. Mozilla/5.0)

appName The navigator.appName of the client,
i.e. the browser application name, e.g.
“Netscape” (or “Microsoft Internet
Explorer” for older clients)

Flags Currently indicates if the client
supports animation: 1 means the
browser does support animation, zero
means that it does not

73

https://bit.ly/OmnisJSGallery

Column Description

JStimezoneOffset offset from UTC in seconds, e.g. “60” for
clients on UTC+1, “120” for clients on
UTC+2, etc.

ClientLocale the Locale language setting of the
client, e.g. “en_GB” for clients in the UK,
or “en_US” for America

theme The current JS theme as set in the
$javascripttheme Omnis preference
(e.g. ‘default’)

URLparams One or more parameters added to the
URL for the web page containing your
remote form; see below. For example,
?x=y&a=b appended to the URL are
returned as a JSON object string
{“x”:“y”,“a”:“b”}

window_ specified as data-window, a
comma-separated list of members of
the JavaScript ‘window’ object; see
below

localpref_ specified as data-localstorage, a
comma-separated list of preference
names saved to localStorage; see below

The appName and userAgent columns return properties of the client browser and therefore allow you to determine which browser
and version the client is using, such as whether it is a desktop or mobile browser.

Using the Construct Row Variable in your Code

If you want to use the values in this parameter variable, you can create a parameter variable of type Row in the $construct() method of
your remote task or remote form which will receive the parameter variable when the task/form is constructed. To examine the values
in the variable, you can set a breakpoint in the $construct() method of your remote task or remote form, open the form (using Ctrl-T),
and Omnis will switch to the debugger allowing you to right-click on the variable to examine its value.

The following example uses the screen size of the client device to set the size and position of various controls in the initial remote form
for the app. The $construct() method of the remote form receives the pRow parameter row variable containing the screen size of the
client device, and calls another method to setup the columns for a data grid control on the main remote form:

$construct method containing a Parameter var called pRow of type Row; the form also
contains an instance var iScreensize (Char)
Calculate iScreensize as pRow.JSScreensize
Do method setupSizes
Etc.
code for setupSizes method
Switch iScreensize
Case kSSZjs320x480Portrait
Do $cinst.$objs.pagePane.$objs.orderGrid.$::columnwidths.$assign("150,50,50,70")

Case kSSZjs320x480Landscape
Do $cinst.$objs.pagePane.$objs.orderGrid.$::columnwidths.$assign("70,40,40,70")

Case kSSZjs768x1024Portrait
Do $cinst.$objs.pagePane.$objs.orderGrid.$::columnwidths.$assign("300,75,75,175")

Case kSSZjs768x1024Landscape
Do $cinst.$objs.pagePane.$objs.orderGrid.$::columnwidths.$assign("250,75,75,175")

Default
Do $cinst.$objs.pagePane.$objs.orderGrid.$::columnwidths.$assign("100,50,60,75")

End Switch

74

Passing Additional Parameters via a URL

You can pass additional parameters to a remote task (or remote form) from the JavaScript Client by adding the parameters to the
URL for the web page containing your remote form. This is in addition to the parameters that can be sent to the remote form or task
in the construct row variable, and any that may be quoted in the HTML page containing your remote form using the data-param1,
data-param2,.. tags.

The additional parameters can be appended to the URL pointing to the remote form in the following format:

http://127.0.0.1:5988/jschtml/rfSetCurField.htm?x=y&a=b

The JavaScript client adds the parameters as an optional column called URLparams in the row variable passed to the $construct()
method of the remote form and remote task. The data in URLparams is encoded as a JSON object string, e.g. if the URL params are
x=y&a=b, as above, the JSON object string has the value {“x”:“y”,“a”:“b”}. You can use the new OJSON static function to convert this to
a row:

Do OJSON.$jsontolistorrow(pRow.URLparams) Returns lRow

where lRow is a row variable. For the JSON above, the value of lRow.x will be ‘y’ and lRow.a will be ‘b’. Note: the client also decodes any
special encoded URI characters before generating the JSON, e.g. %3D will become =.

Sending Data to the Form construct

You can send data or content to the $construct method of a remote form by specifying some extra attributes in the Omnis JavaScript
object, contained in a <div> called “omnisobject1”, as follows:

• data-localstorage
A comma-separated list of preference names saved to localStorage (e.g. using the ‘savepreference’ $clientcommand), whose
values should be sent to the $construct row in the form. They can be named “localpref_<prefName>”

• data-window
A comma-separated list of members of the JavaScript ‘window’ object, whose values to send to the $construct row in
the form. You can use dot notation to access nested children. The columns returned to Omnis will be named “win-
dow_<memberName_childName_…>”. Column names have a max length of 255 characters

For example, the following parameters added to the omnisobject (shown in bold) will send the pixel ratio of the current device, plus
the myPref1 and myOtherPref parameters from local storage to the $construct of the remote form:

<div id="omnisobject1" style="position:absolute;top:0;left:0"
data-webserverurl="" data-omnisserverandport="" data-omnislibrary=""
data-omnisclass="" data-dss="" data-param1="" data-param2=""
data-commstimeout="0" data-window="document.URL,devicePixelRatio"
data-localstorage="myPref1,myOtherPref"></div>

Class Cache Logging

You can log and control the caching of classes in the JavaScript Client. For most applications, you should not need to use the cache
logging and control, since the default behavior of caching all class data to localStorageprovides the best performance, and is adequate
for most remote forms and data.

The options are only provided if you find your application reaches the limits of localStorage (e.g. with a very large application) and you
need to examine and control the contents of the cache.

If you have reached the localStorage limit, and need to manually clear the cache, you can do so by running the following JavaScript
code in your browser:

localStorage.clear();

To enable the cache logger, the omnisobject <div> can have two optional attributes:

75

• “data-logcaching”
If present, data will be collected on the caching of class data, etc in localStorage.
This can be accessed by querying the JavaScript object jOmnis.omnisInsts[0].cacheLogger. It has methods getCacheLog() and
printLocalStorage() to provide useful information in the browser console. If given the value “verbose”, it will print caching mes-
sages to the console as they occur.

• “data-onlycacheclasses”
If present, cache only the class data for the specified classes in localStorage.
A comma-separated list of Remote Form classes whose data should be cached.
In the format “<library name>.<form name>”. E.g: “myLib.jsForm1,myLib.jsForm2”
#STYLES is handled separately, per-library. To enable caching of styles, add an entry “<library name>.#STYLES”

These parameters will need to be added to or enabled in the HTML page containing the initial remote form for your web or mobile
application (they could also be added to enabled in the jsctempl.htm file, although the cache logging does not need to be enabled
for most applications).

Changing Forms

The remote task instance has a method, $changeform(), which enables you to replace the form currently in use on the client, with
another form in the same library. $changeform() has a single argument, which is the new remote form name. When it executes, the
current form instance destructs, and the client constructs an instance of the new form to display in the user’s browser. You can use
task variables in the remote task instance to pass information between the destructed remote form instance, and the new remote
form instance.

There are some restrictions to note:

• $changeform() cannot be used in the $construct() or $destruct() method of a remote form instance or remote task instance. If
used, Omnis generates a runtime error.

• Multiple calls to $openform() (described later) or $changeform() during the processing of a single event will result in only the
last call to $openform() or $changeform() having any effect.

One scenario for using $changeform() is where the end user is required to log onto your web application, whereby the initial “logon”
form prompts the user for a name and password, and the application changes to another form when the user has successfully sub-
mitted a valid name and password.

Multiple Forms

You can openmore than one formwithin a single client connection, that is, within a single remote task instance. At any one time, only
one of these multiple instances is visible, and the forms must be from the same library.

There are two methods of a remote task instance which you can use to manage multiple forms: $openform() and $closeform(). Like
$changeform(), both these methods take a single argument, the remote form name.

If the form passed to $openform() already has a remote form instance open in the context of the remote task instance, it becomes the
visible form for the remote task. Otherwise, Omnis constructs a new instance of the remote form in the remote task, and makes the
new remote form instance the visible form.

The $closeform() method closes (destructs) the remote form instance for the named form, without closing the task instance or any
other forms that may be open within the task. It is possible to close the last remaining remote form instance, but this is not recom-
mended, since the end user will be presented with a blank screen. If the referenced form is not visible, the client observes no effect;
otherwise, the most recently visible open remote form instance becomes visible.

There are some further restrictions to note:

• $closeform() and $openform() cannot be used in the $construct() or $destruct() method of a remote form instance or remote
task instance. If used, Omnis generates a runtime error.

• Multiple calls to $openform() or $changeform() during the processing of a single event will result in only the last call to $open-
form() or $changeform() having any effect.

• Calling $showurl() or $showmessage() in the $destruct() method of a remote form has no effect.

76

• All forms must be in the same library.

You can use task variables to handle communication between multiple remote form instances in a remote task instance.

To facilitate communication between different remote form instances, remote forms can also receive the event evFormToTop. In
design mode, you can enable this event for a form, using the $events property of the form. The event generates a call to the $event()
method of the remote form. evFormToTop occurs when an existing remote form is about to become visible on the client as a result of
a call or calls to $openform() or $closeform().

Client Access Properties

Remote tasks have a number of properties for managing the connections between the Omnis App Server and the web or mobile
clients connected to your application. These properties will be populated only when there are live remote task and remote form
instances created by a client connection.

• $connectbytessent
specifies the number of bytes which have been sent to the client during the connection. This property is set after $construct()
has been executed.

• $requests
specifies the number of events executed on the server. Excludes connect and disconnect messages. Updated prior to evBusy
message.

• $reqtotbytesreceived
the total number of bytes received from the client for all requests. To calculate an average per request, you can divide this value
by $requests. Updated prior to evBusy message.

• $reqtotbytessent
the total number of bytes sent to the client for all requests. To calculate an average per request, you can divide this value by
$requests. Updated prior to evIdle message.

• $reqmaxbytesreceived
The largest block in bytes received from the client for all requests. Updated prior to evBusy message.

• $reqmaxbytessent
The largest block in bytes sent to the client for all requests. Updates prior to evIdle message.

• $reqcurbytesreceived
The number of bytes received from the client for the current request. Updated prior to evBusymessage for the current request.

• $reqcurbytessent
The number of bytes sent to the client for the current request. Updated prior to evIdle message.

Timeouts

You can control how long someone is connected to the Omnis App Server and how long a single client connection can remain idle,
using the following properties.

• $maxtime
the maximum time in minutes that a client is allowed to stay connected; the default value is 0 which means the client can stay
connected indefinitely.

• $timeout
the maximum time in minutes that a client is allowed to stay idle; the default value is 0 which means the client is allowed to
stay idle indefinitely.

77

Client Connections

Remote tasks have some properties that tell you about the current client connection.

• $clientaddress
the TCP/IP address of the current client. Note that this may not be the exact TCP/IP address of the client machine, due to the
possible presence of proxy servers and firewalls between the client machine and the web server.

• $connectionid
the id of the current client connection; ids are allocated dynamically by the Omnis Server and numbers are not reused unless
the server is restarted.

• $connectiontime
the time and date the client connected to the Omnis Server, i.e. the time the current task instance was instantiated.

• $lastresponse
the time and date the client last accessed the remote task instance on the Omnis Server.

Managing Timeouts in Remote Tasks

Remote Tasks can be ‘suspended’ to allow greater control over how client connections are managed. A task may (optionally) be
suspended if the web page is sent into the browser’s persistent cache, or if the page becomes hidden (e.g. the user switches tabs).

When a task is suspended, it can automatically transition to a shorter timeout. An event is also fired on the task, so you might also
want to take this opportunity, for example, to close your database or push connections.

A benefit of this is that it much improves the chance that Omnis will receive some kind of notification that mobile apps have gone
away or have been killed by the user/OS, and will not leave the Remote Task open indefinitely.

Properties

Remote Tasks have the following properties:

• $suspendconditions
A set of zero or more kSuspendCondition… values to indicate under which circumstances the client should tell the server to
suspend the task.

• $suspendedtimeout
The time (in minutes) the task will survive for while suspended. Zero means never suspend the task (the default) and -1 means
suspend, but use the value of $timeout

The conditions under which the client may suspend are:

• kSuspendConditionCache
The browser has stored the full page, including its state, in its back/forward cache. Support for this varies by browser (Chrome
does not seem to support it), but it generally occurs when the user navigates away from the page using the browser’s
back/forward navigation buttons.
Note: Fields with an $autocomplete property set to “off” may be cleared when the client is sent to the cache.

• kSuspendConditionInactive
The page is no longer visible. E.g. the user has changed tab, minimized the browser or switched desktop.

If the Task times out while the client is suspended, you will receive a “You have been disconnected…” message on resuming. You can
override this, as usual, by implementing a client-executed “$ondisconnected” method on your form, which returns true.

Important Note: The HTML templates contain support for this new mechanism (introduced in Studio 10.1), therefore you need to
update any existing .htm files on your web servers to match, otherwise you will get errors or leak Remote Tasks.

78

Remote Tasks Events

Remote Tasks have the following events to handle task suspension:

• evSuspended and evResumed
whichwill be calledwhen the client is suspendedor resumed, respectively. Both events receive a pSuspendConditionparameter
with a kSuspendCondition value to indicate whether the client was suspended to the browser’s cache or the page was hidden.

Remote forms Events

When the client is sent to/resumed from the cache or becomes hidden/visible again, an attempt will bemade to call a client-executed
formmethod named “$suspended” or “$resumed” on your main form.

This happens regardless of whether the Remote Task is actually suspended, so can be made use of in serverless-client apps, or if you
just want to react to the page becoming visible again without using the suspend functionality.

These methods receive the following parameters:

• pSuspendCondition
A kSuspendCondition… value indicating whether this event is occurring due to the page’s visibility changing, or sent to the
cache.

• pTaskSuspended
A boolean indicating whether the Remote Task was/will actually be suspended. (It may not, depending on the Remote Task’s
$suspend… properties)

Secure Sockets

You can use secure sockets (HTTPS) if you have installed an SSL certificate on your web server. The JavaScript Client will use a secure
connection to connect the client to theweb server if youprefix theURLor IP_address in thedata-webserverurl parameterwith “https://”.
In addition, remote tasks have the $issecure property that lets you turn secure mode on and off dynamically, by assigning to the
property for the current task at runtime.

Remote Task Events

For remote tasks, the evBusy and evIdle events are sent to the $event() method during the lifetime of a connection: evBusy is sent
when Omnis receives a request from a client, evIdle is sent when Omnis is about to return the result of a request, i.e. the task instance
is about to become idle. The following example, shows the code for the $event()method in theMonitor task created using theMonitor
task wizard:

On evBusy
If iMonitorOpen

Do iMonitorRef.$setstatus($cinst,kTrue) Returns lServerBusyFlag
If lServerBusyFlag
Quit event handler (Discard event)
; server cannot handle request

End If
End If

On evIdle
If iMonitorOpen

Do iMonitorRef.$setstatus($cinst,kFalse)
End If

On evRejected
Do $cinst.$showmessage(pErrorText)

In addition, tasks report the evRejected event which is generated when Omnis rejects a connection by a client. Usually this occurs if
there are too many users trying to connect to Omnis, or $maxusers of the remote task has been exceeded. The parameter pErrorText
is “Too many users connecting to server” for the first case, and “Too many users connecting to task [taskname]” for the second.

79

Push Connections

Under normal operation, the Omnis Server cannot initiate communications with the client – all communications must originate as a
request from the client. However, you can “push” data to the client using Push Connections by creating a web socket connection to
the client. An example use-case could be that you could start off a long query using a SQL worker on the server, and then push the
response to the client when the results are ready, updating any instance variables in the remote form.

Support for push connections has been implemented via a Long Polling mechanism called Pollymer, a general-purpose AJAX/long-
polling library, since it provides a simple HTTP based solution that is supported in all browsers.

There is an example app calledHTTPPush in the Samples section in theHub in the StudioBrowser showinghowyou canuse push con-
nections, and there is a Tech note describing how to use the example: ‘RESTWeb Services HTTP JavaScript Push Example’ TNWS0005.

Creating a push connection

Each JavaScript client remote task in Omnis can have a single “push connection”, established using the client command openpush.
The syntax is:

$cinst.$clientcommand(“openpush”,row())

The openpush client command can be executed in either a server or client executed method, but you are advised to use it in a server
method to gain greater control over when the results are pushed. That way, you know exactly when you are using a push, or whether
or not you want to push data. There is a matching client command, closepush,which you can use to close the push connection.

Utilizing REST

The push connection uses Omnis RESTful support to carry its requests, therefore, if you are using aWeb server to pass JavaScript client
requests to the Omnis server, you need both the standard Web server plugin, and the RESTful Web server plugin to be installed with
the Web server, i.e. you need to install both omnisapi.dll and omnisrestisapi.dll.

The client scripts automatically generate a URL for push by converting the parameters in the web page. For example, if your HTML
page for the JavaScript client uses the URL:

http://localhost:8080/omnisservlet

then the client scripts will convert this to:

http://localhost:8080/omnisrestservlet

for the push connection. When generating push URL, Omnis only amends the plugin name part of the complete URL, so in the above
case, omnisservlet becomes omnisrestservlet. You can see the URL used for push connections by using browser debugging tools.

If you are not using standard names in your HTML page, there is a parameter in the Omnis configuration file (config.json) that allows
you to override the default push URL generated by the scripts: this can only be used when using openpush in a server method. To
configure this set the member “overridePushURL” of the “server” entry to the desired URL.

Remote Form Method

To support push connections there is a method for remote form instances called $pushdata(), which has the following syntax:

• $pushdata(wRow[~&cErrorText])
Used with $clientcommand openpush. The method pushes the row wRow to the client which results in a call to the client-
executed method $pushed in the remote form instance on the client, passing wRow as the parameter. wRow must be JSON
compatible, so it can only contain simple types: character, boolean, integer, number, date, list and row.

Omnismaintains a queueof pusheddata for the remote task, which is independent of calls to openpush. As soon as apush connection
arrives from the client, Omnis sends all queued pushed data that the client has not yet received as the response. The client then
processes the response, and issues a new push connection to the server, telling the server it has received the data. This allows the
server to remove the received data items from its queue, and free their memory. Typically, at this point there will be no more queued
data. The connection stays open, and as soon as the server code calls $pushdata, Omnis sends the data as the response to the client.

80

https://omnis.net/developers/resources/technotes/tnws0005.jsp

This gives the impression of a permanent pipe from the server back to the client, with acknowledgement of pushed data received by
the client, so pushed data should not go missing.

Typically, you would take data from the row returned by $pushdata and assign it to an instance variable, or subset of variables, to
update the remote form.

There is a technote TNWS0005 to showhowyouwoulduse aRESTfulweb servicewith the openpush client command in the JavaScript
Client.

Poll delay

The ‘openpush’ client command has an optional columnwhich can be passed in its parameter row. The ‘maxPollDelay’ column allows
you to override the default maximum delay (1000ms) between the client receiving a ‘$pushdata()’ from Omnis, and making a new
connection to Omnis ready for the next ‘$pushdata()’ command. Passing a value of 0 (or less) will not change the maximum delay.

If your application bounces back and forth between client & server in quick succession (you call a servermethod from $pushed, which
in turn calls $pushdata), youmayfind that reducing thismakes your applicationmore responsive. There is a small overhead to reducing
this too low, however, so it’s recommended to leave the default value unless you have a need to change it.

Remote Objects

Remote Object classes (or Remote Objects) are Object classes that are instantiated and executed entirely on the client, in the
JavaScript Client. Each Remote Object class instance has a JavaScript object “class” that directly corresponds to it on the client.

Remote Objects are useful if you have some code that you want to be executed purely on the client, and you want to use it inmultiple
remote forms, so a RemoteObject would provide a goodway to structure the code in your application, that is, it provides an alternative
to having to inherit methods from a Remote Form superclass, so may be useful in a serverless-client based mobile app.

Creating Remote Objects

The Studio Browser window allows you to create a new Remote Object, create a subclass of an existing remote object class, and edit
a remote object. Editing a remote object opens the Method Editor, in the same way as when you edit a normal object class. Within
the Method Editor itself, the main difference is that every method in a remote object class is always marked as client-executed.

The JSON library representation now includes support for remote objects. You can print methods in a remote object class.

Find and replace supports remote object classes, and has an additional entry in the class selection menu, to select remote object
classes.

The inheritance tree includes a node for remote object classes.

Omnis Language

Library Notation

The notation formanipulating remote objects is similar to that for objects. There is a new groupwithin each library, called $remoteob-
jects, containing all of the remote object classes in the library. Each remote object class has a subset of the properties and methods
supported by object classes:

Variables

Remote object classes can have class and instance variables. These are restricted to the set of client execution data types: var, date,
list, row, and (new for remote object support) object. In addition, eachmethod in a remote object class can have local variables, which
are likewise restricted to the set of client execution data types including object.

Creating Instances

You create an instance of a remote object by specifying the remote object class name as the subtype of a variable in a remote object
(see the previous section) or for remote forms, either:

• a local variable of type object in a client-executed method

81

• or a remote form instance variable of type object.

Note that this means that remote form instance variables of type object can now have a remote object class as their subtype, in
addition to an object class or a non-visual external object. Remote form object variables with a remote object as their subtype are not
synchronised between client and server – they exist only on the client.

Behavior

You can write the methods in a remote object class in the same way as you create the methods in an object class, except you are
restricted to client-executable code. Inheritanceworks as youwouldexpect using thenormalOmnismechanism, althoughyoucannot
override variables in a subclass – youmust inherit superclass variables. Variables are referenced as you would expect, e.g. you can just
use iName or you can use $cinst.iName.

However, note that you cannot use $new to create a new remote object instance. This is because the Omnis server needs to be able
to quickly parse a remote form and its superclasses in order to determine the remote object classes it uses, in order to generate the
code correctly.

Remote objects do not execute $destruct, because they are JavaScript objects (which are naturally garbage collected by the execution
environment).

If you execute a remote form method marked as client-executed, by calling it from a server method, then because the method is
actually executing on the server, Omnis will generate an error if you try to use a remote object.

When coding in the Method Editor, the Code Assistant will only provide assistance for remote object instance variables, and object
instance variables, when you are coding for an environment that is applicable: so for example, you would get no assistance for a
remote object instance variable when coding a server-executed method.

When passing remote objects around between methods, bear in mind that they are passed by reference, so they are never copied.

$cwind for remote objects

You can use the notation $cwind from code written in a remote object, to refer to the top-level remote form instance that contains
the remote object, for example, you can write code like the following in a remote object method:

Calculate $cwind.$objs.[pName].$backcolor as pick($cinst.$isodd(),kMagenta,kCyan)

In addition, you can use the notation $cinst.$container in a remote object to refer to the remote form that immediately contains the
remote object.

Code Generation

The Omnis server automatically generates the JavaScript code for remote objects, in a similar way to how it generates JavaScript code
for client-executedmethods in remote forms. The JavaScript for each remote form contains the JavaScript for all of the remote objects
it uses, using a conditional test whichmeans that if 2 remote forms use the same remote object, the code used for all instances of the
remote object will be that loaded with the first remote form.

If you modify and save a remote object class, Omnis will regenerate the code when the remote form is re-loaded.

Remote Form Properties

Like other types of Omnis class, Remote Form classes have many properties that control their appearance and behavior. You can
set most properties of a remote form class in the Property Manager, but the properties for remote form instances must be assigned
or controlled in the code in your app. Remote form instances also have methods: see the Remote FormMethods section.

Many of the properties, including many of the standard form properties, are reasonably self-explanatory, but some properties that
are specific to remote forms require further explanation and are described in the following sections. The $serverlessclient property
enables the Standalone Mobile Apps capability, and is described later in the Serverless Client section, while the $stringtabledata and
$stringtabledesignform are discussed in the Localization chapter.

82

07Deployment.html#serverless-client
06localization.html

Responsive Forms

Responsive design is a technique used to design form layouts that cater to different devices or screen sizes, including phones, tablets,
and desktops, from a single remote form class. The motivation for employing responsive design is to create a single form, with one
set of code methods, that adapts its layout automatically when it is displayed on a range of different devices, or when the client
browser is resized. For standard web pages, responsive design is implemented using CSSmedia queries and breakpoints, and Omnis
takes a similar approach by allowing you to specify a number of layout breakpoints in a single JavaScript remote form, where each
breakpoint corresponds to a different layout for the fields and other controls on your remote form.

Migrating to Responsive Form design

All new remote forms created in the Studio Browser via the New Class option or the Remote Form wizards are set to the responsive
layout type by default.

Remote forms in converted libraries (Studio 8.0 or earlier)will continue to use the $screensize property to specify the layout for different
devices. There is a migration tool, available under the Tools>>Add-Ons menu, JS to Responsive option, that allows you to migrate
existing $screensize based remote forms to the responsive type. (Note the old Sync Screen tool only applies to the old $screensize
based remote forms, and should not be used for responsive forms.) See Remote FormMigration.

Form Layout Type

JavaScript remote forms have a property, $layouttype, that specifies how the layout of the form is designed: it can be set in design
mode to one of the kLayoutType… constants, and is only assignable when the remote form is empty, when it does not contain any
controls. You can return the value of $layouttype in a remote form instance, but you cannot change it at runtime in your code.

The possible values for $layouttype are:

• kLayoutTypeResponsive
The remote form has a responsive layout with layout breakpoints, as specified in the form toolbar and stored in the $layout-
breakpoints property as a comma-separated list. A remote form can have a different layout for the fields and other controls for
each breakpoint value. All new remote forms are set to this type.

• kLayoutTypeScreen
This option corresponds to remote forms in Studio 8.0 or earlier libraries, and uses the old $screensize property containing a
number of fixed screen sizes. An existing remote form in a library converted from Studio 8.0, or earlier, will be set to this layout
type (you can use the migration tool under the Tools>>Add-ons menu to convert a $screensize based form to responsive: see
Remote FormMigration).

• kLayoutTypeSingle
The remote formhas a single layout. This type could be used for applications intended to be deployed on desktopweb browsers
only: you can use the $edgefloat property for controls to resize or reposition them when the browser window is resized (this
layout type does not allow breakpoints to be set).

A responsive remote form does not have the following properties, since they are not relevant to responsive design: $resizemode,
$screensize, $width, $height, $horzscroll, or $vertscroll, however $edgefloat still applies to components in responsive forms.

If you change $layouttype to kLayoutTypeSingle, and the $resizemode property is set to kJSformResizeModeNone, then $resizemode
will be set to kJSformResizeModeFull automatically to make it resizble.

Creating Responsive Remote Forms

You can create a new Responsive Remote form class in the Studio Browser using the New Class>>Remote Form option, and in this
case, the $layouttype property is set to kLayoutTypeResponsive automatically. The remote form wizards, available under the Class
Wizard option in the Studio Browser, also create remote forms with the responsive layout type. If you want to change the layout type,
you must change it before you add any controls, since you cannot change the form layout type once it contains any controls.

A new responsive remote form contains two layout breakpoints by default: these are set to 320 and 768 which correspond to the
relative widths for mobile devices and desktop computers (note the default breakpoint values for new remote forms are set in the
$initiallayoutbreakpoints library preference).

Remote forms can have only one breakpoint, but in most cases, you would define two breakpoints to cater to mobile devices and
desktops or tablets.

83

Figure 89:

Changing and Adding Breakpoints

You can change the default breakpoints to suit the layouts you wish to support in your application. You may find, for example, that
setting two breakpoints is enough to cater to mobiles and tablets or desktop screens, and then use the floating edge properties of
objects ($edgefloat) to resize and reposition them for different device or screen sizes (the remote form wizards take this approach).

Each layout breakpointmust be a positive integer in the range 100 to 32000, with at least 32 pixels between any breakpoints; therefore,
you cannot create a breakpoint with an existing value, or within 32 pixels of an existing breakpoint. The minimum width of the first
breakpoint is 100.

The Breakpoints for a Remote form are shown in the Design bar. Clicking on a layout breakpoint makes it the current layout.

Figure 90:

You can change, delete or add new layout breakpoints using the toolbar at the top of the remote form design screen, as follows:

• To change the value of a layout breakpoint, you can drag the right edge of the current breakpoint in the toolbar, or you can
double-click on the number in the form toolbar and enter a new value, or press Ctrl/Cmnd-E to edit the value.

• Todelete abreakpoint, click on theDelete (X) buttonwhen thebreakpoint is selected, or pressCtrl/Cmnd-Dwhen thebreakpoint
is selected (the delete button is not shownwhen there is only one breakpoint, since this is theminimumnumber of breakpoints
for a responsive form).

• To add a new layout breakpoint, click on the ‘+’ button in the top-left corner of the form toolbar, or press Ctrl/Cmnd-Lwhen the
remote form is selected, and enter a breakpoint value.

You can right-click on a breakpoint (which also makes it the current breakpoint) to open a context menu which provides options to
edit the breakpoint value and delete the breakpoint.

When adding a new layout breakpoint, all breakpoint-specific properties are copied from the nearest breakpoint, including the size
and position coordinates of the components in the existing breakpoint, plus the following: layout padding for the form, edge float,
align, drag border, error text pos, and ‘visible in breakpoint’ properties.

Deleting Breakpoints

84

When you delete a breakpoint, the positioning and individual properties you have set for all of the fields and controls in the layout are
lost, so use this option with caution. You can restore a deleted layout breakpoint immediately after deleting it using the Undo option.
If undo is not available, you will lose the breakpoint and any custom settings for the all the fields and controls in that layout; in this
case, you would have to recreate the layout again.

Layout Breakpoints

A responsive remote formmust have one or more layout breakpoints. Layout breakpoints are widths measured in CSS pixels, so they
represent logical sizes rather than physical sizes. The JavaScript client chooses the layout for one of the breakpoints defined in the
form based on the logical width of the area in which the remote form is to be displayed in the browser on the device.

• For a desktop browser, the width would be thewidth of the browser window (which can be resized), although note that respon-
siveness also applies to remote forms displayed in a subform control or subform set (in which case the width is the width of the
subform control or container for the subform set).

• For a mobile device, the width is most likely to be the width of the device screen itself, although again, a form on a mobile
device can be loaded in a subform control or subform set which may be narrower than the device screen.

The client chooses the most appropriate layout for the device, from all the layouts available in the form. Specifically, the client uses
the layout for the largest breakpoint that is less than or equal to the display area width, or if no such breakpoint exists (because all
breakpoint widths are greater than the display area width), the layout for the smallest breakpoint.

Once the client has chosen a breakpoint, the client will apply floating and component properties to make use of the available extra
width (if any), and if there is no extra width, the client will automatically turn on horizontal scrolling if necessary.

Layout Breakpoint Properties

Remote forms have a property called $layoutbreakpoints, which stores the layout breakpoints for a remote form. This is a comma-
separated list of one or more breakpoint values, and these values are shown and edited in the toolbar in the remote form design
screen: you cannot set layout breakpoints for a form in the Property Manager. You can return the value of $layouttype in a remote
form instance, but you cannot set it at runtime.

When you create a new responsive remote form, the layout breakpoints in the form (and the value of $layoutbreakpoints) are initial-
ized with the value of the library preference $initiallayoutbreakpoints. If you wish to create new remote forms with different layout
breakpoints you can edit this preference: to do this, select the library in the Studio Browser and set the property under the Prefs tab
in the Property Manager.

A responsive remote form has a property, $currentlayoutbreakpoint which is the value of the current layout breakpoint. In design
mode, the current breakpoint is highlighted in the form toolbar: it is not shown in the Property Manager. At runtime, the value of
$currentlayoutbreakpoint may change if the end user resizes their browser window, or changes the orientation of a mobile device.

Minimum Layout Height and Padding

Each layout breakpoint in a remote form has a property $layoutminheight, which is the minimum height of the responsive layout.
The default setting of $layoutminheight is zero whichmeans theminimumheight of the form is set to the bottom-most coordinate of
all controls plus an additional 2 pixels for padding (other non-zero values must be in the range 100 to 32000 inclusive). The minimum
height is indicated in design mode as the white area containing all the controls; the surrounding area in the form design screen is
shaded gray. When the available client height at runtime is larger than this value, controls can float to use the additional vertical space,
depending on their $edgefloat properties.

The $layoutpadding property allows you to set the amount of padding under the bottom-most control on the form. By default, the
bottom edge of the form is set to 2 pixels under the bottom-most control.

The range for $layoutpadding is 0 to 512which is added to the bottom-most coordinate of all controls, to generate theminimum layout
height when $layoutminheight is zero. When available client height is larger than this, the controls on the form can float. A value is
stored for each breakpoint.

When you create a new remote form class (or convert an existing remote form), $layoutpadding is set to 2 by default for each break-
point. The default value of $layoutpadding is specified in the “responsiveLayoutPadding” item in the “defaults” section of the Omnis
configuraration file (config.json), which is set to 2 by default.

When a remote form is accessed for the first time, e.g. in a converted library, the value of $layoutpadding is initialized to the default
padding (unless the remote form is read-only, in which case the default value is used, but not written to the class).

85

Layout Breakpoints for Subforms

Subforms within the inheritance hierarchy of a set of responsive remote forms do not have to have the same layout breakpoints.
Therefore, a subform can have different layout breakpoints to its superclass.

What breakpoints should I use?

In general, you need to create a breakpoint for the smallest device within each category of device you wish to support (phone, tablet,
or desktop). Therefore, the value of the first breakpoint would be the logical width of the smallest phone you wish to support (bearing
in mind logical dimensions are not the same as the pixel dimensions, which depend on the density of the screen). For example, the
logical dimensions of the iPhone 13/14 are 390 x 844 (Pro versions are larger), and the Samsung Galaxy S21 is 360 x 800, so you could
set the first layout breakpoint to 350 to allow a safe margin and to accommodate form layouts for both phones; or you could retain
the default 320 breakpoint to cater to older phones that have a smaller logical width.

Similarly, to set the layout breakpoint for tablets you should consider theminimumwidth for the range of tablets you wish to support.
The default breakpoints defined in a new remote form (320 and 768) provide support for a wide range of mobile devices or tablets,
both in vertical and horizontal orientations, but you may need to adjust the default breakpoints to suit your requirements, or as new
phones are released.

Adding Controls

When you add a control to a responsive remote form it is added to the current layout and all other layout breakpoints: initially, a control
will be in the same position in all layouts, but you can switch to another layout and change its position and other object properties
for that layout, such as $edgefloat. If you delete a control from one layout it will be removed from all other layouts, and any individual
object property settings will be lost.

Copying Layouts

You can copy the layout from another layout to the current layout using the Copy Layout from Breakpoint option in the remote form.
To do this, select the layout breakpoint you want to update, right-click on the background of the form, select the Copy Layout from
Breakpoint option, and choose the breakpoint value of the layout you want to copy from (values other than the current breakpoint
are shown). This has the effect of synchronizing the layouts of the current and selected breakpoints, by applying the size and position
properties of all components in the chosen layout, including their $edgefloat settings. (Note this has a similar function to the Sync
Screen tool available for old $screensize based forms.)

The Copy Layout from Breakpointmenu option can also apply to selected objects only if an object or multiple objects are selected.
The layout properties of the selected objects in different breakpoints are set to the same values, while the other non-selected objects
are unaffected; in this case, the menu option text changes to show ‘selected fields only’.

Assigning Properties

The ‘Copy <property> To All Other Layout Breakpoints’ option on the Property Manager context menu allows you to copy the property
value of a control to other instances of the control on all other breakpoints.

In addition, the ‘Copy Position To All Other Layout Breakpoints’ option allows you to copy the position (meaning left, top, width, height
and edgefloat) of a control to all other breakpoints.

Control Size and Layout Properties

The following layout properties are stored for each control for each layout breakpoint, that is, they can be set to different values for
each layout: $left, $top, $width, $height, $align, $edgefloat, $dragborder, $errortextpos, and $visibleinbreakpoint, which allows you to
hide a control for certain layouts. For example, you could use this property to show a vertical tabbar for one layout and a horizontal
tabbar for another layout.

When setting the $align, $edgefloat, $dragborder, $errortextpos and $visibleinbreakpoint properties in thePropertyManager, you can
assign the selected value to the control on all layouts by checking the ‘Set for all layout breakpoints’ option in the property droplist.

Responsive Form Methods

Remote form classes have a number of methods to allow you tomanipulate the layout breakpoints in the form (note these cannot be
used in remote form instances, since you cannot change breakpoints at runtime):

86

• $addlayoutbreakpoint(iBreakpoint[,&cErrorText])
Adds a new layout breakpoint to the responsive remote form at position iBreakpoint. Returns true for success, or false and
cErrorText if an error occurs

• $movelayoutbreakpoint(iOldBreakpoint,iNewBreakpoint[,&cErrorText])
Moves breakpoint iOldBreakpoint for the responsive remote form to iNewBreakpoint. Returns true for success, or false and
cErrorText if an error occurs

• $deletelayoutbreakpoint(iBreakpoint[,&cErrorText])
Deletes the layout breakpoint at position iBreakpoint from the responsive remote form. Returns true for success, or false and
cErrorText if an error occurs

Remote Form Inheritance

$layouttype cannot be overridden or changed in a subclass. $layoutbreakpoints cannot be inherited: each class has its own set of
layout breakpoints. However, $layoutminheight can be overridden.

Remote Form Migration

The Remote Form Migration tool, under the Tools>>Add-Ons menu JS to Responsive option, allows you to convert an existing
JavaScript remote form in a library converted from Studio 8.0, or earlier, to the responsive form type. The migration tool creates
new layout breakpoints corresponding to the old screen sizes available in remote forms in previous versions, and tries to adjust the
positioning and layout of fields to fit those breakpoints. The migration tool creates a new responsive remote form with breakpoints
and modified screen layouts, based on an existing remote form, and retains the old unmodified form in your library.

Figure 91:

87

The migration tool will create breakpoints at 320, 768, and 1024 in the new remote form, and assign them to the form layouts cor-
responding to the old screen sizes (the kSSZ… constants) set under $screensize: to create a breakpoint it must be set to True in the
Migrate column in the Migration tool window. The 480 breakpoint is available but is not enabled by default, since it is not needed in
the new responsive form.

You can add a new breakpoint using the Add New Breakpoint button and assign that value to one of the old screen sizes; the new
Breakpoint value is added to the dropdown menu in the Breakpoint column. For example, you may wish to create a breakpoint at
300 and assign it to the old phone screen size (320x480) to ensure that all content is displayed on all types of phones.

The Set $edgefloat kEFright option sets the $edgefloat property of certain controls to kEFright to ensure thatwhen the form is resized
in the browser the right edge of those controls is also resized or moved. In this case, only controls with no other controls to their right,
which are generally on the right-hand side of your form, are updated. Specifically, the $edgefloat property of any buttons is set to
kEFleftRight, rather than kEFright, to ensure they float without resizing when the browser window is resized.

TheUpdatemethod lines… option will replace all references in your code to the old remote form name to the new name, so your code
continues to work.

When you have set up the appropriate options you can click theMake Responsive button to create the new responsive form(s), which
are placed in a new folder in your library. You can modify them, or test them straight away using Ctrl/Cmnd-T.

Migration Log and detecting form width

When you have run the migration process, the tool creates a change log which will contain any issues that may need your attention.
This may include any places in your code that use the old $screensize constants (kSSZjs…), which no longer apply to responsive forms.

Screen Type Layout (kLayoutTypeScreen)

The following section refers to Remote forms when the $layouttype is set to kLayoutTypeScreen. This layout type enables the use of
the old $screensize property and fixed screen sizes, available in Studio 8.0 or earlier, which you are advised not to use for new remote
forms. Any remote forms in an existing library which is converted to Studio 8.0 or earlier will have this layout type. Note that in
addition, only remote forms of type kLayoutTypeScreen trigger the evLayoutChanged event when their layout changes (from Studio
10.0).

The $screensize property provides a number of fixed screen sizes for displaying remote forms ondesktopbrowsers, tablets andphones.
As with responsive remote forms, each fixed screen size uses the same set of objects (andmethods) and the remote form class stores
the position of the fields for each screen size setting.

The following fixed screen sizes and orientations are available (for $screensize based forms only, not responsive type forms):

• kSSZDesktop
for remote forms running in desktop browsers; in effect, the screen size is unspecified and the $height and $width of the remote
form in design mode is used to size the form in the browser

• kSSZjs320x480Portrait or kSSZjs320x480Landscape
For mobile devices with screens 320 x 480 px (at 96dpi) in Portrait/ Landscape orientation

• kSSZjs768x1024Portrait or kSSZjs768x1024Landscape
For tablets with screens 768 x 1024 px (at 96dpi) in Portrait/ Landscape orientation

When opening (constructing) a remote form, the JavaScript Client uses themost appropriate fixed screen size and orientation stored
with the form, for the screen size and orientation of the current device. If the user swaps from portrait to landscape, or back again, the
JavaScript Client repositions the controls automatically.

FormWidth and Height

When specifying the width and height for the mobile fixed screen sizes, you can set the $width and $height properties to match
the exact coordinates in the current setting of $screensize, allowing for the mobile title bar which is 20 pixels high. If you have set
$designshowmobiletitle to kFalse you may want to add 20 pixels to the height of the form.

88

Adding new fixed screen sizes

The screen sizes enabled in the $designedscreensizes library preference will be used to populate the $screensize property in the
Property Manager. The omnisobject containing the JavaScript client in the HTML page has the ‘data-dss’ attribute, which contains
the designed screen sizes for the library. If you use forms frommore than one library in a single client instance, each librarymust have
the same set of $designedscreensizes. If not, a runtime error will occur when trying to use a form from another library.

If you change the screen sizes supported in the $designedscreensizes library preference, all the HTML files for all remote forms in your
library need to be rebuilt to reflect the new set of screen sizes: this is done automatically when you test a remote form since the HTML
file is rebuilt every time you test a remote form. Note the jsctempl.htm template file contains the data-dss attribute and any screen
sizes currently implemented for the JavaScript client.

Testing Form Layouts in Firefox

If you are usingFirefox duringdevelopment, you can test different layouts formobile and tablet screen sizes in a single browserwindow
using the ‘Responsive Design View’ mode: note this is a feature of Firefox and is not available in other browsers. This may save you a
lot of time during the initial stages of designing your mobile application, since this avoids having to test your app onmultiple devices
to test different sizes and layouts. However, we recommend that you should test your final app on any real device that you wish to
support when you are ready to deploy your app.

To enable this functionality, you need to set the ‘gResponsiveDesign’ flag to true in the ‘ssz.js’ script file located in the html/scripts
folder in your Omnis development tree. For this to take effect, you must restart Omnis after setting the responsive design flag. To
enable this mode in Firefox, go to the Tools>Web Developer menu option and select ‘Responsive Design View’: you will need to show
the Menu bar in Firefox to see this option. Then when you test your remote form in Firefox, you can select different screen sizes and
orientations in the dropdown menu in the Firefox browser window, and your remote form will redraw using the appropriate screen
size specified in $screensize for the remote form. When you have finished testing using thismode, you should set gResponsiveDesign
in the ‘ssz.js’ script file back to false.

Sync Screens Tool

The Sync Screens tool applies to $screensize based forms only; it does not apply to responsive forms.

The Sync Screens Tool configures the components on the different fixed screen sizes stored in a single remote form. The Sync Screens
tool is available under the Tools>>Add Onsmenu in the main Omnis menu bar.

To use the Sync Screen tool you need to select a library from the Library dropdown and then select the JavaScript form in which you
wish to synchronize objects. The ‘Source Screensize’ is used as the starting point upon which the other screen sizes/layouts are based
(the desktop size/layout is chosen by default). You can choosewhich screen sizes/layouts will be synchronized, and under the ‘Options’
check boxes whether or not to scale objects by horizontal or vertical position and/or by width and height. If you don’t want a particular
object to be resized or repositioned by the tool, you can lock it in the remote form in design mode (Right-click the object and select
Lock) and enable the ‘Ignore Locked Components’ option (enabled by default). When you have adjusted the settings, click on the
Sync button.

You should change the setting of $screensize in your remote form and check the layout of the objects for each screen size/layout.
You should also test the form in a browser and on different devices to check that the form objects have been sized and positioned
correctly.

Resize Mode (Screen & Single layout only)

Remote forms with the layout type kLayoutTypeScreen and kLayoutTypeSingle have the $resizemode property which allows a form
displayed in a desktop web browser to be resized ($resizemode is not available for kLayoutTypeResponsive forms). The $dragborder
and $edgefloat properties can then be used to allow JavaScript forms and components to be dynamically resizable at runtime in the
end user’s browser.

The $resizemodeproperty only applieswhen the remote form is beingdisplayed in a standardbrowserwindowonadesktop computer
or laptop, that is, the property does not apply when the form is displayed in a browser on a mobile device or when the form is being
used as a subform since in this context the form size is fixed.

The $resizemode property determines whether or not a form resizes when the end user resizes the browser window. The value of
$resizemode is one of the kJSformResizeMode… constants that specify how the form behaves when it initially opens and when the
browser window is resized. The kJSformResizeMode… constants are as follows:

• kJSformResizeModeNone
The formdoes not change size when the browser window is resized and the form is positioned at the left of the browser window.
This corresponds to the behaviour in Omnis Studio 5.2.x

89

• kJSformResizeModeCenter
The form does not change size when the browser window is resized but the form is centred horizontally in the browser window,
only if its width is less than the browser window width

• kJSformResizeModeAspect
The form resizes itself as the browser window is resized maintaining its aspect ratio to fit the browser window; it will not resize
to a size smaller than the designed size in the remote form class

• kJSformResizeModeFull
The form resizes itself to fit the browser window, regardless of aspect ratio; it will not resize to a size smaller than the designed
size in the remote form class

You can assign $width and $height of the remote form at runtime, however this may conflict with $resizemode, so you should only
assign these properties when $resizemode is kJSformResizeModeNone.

Component Transitions

Remote forms have a property, $animatelayouttransitions, which specifies whether or not the controls on the form will animate to
their new position and size when the form layout or orientation changes on the client. If this property is set to kTrue, all the controls
on the form will animate on the transistion, e.g. when changing from vertical to horizontal orientation, or when resizing your desktop
browser window. You can stop the animation for individual controls by setting the $preventlayoutanimation property to true for the
control. (The transition properties apply to responsive remote forms and the old $screensize based forms.)

The animation time is hard-coded to 500ms, but you can override this for individual controls using JavaScript as follows:

Calculate lControl as $cinst.$objs.myButton1
JavaScript:lControl.animateLayoutTime = 1000;
Set layout transition animation time to 1000ms for myButton1

Or, to set a new animation time for ALL controls on the form, execute the following in the remote form’s $init method:

JavaScript:ctrl.prototype.animateLayoutTime = 1000;

Initial Field and Tabbing Order

The $startfield property specifies which field in a remote form will get the focus when the form is opened; it takes the field number
of the control as specified in the $order property of the control. The relative values of the $order property for all the controls in your
remote form determines the tabbing order of the controls in the form. In general useability and accessibility practices it is usual to
specify the left- or top-most control of the form as $order = 1 and follow consecutive order number values across to the right (if you
have rows of controls) and downwards.

For inherited forms, the $inheritedorder property determines the tabbing order for the first inherited field: zero means maintain the
designed order from the base class through to this class.

Responding to OK and Cancel Keys

You can specify which object in the remote form receive OK and Cancel events from the keyboard, e.g. when the end user presses the
OK or Cancel button. For the JavaScript remote forms, $okkeyobject specifies the object in the form that receives evClick when the
user presses Return or Enter. Similarly, $cancelkeyobject specifies the object that receives evClickwhen the user presses Escape. Both
of these properties only apply if the field currently with the focus does not use the key that is pressed, in which case these properties
will have no effect.

Form background and Subforms

The $okkeyobject and $cancelkeyobject properties are activated when the focus is on the containing form, so $okkeyobject and
$cancelkeyobjectwill now receive a clickwhen theEnter or Esc keys arepressed, and the focus is on thewhitespacewithin its container.
Each parent form (whenworkingwith subforms) will be checked for an $okkeyobject or $cancelkeyobject until it reaches the top form.
The exception to this is if the subform is contained within a subform set, and in this case, it will keep checking parent forms until it
reaches its containing subform.

90

Form and Component Transparency

Remote forms have the $alpha property which sets the transparency of the form (an integer from 0 to 255, with 0 being completely
transparent and 255 opaque). In addition, $backalpha lets you control whether or not subforms in themain form use the background
color of the subform field or the form itself. The majority of the JavaScript components have the $alpha and $backalpha properties
which control the transparency of the foreground and background colors of the component.

In combination with the animation methods, you can use the $alpha of a form or control to make elements in your form appear and
disappear. The About windows in the sample apps (available in the Welcome screen when you start Omnis) are displayed by setting
the $alpha property of the About subform and using the animation “ease in” effects. See the Animations section.

Gradients

To create a gradient for the background of a JavaScript remote form, you can select a gradient fill pattern for $backpattern and control
the start and end colors for the gradient by setting $forecolor and $backcolor.

Remote Form Instances and Methods

When you “open” or test a remote form in Omnis it is opened in a web browser. In development mode, this will be the default web
browser on your development computer, but when your app is deployed, the remote formwill open in the end user’s web browser, or
the browser on amobile device, or within awrapper application for standalonemobile apps. When a remote form is opened aRemote
Form Instance is created which will have a number ofmethods that you can use in your code to perform various actions.

Remote Form Instance Properties

Remote form instances have a number of properties, including:

• $remotemenu
which is the current remote menu instance. This is only set when evOpenContextMenu is being processed: see the Remote
Menus section

• $sqlobject
is the JavaScript Client SQL Object which is only available in client-executedmethods running in a wrapper application: see the
SQL Object section

• $layouttype
returns the current layout type of the remote form instance; note you cannot set it in your code

Remote Form Methods

Remote form instances have the followingmethods, to enable animations, clientmessages, client commands, and the ability to open
a web page from within the client:

• $beginanimations() and $commitanimations()
$beginanimations(iDuration [, iCurve=kJSAnimationCurveEaseInOut]) After calling this, assignments to some properties are
animated for iDurationmillisecondsby$commitanimations(); the$commitanimations()methodanimates the relevantproperty
changes that have occurred after the matching call to $beginanimations(); see the Animations section

• $clientcommand()
$clientcommand(cCommand, wRow) Executes the command cCommand on the client device using the parameters in the row
variable wRow; see the Client Commands section for possible client commands.

• $maximize() and $minimize()
For subforms in a subform set only: maximizes or minimizes the remote form instance if it is a member of a subform set

• $setcurfield()
$setcurfield(vNameOrIdentOrItemref [,bSelect=kFalse]) sets the current field on the client and places the focus in the field; for
mobile devices the soft keypad may be initiated (depends on the OS); if bSelect=kTrue, and if supported by the control, all of
its content will be selected; executing $setcurfield(‘’) will remove the focus from the current field; you can specify the field by
name, ident, or item reference

91

• $showmessage()
$showmessage(cMessage[,cTitle]) displays an OKmessage on the client machine using the specified cMessage and cTitle; mul-
tiple calls to $showmessage() during the processing of a single event will result in only the last call to $showmessage() having
any effect and that message being shown; see Client Messages

• $loadfinished()
is a client-executed method that allows you to check when all subforms of a form have been loaded; it is called after all the
subforms that belong to the parent remote form instance have finished loading and their $init methods have been called, so
you could create a client method called $loadfinished to perform any actions you want after all subforms have loaded

• $showurl()
$showurl(cURL[,cFrame,cWindowProperties,cWindowRef]) opens the URL in a new window or frame on the client machine;
cURL specifies the URL of the HTML page; cFrame specifies the HTML frame name; if cFrame is empty, the page is displayed in
a new window, otherwise it is displayed in the specified frame of the current window

• $closeurl()
$close(cWindowRef) closes a browser window that was previously opened by the $showurl() method, takes a single parameter,
a string identifier to the window, returned in the fourth parameter of the $showurl() method

See also Client Methods for remote formmethods that can be executed on the client (including $init method).

The cWindowProperties parameter for the $showurl() method is ignored if cFrame is not empty. Otherwise, it has the same format as
the JavaScript argument to ‘window.open’, for example, “toolbar=0,menubar=1” specifies that thebrowserwindowwill have amenubar,
but not a toolbar. The keywords are all boolean (0 or 1) except for the width, height, top and left, which are numbers in pixel units.
Possible keywords are:

Keyword Description

toolbar specifies if the browser window has a
toolbar

status specifies if the browser window has a
status bar

menubar specifies if the browser window has a
menu bar

scrollbars specifies if the browser window has
scrollbars

resizable specifies if the browser window is
resizable

location specifies whether the browser
window has a location bar

directories specifies whether the browser
window displays Web directories

width width of browser window
height height of browser window
top top coordinate of browser window
left left coordinate of browser window

$redraw and $senddata Methods

The $redraw and $senddata Methods are only relevant to remote forms used with the now obsolete Web Client plug-in, so do not
apply to JavaScript based remote forms. Redraws are handled automatically for JavaScript remote forms and controls, so the $redraw()
method is not required and if it is called it does nothing. In addition, the $senddata() method was used in the old plug-in to control
when data was returned to the client, but this is irrelevant for JavaScript Client which handles the transfer of data between the client
and server automatically.

Client Messages

The $showmessage() method allows you to display a message on the client device. This method only applies to remote tasks that are
associated with remote forms, that is, themethod does not work for remote tasks that handle HTML forms or “ultra-thin” clients. Only
onemessage can be shown in response to a single event. Executing $showmessage() more than once in response to the same event
will result in a single Ok message with the text and title of the last call to $showmessage being shown. Alternatively, you can use the
OK message command provided it is executed on the client; in this case the command uses a standard browser alert() or confirm()
dialog.

92

Adding Objects to JavaScript Forms

You can add a new object to a remote form instance or a Paged Pane in the form at runtime using the $add() method. Note that you
cannot create an entirely new object using this method, rather the $add() method in this context lets you copy an existing object in
the form and add it to the form or pane. The following method can be used, where $cinst is the remote form instance:

$cinst.$objs.$add(cName,rSrcItem[,rParentPagedPane,iPageNumber,bAllPanes=kFalse])

adds new object cName to the JavaScript remote form instance by copying rSrcItem (existing object in same instance). The default
action is that the new object is added to the form (when rParentPagedPane etc are omitted), otherwise you can specify the Paged
Pane parameters to add the new object to a Paged Pane in the remote form.

This method can only be used in server methods, not a client-side method, that is, the information about methods etc is not present
on the client. There is a logical limit of 16384 controls on a remote form, although performance will be impaired well before that limit.

The rSrcItem and rParentPagedPane parameters must both be item references to objects in the same remote form instance: their
original properties andmethods defined in the class when the formwas instantiated will be the initial properties andmethods of the
new object.

If the object to be copied (rSrcItem) is a paged pane, then its children are not copied.

Thismethod of copying objects cannot be used to copy complex grids. Furthermore, complex grids cannot be anywhere in the parent
hierarchy.

Note that you cannot use the $remove() method to remove objects you have added using the $add() method: to remove or hide such
an object, you can set $visible for the object to kFalse. In addition, you should note that $order is not assignable at runtime so you
cannot add a new object and then change its field order.

Remote Form Instance Group

The item group $root.$iremoteforms is a global group of all remote forms instantiated in Omnis at any one time. You can inspect the
$iremoteforms group within the context of the current remote task (the current global group remains unchanged).

Therefore you can use $ctask.$iremoteforms in a remote task to return an itemgroup containing both top-level remote form instances
and subform instances. In addition, the $obj notation has been implemented for subform objects, so that if the current item is an
item reference to a remote form instance contained by a subform object, item.$obj is the item reference to the remote form subform
object. For example, if RF1 is a remote form containing a subform object named sfobj, with a classname of RFSUB, then after both
forms have constructed:

$ctask.$iremoteforms ## will contain instances RF1 and RFSUB
$ctask.$iremoteforms.RFSUB.$obj ## will be $iremoteforms.RF1.$objs.sfobj

Remote Form Events

JavaScript fields and controls trigger eventswhich you can respond to in the $event()method for individual controls. JavaScript remote
forms also trigger events, including when the screen size or orientation of the client device changes, or when a form or subform is
brought to the top when multiple forms are open. Remote forms trigger the following events:

• evAnimationsComplete
The animation has completed, with the parameter pEventCode; the Animations section

• evFormToTop
The remote form is about to become visible on the client, with parameters pEventCode and pScreenSize which is a kSSZ…
constant for the current screen size on the client; see the Multiple Forms section

• evLayoutChanged
(applies to kLayoutTypeResponsive remote forms) generated when the responsive layout breakpoint changes, that is, when a
mobile device is rotated, or when a browser window is resized: this event is also triggered when the form first opens. This has
the event parameter pBreakpoint, which is the integer value of the initial or new layout breakpoint (e.g. 320 or 768, the default
values).
(Note that in versions prior to Studio 8.1.6, the pBreakpoint parameter was reported as a string in a client executedmethod, but
this is now reported as an integer value, which matches the behaviour of evLayoutChanged in server methods.)

93

• evScreenOrientationChanged
(applies to kLayoutTypeResponsive, kLayoutTypeScreen, and kLayoutTypeSingle type forms, since Studio 10.0) The orientation
of the screen has switched between portrait and landscape, with parameters pEventCode, pScreenSize (a kSSZ… constant for
the current fixed screen size on the client, and pOrientation (kOrientPortrait or kOrientLandscape depending on the resulting
orientation of the form).

• evSubFormToTop
An existing remote form, contained in a subform that has $multipleclasses set to kTrue, is about to become visible on the client,
with the parameter pEventCode; see the Multiple Forms section

• evOpenContextMenu and evExecuteContextMenu
JavaScript remote forms report the context menu events: see the Context Menus section

Event Parameters

When an event is triggered, a number of event parameters are sent from the client to the event handling method. The first of these
parameters is always the name of the event that occurred, and all subsequent parameters are specific to the event and describe the
event in more detail. For example, a click on a list passes the click event in the first parameter (pEventCode=evClick) and the list line
clicked in the second parameter (pLineNumber).

Enabling Form Events

If youwant to use any remote form events in your code, you have to enable the events in the $events property of the remote form. You
have to do this in design mode by clicking on the background of the form, selecting the Properties option, and selecting the $events
property in the Property Manager. You can enable an event by selecting it in the dropdown list for the $events property.

Form Orientation

When the orientation of a remote form changes (e.g. when the end user rotates their mobile device, or in some cases resizes the
browser window), Omnis sends an evScreenOrientationChanged event to the top remote form. This allows the remote form to adjust
the coordinates of any dynamically added objects. In addition, evFormToTop also receives the pScreenSize event parameter, allowing
other forms to make adjustments if necessary when they come to the top. In addition, remote forms of type kLayoutTypeScreen
(non-responsive) trigger the evLayoutChanged event when their layout changes.

Event Methods

You can trap and respond to events generated in a remote form in the $event()method in the form. You have to add amethod called
$event to the Class methods for the form to create an event handler. Like other event methods you can use the On event command
to trap specific remote form events. The following $event method responds to the evScreenOrientationChanged event and sets the
iScreensize variable to the correct screen size.

On evScreenOrientationChanged
Switch pScreenSize

Case 3
Calculate iScreensize as kSSZjs320x480Portrait

Case 4
Calculate iScreensize as kSSZjs320x480Landscape

Case 9
Calculate iScreensize as kSSZjs768x1024Portrait

Case 10
Calculate iScreensize as kSSZjs768x1024Landscape

Default
Calculate iScreensize as kSSZDesktop

End Switch
Do method setupSizes

94

Running Event Methods on the Client

Event handlingmethods can be set to run on the client and formost simplemethods and calculations this is advisable; inmost cases,
when you add a $eventmethod it is set to execute on the client automatically (andmarked in pink, the default color). To set amethod
to run on the client you need to Right-click on the method in the method editor and select the ‘Execute on Client’ option. By default,
an event is sent back to the Omnis App Server, the client ismomentarily suspendedwhile the event handlingmethod is processed on
the server, and when the method is finished control is passed back to the client. In some cases, this may not be a problem, or when
server data is required, but in general it makes sense to execute your methods on the client and avoid any network delay if possible.
Whether or not you execute a method on the client will depend what the method has to do and what information it requires: in
general, any method that changes the user interface on the client can be executed on the client, while a method that needs to fetch
data or write data to your server database needs to execute on the Omnis App Server.

Testing JavaScript Remote forms

You can test a JavaScript remote form by clicking on the Test button in the Design bar, or using the Test Form option, available by
Right-clicking on the background of the form, or by pressing Ctrl-/Cmnd-Twhile the remote form is the top design window. You can
also Right-click on a Remote form in the Studio Browser and select Test Form. (Your librarymust contain a Remote task and its name
must be assigned to the $designtaskname property of the remote form for it to be opened: see Remote Tasks for more information
about remote tasks.)

The Testbutton or Test Form optionwill open the remote form in awebbrowser specified as the default browser on your development
computer; the remote formwill open in a newbrowserwindowor create a new tab if your browser is already open. Omnis has a built-in
HTTP server to allow you to test remote forms locally in a web browser.

The Select Browser And Test Form… option (Shift+Ctrl/Cmnd+T) on the Remote form design Contextmenu opens a dialog containing
a list of web browsers installed on your system, including an entry for the System Default, allowing you to select a browser in which
to test your remote form. This can be useful if you want to test a remote form in several different browsers while designing the form
and testing your app, for example, to check that some JavaScript code behaves the same in all browsers. Note that the option is only
present in the Context menu when your system has more than one registered web browser, otherwise the option is hidden, and the
default system browser will be used via the standard Test Form option.

Having tested a remote form in your web browser, you can switch back to Omnis and continue to change your remote form or its
methods, and use Ctrl/Cmnd-T at any time to test your form. Each time you press Ctrl-T Omnis will try to open a new browser window
or tab. Alternatively, if your web browser is already displaying your remote form, and you have modified the form, you can switch to
your web browser and Refresh/Reload the browser to see the latest changes to your form (but if you change JS theme you have to
re-open the browser window/tab using Ctrl-T).

Default Web Browser

When you test your remote form using the Test button or Test Form option (Ctrl/Cmnd-T), it is opened in the default web browser on
your development computer. If you want to test the form in another browser on your computer, you can use the Select Browser And
Test Form… option (Shift+Ctrl/Cmnd+T) on the Remote form design Context menu; alternatively, you can copy the test URL and paste
it into another browser (note the port number may change from session to session).

If you want to override the default action for the Test Form option, you can specify the name and path of an alternative browser in the
$webbrowser Omnis preference (edit the Omnis preferences via Tools>>Options onWindows, or Omnis>>Preferences on macOS). If
this preference is empty, then the default browser on your development computer will be used for testing remote forms.

Test Web Page

When you test your remote form using Test Form (Ctrl/Cmnd-T) an HTML page is created for you automatically containing the
JavaScript Client and all the required parameters to allow you to open your Omnis app in a web browser. The test HTML file is lo-
cated in the HTML folder under the main Omnis folder, and can be used or incorporated into the other web pages on your website
when you are ready to deploy your application. TheWeb Preview displaying your form in the remote form editor also creates an HTML
file in the ‘html/design’ folder, in order to render the page in design mode, but this is not required for deployment.

The name of the test HTML file will be the same as your remote form class name plus the .htm extension. The test HTML is based on
a template file which is also located in the HTML folder: see below for more information about the template.

The URL for the test HTML page will be something like the following:

http://127.0.0.1:51452/jschtml/<remoteformname>.htm

95

The test URL contains the IP address of your Localhost (127.0.0.1), the port number of your copy of Omnis Studio, a reference to the
test JavaScript Client HTML folder, and the name of the HTML file. The port number during testing will be the port number specified
in the $serverport Omnis preference, or if this is empty (the default) a port number is selected randomly from the available ports on
your computer.

If you try to open or navigate to the test URL from your browser history it may not work: in this case such a URL may not have the
correct port setting since the port number is assigned dynamically during testing if the $serverport property is empty and therefore
may be different from one session to another. In addition, you cannot open or test your remote form by opening the test HTML in the
template folder: again your browser will not have the correct URL to load the test HTML file.

Omnis Studio and your librarymust be open and running to test your remote form. So if you open the test HTML file from your file
system, and Omnis and your library are not open, then your remote form will not be displayed and your web or mobile app will not
run.

Template HTML File

The test HTML createdwhen you use the Test Form orCtrl-T option is based on a template file called ‘jsctempl.htm’, which is located in
theHTML folder under themainOmnis folder. When you press Ctrl-T a copy of the template file ismade and the individual parameters
for your remote formarewritten to the test HTML file: this occurs every time you test your form to ensure the test HTML file is up to date
and has the correct parameters. Therefore, if you make any changes to the HTML file in HTML folder your changes will be overwritten
the next time you test your remote form: if you want to keep a version of this file, either rename it or copy the file to another location.

See Editing Your HTML Pages for more information about the contents of the test HTML page and what changes you may need to
make for deployment.

Using an Alternative Template file

The remote task class property $htmltemplate allows you to specify a different HTML template to use to test a remote form, rather
than using the default template ‘jsctempl.htm’. For example, you may want to create a template with your own set of parameters in
the “omnisobject” <div>, but retain the default template.

The new $htmltemplate property specifies the name of a template file (which must exist in the html folder) to use when testing any
remote forms that use this remote task as its design task. If $htmltemplate is empty (the default), Omnis uses the default template
‘jsctempl.htm’ located in the html folder, which matches the behavior in previous versions.

Debugging Remote Forms

When you open a remote form in your development browser you will need to debug the methods and code in the form. You can do
this by setting breakpoints in your code and you can send messages to the Omnis trace log or the JavaScript console (provided it is
available) to allow you to debug your code.

Breakpoints

You can set breakpoints in your code, so when you test your remote form using the Test Form option or Ctrl-T and a breakpoint is
encountered, control will pass from your web browser back to Omnis. In this case, when a breakpoint is encountered, the Omnis entry
(button) in theWindows Task bar will flash (the default color is orange) and you will have to click on the button to return to the Omnis
application window to continue debugging.

Trace Log

The tracelog() function allows you send debugging and other messages to the Omnis trace log fromwithin client methods executed
in the JavaScript Client: this will allow you to debug client methods. The tracelog(string) function writes the string to the Omnis trace
log, or does nothing if debugging is disabled using the library property $nodebug. It returns true if the string was successfully written
to the trace log.

Alternatively, in JavaScript client-executedmethods you canuse theSend to trace log commandwhich sends the text to the JavaScript
console.

96

/developers/resources/onlinedocs/WebDev/07Deployment.html#editing-your-html-pages

Runtime & Server Logging

The Library preference $alwayslog ($clib.$prefs.$alwayslog, defaults is kFalse) allows you to log messages in the Runtime and Server
versions of Omnis to help you debug your code. When kTrue, the Send to trace log command and tracelog() function always write
non-diagnostic messages to the trace log (overriding the check for debuggable code).

Client Caching

There is an entry in the Omnis configuration file (config.json) that allows you to control whether HTML pages are cached or not by
the built-in HTTP server in Omnis (which is used for testing forms in design mode). The “preventclientcaching” item under the ‘om-
nishttpserver’ entry in the config.json file is set to true by default and prevents web pages from caching. When set to true, this would
mean that every time a page is accessed, the page and any linked scripts (JS files, CSS files) are loaded or refreshed and not cached:
note this is for testing purposes only, and does not apply when you deploy your app. If you want pages to be cached you can set this
item to false.

The “preventclientcaching” entry in config.json has the following format:

"omnishttpserver": {
"preventclientcaching": true

}

When hosting your files on a web server (as recommended for deployment), this setting does not apply - your web server will have its
own settings to control client caching behavior of files it serves.

Testing your Remote Form on a Mobile Device

To test your remote form on a mobile device or any other client apart from your development computer, assuming those devices are
within the same local network (LAN/WLAN) as your development computer, you can enter the test URL into the web browser on your
device but replace the Localhost IP address (127.0.0.1) with the IP address of your development computer. For example, reusing the
test URL above and replacing the IP address, the following URL could be used on amobile device such as a phone or tablet computer:

http://194.131.70.184:51452/jschtml/jsMain.htm

You can use the ipconfig command to find the IP address of your development computer, via the Command prompt on a PC or the
Terminal on a Mac.

Youcan test amobile remote form inawrapper applicationusing the Test FormMobile (Ctrl-M) option, assumingawrapper application
is setup and enabled: if a wrapper is not setup you can test your mobile forms in a web browser during development, as above. See
the Deployment chapter for details about setting up a wrapper application.

Client Script Version Reporting

If the build version of the scripts in the JavaScript Client is different to the scripts on the server, then the mismatch is reported as an
error.

If there is a major version difference between client and server, an error message is generated, and the client will not run in this
situation. The errormessage text is determined by a new localizable string “omn_cli_script_majorversion_mismatch” in strings_base.js.

If there is a difference in the build revision, a warning is logged to the browser console describing the issue. For example, if you patch
the scripts only (rather than installing a new version of Omnis Studio), then this difference will be logged in the console.

Troubleshooting Remote Forms and Tasks

Remote Tasks

When I try to test my remote form using Ctrl-T, it does not open and the error “To use a remote form class, youmust set the design
task of the remote form class to a remote task” is displayed.
You need to create a remote task in your library and set the $designtaskname property of the remote form class to the name of the
remote task you created. A remote form instance needs a remote task instance to run (for testing or deployment), so will not open
without a remote task and the $designtaskname property being set.

97

07Deployment.html

Remote Forms

When I open my blank remote form in design mode I don’t see any JavaScript components in the Component Store.
All new remote forms should be set to run on the JavaScript client, but if for some reason the $client property is not assigned, you need
to set it to kClientJavaScript to use the new JavaScript components. (Note you cannot switch an existing Web Client based remote
form to the JavaScript Client, but there is a migration tool available in the Studio Browser to help you move to the new client.)

Events

I have placed an event method behind my button (or any other event-driven object), but nothing happens when I click it while
testing the form in a browser.
You must specify which events are to be triggered by the object or remote form in the $events property of the object or form. So for
a button, the evClick event must be checked in the $events property of the button. Events for some objects are checked by default,
but you may like to examine the state of each event in the $events property and make sure the events you need are enabled.

Client Methods

You can run certain methods on the client, such as event handling methods ($event), instead of running them on the Omnis App
Server: these are referred to as Client-Executed Methods or simply Client Methods. When such client methods are called in your
application, runtime execution does not pass back to the Omnis App Server, rather the method is executed entirely in the end-user’s
browser within the JavaScript Client. Enabling certain methods to execute on the client can speed up your application, by cutting
down on network traffic, while from a design point of view, using client methods allows you to add more interactivity into the UI of
your web or mobile app, including using native JavaScript in your Omnis code.

Any methods in your JavaScript remote forms that are enabled to execute on the client are converted to JavaScript files. These
JavaScript files are run in the browser when the method is called on the client. When a client browser opens a JavaScript remote
form, the Omnis App Server generates a JavaScript file containing the client methods for the remote form (the generation of this
file only occurs once unless the remote form class is modified, in which case it will regenerate the file). This file is added to the
html/formscripts folder in the Omnis tree inside a subfolder named after the library. Each remote form containing clientmethods has
a separate JavaScript script file.

When you deploy and run your web or mobile app on the Omnis App Server, these JavaScript script files are generated at the same
location as in the development version, the first time the client calls the client-sidemethod. For the deployed app, the JavaScript files
are in minified form, and therefore are smaller and will run faster since all the comments are stripped out.

There is a sample app called Client Methods in the JavaScript Component Gallery, and under the Samples option in the Hub in the
Studio Browser.

Enabling Client methods

To enable a method to execute on the client, you can Right-click on the method name in the Method Editor and select the ‘Execute
on Client’ option. Whether or not an existing method can be enabled to execute on the client will depend on the Omnis commands,
functions, and in some cases the type and scope of the variables used in the method. When you try to enable the method to execute
on the client, Omnis checks whether all the commands and functions within the method can be executed on the client, and if not, it
will not allow the method to be marked as ‘Execute on Client’. If the method can be executed on the client, the method name will be
shown in pink (the default color) and the restrictions on client methods will then apply to this method.

If you create a new empty method in the method editor, it can be enabled to execute on the client without error (since it does not
contain any commands, functions or variables at this stage), but the number of commands and functions available to use will be
limited to those shown in the Method Editor. The type of Local and Parameter variables you can create will also be restricted: see
Data Types below.

The Omnis Help (F1) indicates whether or not a command or function can be executed on the JavaScript client.

Binary functions

The Binary functions cannot be used in JavaScript client methods since JavaScript does not support binary data particularly well.

Text Blocks

You can use the text block commands (Begin text block, Text:, End text block, Get text block, JavaScript:) in client methods to build
up a block of text, e.g. to generate styled text (see the Styled Text section).

98

https://bit.ly/OmnisJSGallery

Object Properties in Client Methods

While some properties can only be assigned in Server methods, you can read the current value of manymore remote form properties
and component properties in client-executed methods running in a form instance. So for example, you cannot change the size and
position of an object in a clientmethod (by setting $top, $left, $width, and $height), but you can return the current values for an object
in a client method, e.g. $cobj.$width returns the width of the object.

An error will be generated if you try to read the value of a remote form/control instance property from a server-executed method:
“Cannot get the value of a remote form instance property when executing code on the server”.

Code Block Error Checking

JavaScript code generation for client methods detects missing block terminators, and if an error is found, Omnis adds an error to the
Find and Replace log and opens the log. For example, an error is generated if there is a While loop with no EndWhile, or an If with no
End If. You can open the method containing the error by double-clicking the error message in the Find and Replace log.

Auto Client Executed

When you add a new method in the method editor, and the method editor recognizes the method name as a known method that
should be client-executed, then themethod editormarks it as client-executed, and also adds any parameters (if required). This applies
to newmethods with the following names: $candrop, $drag, $filereadcomplete, $filtergrid, $getscrolltip, $init, $pushed, $sfscanclose,
$sfsorder, $sortgrid, $sqldone, $term. In addition, the $sqldone method receives some boilerplate or template code when you add it.

$init method

You can create a client-sidemethodwith the name $init in your remote formwhich the client calls after the form and the client scripts
file have been loaded. This allows you to do any final initialisation of the remote form, especially when the remote form is running in
serverless client mode. When you create or enable the $init method it will be marked as client executed automatically.

Leave Site Prompt

You can use the $init() client method to add a ‘Leave Site’ prompt to your application which forces the browser’s built in prompt to be
shown when the end user attempts to close the remote form if there has been any sort of interaction. To add a ‘Leave Site’ prompt,
add a Quit Method command returning any string to the $init method of your remote form, for example, Quit method ‘Show leave
site prompt’. The default ‘leave site’ text for the browser is displayed, so the text you add to Quit method is irrelevant.

Event Specific Client Methods

You can use the $eventclient()method to call a client-executedmethod for specific named events. The client will run the $eventclient
method if it containsOn default or anOn <event> statement for the named <event> that has been triggered, otherwise it will run the
$event method, which must be server-executed if $eventclient is specified.

When specifying $eventclient, as with $event, events are still only sent when they are present or enabled in the $events property for
the control or form. Omnis calculates the subset of $events to be handled by $eventclient as those events specified in anOn statement
or On default statement in $eventclient, at any level in the inheritance hierarchy for the control or form. In this case, if you use On
default, all events are processed by $eventclient.

Any events not present in the subset of $events to be handled by $eventclient are sent to $event for the control or form and run on
the server, unless they are one of the small set of client-only events, e.g. $candrop and $drag.

The current event processing model, where all events go to $event, which is either client or server executed, works as in previous
versions if there is no $eventclient method present for the control or form.

When using inheritance, you can also override $eventclient in a subclass.

Showing Built-in Methods

When the Show Built-in Methods option is enabled (the default), the method editor tree list shows all possible built-in class and
control methods that can be overridden, including $event and $eventclient (in versions prior to Studio 11 most of thesemethods were
available but not listed). Note that control methods that are built-in to JavaScript client objects cannot be overridden, meaning they
are not displayed in the method tree list when showing built-in methods. In addition, built-in methods in the tree have a tooltip that
is displayed when the Show Method Content Tips option in the Viewmenu is enabled.

99

Debugging Client methods

Client methods cannot be debugged in the Omnis method editor since method execution occurs in the client browser. Instead, you
must use the Script Debugger within the browser you are using to test the client executed parts of your application. Note that for
this reason you cannot use any Omnis commands that interact with the debugger or trace log (Trace on, Open trace log, etc) in client
methods, or any that would interrupt command execution (Breakpoint, Yes/No message). However, while developing your app, you
can use the Send to trace log command in client executed methods to write a line to the JavaScript console.

Client methods cannot be debugged in the Omnis method editor since method execution occurs in the client browser. Instead, you
must use the Script Debugger within the browser you are using to test the client executed parts of your application. Note that for this
reason you cannot use many Omnis commands that interact with the debugger or trace log (Trace on, Open trace log, etc) in client
methods. However, while developing your app, you can use the Send to trace log command in client executed methods to write a
line to the JavaScript console.

The Breakpoint command can be used in client-executed methods to set a ‘hard’ breakpoint in the code, but note that this will only
be hit if the web browser developer tools are open. It will then break into the browser’s debugger, in the JavaScript code which was
generated from your client-executed method. The browser dev tools can usually be opened using the F12 key.

Errors

Omnis maintains two global system variables #ERRCODE and #ERRTEXT that report error conditions and warnings to your methods.
Fatal errors set #ERRCODE to a positive number greater than 100,000, whereas warnings set it to a positive number less than 100,000.
You can return the values of #ERRCODE and #ERRTEXT in client executed methods in the JavaScript using the functions errcode()
and errtext(), so it is possible to write methods to handle errors when they occur.

Calling Custom Methods

You can use the Do method command to call a custom method (your own method) in the current remote form instance. If you use
this command in a client method you must include parenthesis after the method name for the method to be called. For example,
to call a custom method called $mymethod from within in a client method in the current remote form instance, you must use Do
method $cinst.$mymethod(), or you can use Do $cinst.$mymethod().

Data Types for Client methods

JavaScript itself only supports a small number of built-in data types, and these do not correspond directly with Omnis data types.
Since instance variables are used by both the JavaScript Client and the Omnis App Server, these can still be given any Omnis data
type.

However, Local variables and Parameter variables in client methods can only be Date Time, List, Row or Var type. The Var type is a
generic variable used for data of any type. The client does not enforce the type of data stored in a variable, unless you assign a value to
an instance variable or list column, in which case the client will convert the assigned value to the correct Omnis type for the instance
variable or list column, or failing that, if the data cannot be converted, the client throws an exception, reported by an OKmessage.

Further restrictions

• Field reference parameters are not supported, since JavaScript methods use call by value.

• Date Time local variables and parameters do not have a subtype in client methods.

• Date Time, List and Row variables are represented by a JavaScript object on the client, whereas the other data types are the
native JavaScript types (number, string and Boolean).

When you change a method from client to server execution, or back again, the data type of Local variables and Parameters changes
to the most logical supported value for client or server execution (restoring the original type when changing from client to server
execution if the type on the client is Var).

100

Variable References in Client Methods

There are some subtle differences to the way variables are passed around in client methods in Omnis Studio, as opposed to methods
that are executed on the server. This is due to the fact that client-executed methods are running JavaScript code, and so are bound
by the rules of that language.

• In JavaScript, variables and method parameters are always passed by value. This means that a copy of the value of the variable
is passed around.

This is easily understood for primitive data types, such as string, number, and boolean, but objects are slightly more nuanced, that is,
anything that’s not a primitive, including Omnis Lists, Rows, Dates and Remote Objects.

Object-type variables

• The value of an object variable is essentially a pointer to that object.

This means that it is cheap and efficient to pass objects around, but there are two important consequences:

1. If you change some property of a passed object, it will change the property on the original object too.

2. If you re-assign thewhole variable of the passed object, you are replacing the pointer, so will not effect the original object.

In Omnis, this only comes into play when you are using local variables or parameters in a client-executed method.

Example 1

Calculate lRow1 as iRow
Calculate lRow2 as lRow1
lRow1 & lRow2 are two separate local variables, but because they are object types,
they are now pointing to the same object in memory (as one was assigned the value of the other).
Calculate lRow1.C1 as "TEST"
Changing an aspect of lRow1 will now also effect lRow2. So setting column 1 of lRow1 to "TEST"
also sets column 1 of lRow2.
Calculate lColValue as lRow2.C1
lColValue is "TEST"

Example 2

Calculate lRow1 as iRow
Calculate lRow2 as lRow1
lRow1 & lRow2 are two separate local variables, but because they are object types
, # they are now pointing to the same object in memory (as one was assigned the value of the other).
Calculate lRow1 as row("TEST")
Because we have reassigned the whole lRow1 variable, it has created a new pointer
as the value of lRow1, so is no longer pointing to the same object as lRow2.
Calculate lColValue as lRow2.C1
lColValue is the original value of column 1 from iRow

Execution and Method Calls

Method execution in the JavaScript client means that that no user-visible updates to the user interface occur until control returns
from the executing JavaScript to the browser (or other container). This means that client methods should be as short as possible.
This also means that if a client-side method calls a server method, this call cannot occur in a synchronous manner, since the user
interface would appear frozen while the server code was executing (since no user-visible updates to the user interface occur while a
synchronous AJAX call is running). This means that themechanism for calling a server method from a client method is implemented
differently for the JavaScript client.

101

When code in a client-side method calls a server method (either using $cinst.$methodname notation, or by using the Do method
command), the call to the server is executed asynchronously. While the servermethod is executing, the UI is made inaccessible using
a loading overlay – the exception to this is that $alwaysenabledobject and edit controls calling a server-executed evKeypress are left
accessible. After making the server method call, the client-side method continues to completion (note that the server method call
returns true or false to indicate if it has started). The client-sidemethod can only call one server method like this – if it makes a second
call, the client throws an exception.

Return Methods

If the client code needs to handle the return value from the server method, then you must implement a client-side method in the
remote form with the name <method name>_return. For example, to receive the return value from a server method called $test,
implement a client-side method $test_return; the server method ($<method name>) must be called from a client-side method. The
<method name>_return method must have a single parameter, which is the return value from the server method. A typical action of
the _return method might be to update a progress control, and then issue another call to the server. This allows a time-consuming
operation to execute while showing its progress.

The Insert Client Return Method After option in theModify>>Methodmenu (and on theMethod list context menu) allows you to add
a “<method name>_return” method for a server method; the method is named <method name>_return automatically and placed
after the server method.

FromStudio 10.2 onwards, you can create such returnmethods for controls (fields). If a client-executedmethod calls a server-executed
method on a control, when execution returns to the client, Omnis will look for the <method name>_return method on the control,
and if not found it will look for the return method at the form level, as in previous versions.

Object and Library names

You can use $cinst.$class or $cinst.$lib in client-executed methods to get the name of the current class or library, where $cinst is a
JavaScript remote form instance executing the method.

Client Methods Example

There is an example app demonstrating JS Client Methods in the Samples section in the Hub, and the same app is available in the
Omnis Components app in the Apps Gallery on the Omnis website (www.omnis.net/platform/#jsgallery). The app includes a simple
entry form with client-side field validation, and some animated help tips.

Figure 92:

102

http://www.omnis.net/platform/#jsgallery

You should open the library in the Hub or download the library and examine the client methods and code. A sample of the code is
described here.

Field Validation

A web or mobile formmay include several mandatory fields. You can use a client-side method behind the Submit button (called Add
in the example app) to check that the fields contain some data – this is the code for the email field:

$event method behind Submit button – it is enabled to execute on the client
On evClick
If pos('@',iEmail)=0

Do $cinst.$objs.EmailLabel.$textcolor.$assign(kRed)
Calculate lCurField as 'Email'

Else
Do $cinst.$objs.EmailLabel.$textcolor.$assign(kBlack)

End If
Do $cinst.$setcurfield(lCurField)

The code checks whether or not the Email field contains an ‘@’ and if not the field label is colored red and the cursor is placed in the
Email field – if the Email field contains data themethodmoves onto the next field. All the other fields on the form are checked for any
content and handled in a similar way: the password field is checked for a minimum number of characters, as follows:

If len(iPassword)<6
Do $cinst.$objs.PasswordLabel.$textcolor.$assign(kRed)
Calculate lCurField as 'Password'

Else
Do $cinst.$objs.PasswordLabel.$textcolor.$assign(kBlack)

End If
Do $cinst.$setcurfield(lCurField)

Animated Help tips

In the JS Client Method example app, the form has some help buttons that the end user can click on to receive tips about how to fill
out the form. These help tips are implemented using a hidden text box and the animationmethods – when you click on a button, the
text box is made visible and is moved into position next to the appropriate field, and when the button is clicked again the text box is
hidden. The code to achieve this is in a client-side method behind the Help tip button marked with a ‘?’ icon: the button is in fact a
Picture control with its $iconid set to 1794, and the code is placed behind the $event()method. The Tip box is a paged pane containing
a Rounded rectangle and a Text field – when the form is opened its $alpha is set to 0 and it is positioned off the screen. The help tip
next to the Password field has the following event method:

On evClick
If iLastTip='password'
Do $cinst.$beginanimations(500,kJSAnimationCurveLinear)
Do $cinst.$objs.Tip.$alpha.$assign(0)
Do $cinst.$commitanimations()
Calculate iLastTip as ''

Else
Calculate iTip as "A password must to at least 6 characters long."
Do $cinst.$beginanimations(500,kJSAnimationCurveLinear)
Do $cinst.$objs.Tip.$top.$assign(270)
Do $cinst.$objs.Tip.$alpha.$assign(255)
Do $cinst.$commitanimations()
; the Tip box is made visible and moved into position
Calculate iLastTip as 'password'

End If

There is a similar Help tip button and method for the Email field. If the Password Tip box is already visible in the form and you click
the Email Help button, the Tip text is changed and the Tip box itself is moved next to the Email field.

103

Client Objects and Inheritance

The JavaScript client uses JavaScript objects to represent each remote form and each control on the remote form. The clientmethods
of a remote form and its controls are defined as methods of the remote form and control objects.

Once a remote form and its client methods script file have been loaded, the JavaScript remote form object has amember called ivars
which is a JavaScript object thatmaps instance variable names to instance variable field numbers. If you override an instance variable,
then the ivars object will have more than one entry for the variable – overridden superclass variables will have a numeric suffix to
distinguish them.

The Do inherited command is evaluated at the point at which the script file is generated by the server. This means you can only use
Do inherited from within the actual method you have overridden. This differs from the other clients, in that they allow you do call Do
inherited from a private method called from an inherited public method, and then the call toDo inherited calls the overridden public
method.

New Page Browser Prompt

In most desktop browsers (excluding Opera) a web page can prompt the user before navigating to another page. Using the $init
client-side method for a remote form you can specify the message to be added to the user prompt.

If the $init method returns a character string, the browser will prompt before navigating to another page, but only if the browser
supports this feature. The returned character string may not be in the browser prompt, depending on the browser, for example,
Firefox does not currently display it.

If $init does not endwith aQuitmethod command, or returns another type, then functionality is unchanged from the current behavior.

Once one $init method has returned a string, any return values from any other $init calls for other remote form instances are ignored,
so there is no way to turn off the prompt once it has been enabled.

Client Commands

The $clientcommand() remote form method allows you to execute various pre-defined commands on the client device, including
ones that open various types ofmessage boxes, and ones that can access functions on amobile device. The suitability of certain client
commandswill depend on the current client device (e.g. some of the commandsmay not be available for certainmobile devices), and
due to the differences between web browsers on desktop computers and phones, so these client commands should be thoroughly
tested, as appropriate, for all platforms or devices you wish to support.

These client commands should be executed in the context of the current remote form instance using $cinst, and require various
parameters that depend on the command sent to the client. The client commands must be executed on the client; they have the
general syntax:

Do $cinst.$clientcommand(cCommand,wRow)

where $cinst is the current remote form instance, cCommand is the name of the client command to be executed on the client, and
wRow is a row variable containing one or more parameters to be passed to the client.

The following is a summary of all the client commands (in alphabetical order), and they are described after the table (in functional
groups):

Client command Description

assignpdf Assigns the specified PDF to the
specified HTML control

clearerrors Clears all errors set with $errortext for
all objects on the form

clearlocale Clears the locale on the client
closefile Closes a file or files supplied by the

drag value of kDragFiles to evDrop
closepush Closes an open push connection to

the Omnis Server

104

03jscomps.html#form-errors
06localization.html#localizing-remote-forms
03jscomps.html#dragging-and-dropping-files

Client command Description

enablepushnotifications Enables or disables push notifications
on the client inside a JavaScript
mobile wrapper; see the wrapper docs
on the download page

javamessage Shows a message box on the client
loadpreference Loads a named preference value from

the client preferences into an instance
variable

lockui Locks the client user interface
noyesmessage Opens a no-yes message box
okcancelmessage Opens an ok-cancel message box
openpush Establishes a push connection to the

Omnis Server for the remote task
playsound Plays a sound on the client (unlikely to

work on mobile devices)
readfile Reads and then closes the file

identified by file ident (supplied to
evDrop)

savepreference Saves a value (as a character string) as
a named preference on the client

setcustomformat Sets the default custom date format
used when $dateformatcustom is
empty

setlocale Sets the locale on the client
settheme Sets the theme for the JS client, i.e. all

remote forms in the library or
application

showloadingoverlay Shows or hides a loading overlay over
a control or the entire form

showpdf Opens the specified PDF in a new
browser window or tab

showtoast Activates a “toast message” which
displays a message to the user in a
small popup which disappears after a
timeout, either 5000ms or specified
amount

soundbell Sounds the bell (unlikely to work on
mobile devices)

speakmessage Speaks a message, useful for visually
impaired users

subformdialogclose Closes the topmost subform dialog
subformdialogshow Opens a single subform as a modal

dialog
subformpaletteclose Closes a subform palette
subformpaletteshow Opens a subform palette
subformset_action Where action is one of the following:

add, formadd, formremove,
formtofront, or remove,
e.g. subformset_add adds a set of
subforms to the form. See Subform
Client Commands

yesnomessage Opens a yes-no message box

Message Dialogs

There are a range of message dialogs available including dialogs for Yes/Nomessages (Yes is default button), No/Yesmessages (No is
the default button), and Ok/Cancelmessages (OK is the default, with an optional Cancel button).

105

https://www.omnis.net/developers/resources/download/jswrapper.jsp
https://www.omnis.net/developers/resources/download/jswrapper.jsp
03jscomps.html#dragging-and-dropping-files
06localization.html#localizing-remote-forms
03jscomps.html#changing-the-theme

There is an example app calledDialogs in the Samples section in theHub in the Studio Browser that shows how to use the client com-
mands to openmessagedialogs, plus the same library is available in the JavaScript ComponentGallery. In addition, the speakmessage
client command can speak a message.

The message box client commands allow you to enter themessage text in the first column of the row variable. You can create a line
break in the message text using //.

Multiple calls to any of the message commands during the processing of a single event will result in only the last call having any
effect and that message being shown, so all previous messages will be ignored or overwritten.

Yes/No Messages

The “yesnomessage” command opens a Yes/Nomessage box in which Yes is the default button.

Do $cinst.$clientcommand("yesnomessage",rowVariable)

Where rowVariable is row(cMessageText, cTitleText, cPublicFormMethodNameCalledOnYes, cPublicFormMethodNameCalledOnNo
[,cPublicFormMethodNameCalledOnCancel]); if the latter is omitted no Cancel button is shown.

For example, in theWebshop sample app a Yes/No message is generated using the $clientcommand method when a user clicks on
a product size/type that is not available:

Do $cinst.$clientcommand("yesnomessage",row(con('Would you like to order >',iProductList.product_size_1,'< instead?'),'Not available','$orderYes'))

No/Yes Messages

The “noyesmessage” command opens a No/Yesmessage box in which No is the default button.

Do $cinst.$clientcommand("noyesmessage",rowVariable)

Where rowVariable is row(cMessageText, cTitleText, cPublicFormMethodNameCalledOnYes, cPublicFormMethodNameCalledOnNo
[,cPublicFormMethodNameCalledOnCancel]; if the latter is omitted no Cancel button is shown.

Ok/Cancel Messages

The “okcancelmessage” command opens an OK/Cancel message box in which OK is the default button, with an optional Cancel
button.

Do $cinst.$clientcommand("okcancelmessage",rowVariable)

Where rowVariable is row(cMessageText, cTitleText, cPublicFormMethodNameCalledOnOk, [,cPublicFormMethodNameCalledOnCan-
cel]; if the latter is omitted no Cancel button is shown.

Message Dialog Header Styling

The styling for dialog headers is defined in the classes: .omnis-wf-title.typeheader and .omnis-wf-title.typebody in the core.css file,
which can be modified by overriding them in user.css.

speakmessage

The “speakmessage” client command tells assistive technology to announce a message, which can, for example, be used to convey
information to visually impaired users.

Do $cinst.$clientcommand("speakmessage",rowVariable)

Where rowVariable is row(cMessage, bInterruptCurrentSpeech).

106

https://bit.ly/OmnisJSGallery

JavaScript Message Boxes

The “javamessage” command shows a JavaScript message box on the client. The message box can be various styles (error, warning,
success, prompt, message, or query) and can have up to three buttons and accompanying text.

Do $cinst.$clientcommand("javamessage",rowVariable)

Where rowVariable is row(‘error’|‘warning’|‘success’|‘prompt’|‘message’|‘query’, cMessageText, cTitleText, bOpenAtMouse, cButt1text:servermethodname,
cButt2text:servermethodname, cButt3text:servermethodname). For example:

Do $cinst.$clientcommand('javamessage',row('query','Update file?','Warning',kFalse,'No:','Yes:$call_next_method_a','cancel'))

Dialog Icons

Themessage dialog displayed using the ‘javamessage’ command contains a standard icon from thematerial design set. Types ‘error’,
‘warning’, ‘success’, ‘prompt’ and ‘query’ all contain an icon specific to that type, while ‘message’ does not use an icon. The images for
the icons are defined in the core.css file under the .typeicon classes and can be overridden in user.css.

Using a Promise

The javamessage, yesnomessage, and noyesmessage client commands (as well as the $showmessage method) return a JavaScript
promise when themethods are executed on the client; a promise contains a value that can be used in JavaScript code in your remote
form, for example, to initiate a specific action.

The promise’s resolve function is passed a parameter whose value depends on the message type being shown, as follows:

Method Value returned

javamessage client
command

The button number which was
clicked (1-3)

yesnomessage client
command

true if ‘Yes’ was clicked, else false

noyesmessage client
command

true if ‘Yes’ was clicked, else false

$showmessage
method

true

For all these dialog functions which return a promise, the calls will only return a promise when executed on the client. A promise will
be ‘resolved’ when its dialog is closed. You can add code to run at this point using JavaScript, for example:

Do $cinst.$clientcommand("yesnomessage",row("Are you sure?","Really?!")) Returns lPromise
JavaScript:lPromise.then((lResult) => {
Do $cinst.$showmessage(con('You clicked ',lResult))
JavaScript:});

Playing Sounds

The system bell

The “soundbell” command plays the default system sound on the client.

Do $cinst.$clientcommand("soundbell",rowVariable)

In this case, rowVariable is empty.

107

Play a sound file

The “playsound” command plays a sound on the client.

Do $cinst.$clientcommand("playsound",rowVariable)

Where rowVariable is row(cNameOfSoundFile1[,cNameOfSoundFile2,…]); the sound file(s) should be located in the html sounds folder.

Browser support

In some cases, these sounds will not work in Safari onmacOS or iOS since it generally only allows sounds that are in direct response to
a user action. Therefore, sounds triggered in a server method are unlikely to work, whereas if they are triggered in a client-executed
method they aremore likely towork. In general, sounds tend towork in ChromeonmacOS or iOS, regardless of how they are triggered.

In all cases, using the client commands to play sounds should be thoroughly tested, for all platforms and browsers youwish to support.

Date Format

The “setcustomformat” command allows you to set the date format used on the client when $dateformatcustom is empty (defaults
to D m y).

Do $cinst.$clientcommand("setcustomformat",rowVariable)

Where rowVariable is row(cDateFormat). See the Date and Time Formatting section for more details about setting the data format
on the client.

Client Preferences

The following commands allow you to save and load end-user data on the client, such as user preferences. You could use these
commands to store and load usernames and/or passwords to allow the end user to log onto your application. As with other client
commands, these commands must be executed on the client.

There is an example app called JS Preferences in the Samples section in the Hub in the Studio Browser showing how you can use
these client commands to save and load user preferences in a remote form; the same app is in the JS Component Gallery.

Saving preferences

The “savepreference” command saves a value (as a character string) as a named preference on the client.

Do $cinst.$clientcommand("savepreference",rowVariable)

Where rowVariable is row(cPreferenceName, cPreferenceValue [,StorageType]).

Loading preferences

The “loadpreference” command loads a named preference value from the client preferences into an instance variable.

Do $cinst.$clientcommand("loadpreference",rowVariable)

Where rowVariable is row(cPreferenceName, cInstanceVariableName [,StorageType]), where cInstanceVariableName is a quoted
string containing the name of the variable.

The following method can be used for a ‘Save’ button which saves the values in three fields on a form:

lPrefRow Row var, iPref1, iPref2, iPref3 instance Char vars (on the form)
On evClick
Do lPrefRow.$define(lPrefName,lPrefValue)
Do lPrefRow.$assigncols('omnis_pref1',iPref1)
Do $cinst.$clientcommand("savepreference",lPrefRow) Returns #F
Do lPrefRow.$assigncols('omnis_pref2',iPref2)
Do $cinst.$clientcommand("savepreference",lPrefRow) Returns #F
Do lPrefRow.$assigncols('omnis_pref3',iPref3)
Do $cinst.$clientcommand("savepreference",lPrefRow) Returns #F

108

/developers/resources/onlinedocs/WebDev/03jscomps.html#date-and-time-formatting
https://bit.ly/OmnisJSGallery

Storage Type

The row variable passed to the “savepreference” and “loadpreference” client commands can have a third parameter, the “storage type”,
which allows temporary, session, or local storage options. This allows you to store text values in the client browser, either temporarily
or persistently in the browser using JavaScript sessionStorage or localStorage. Storage type is of type character and can have the
following values:

• “temp”
temporary storage stored within an instance of this connection, will be cleared on page close or reload

• “session”
JavaScript sessionStorage cleared when page session ends, survives page reloads and restores

• “local” (the default if no value supplied)
JavaScript localStorage has no expiration time and survives page closures. When used with the wrappers the values will be
shared between online and offline mode

For example:

Do lPrefRow.$define(lPrefName,lPrefValue,lStorageType)
Do lPrefRow.$assigncols('omnis_pref1',iPref1,"session")
Do $cinst.$clientcommand("savepreference",lPrefRow)
Do lPrefRow.$assigncols('omnis_pref1','iPref1',"session")
Do $cinst.$clientcommand("loadpreference",lPrefRow)

Locking the User Interface

The “lockui” command lets you lock the user interfacemanually, for example, when a series of events are taking place, and unlock the
UI when the events have completed.

Do $cinst.$clientcommand("lockui",rowVariable)

Where rowVariable is row(bLock); kTrue to lock the UI, or kFalse or empty to unlock.

This command is useful with the progress control and $sendcarryon – in this case, you can lock the UI when you start the progress
bar, and unlock it when you have finished using the following code:

to lock:
Do $cinst.$clientcommand("lockui",row(kTrue))
to unlock, either:
Do $cinst.$clientcommand("lockui",row(kFalse))
or
Do $cinst.$clientcommand("lockui",row())

Custom Loading Indicator

The “showloadingoverlay” client command allows you to add a loading indicator (animated image and text) over an individual control,
or the entire page in the JavaScript Client. As well as providing feedback to the user, that a long running operationmay be in progress,
it will also prevent user input. It is useful if you are doing any asynchronous operations, such as populating a list using a SQL worker
object.

There is an example app called Loading Overlay in the Samples section in the Hub in the Studio Browser showing how you can use
the loading overlay client command; in addition, the same app is in the JS Component Gallery.

The showloadingoverlay client command is executed using the $clientcommandmethod, as follows:

Do $cinst.$clientcommand("showloadingoverlay",rowVariable)

Where rowVariable is row(bShow, cControlNameOrEmpty, cMessageText [, cCSSClass]).

109

https://bit.ly/OmnisJSGallery

Figure 93:

• bShow: A Boolean value kTrue to show the overlay, or kFalse to hide it.

• cControlNameOrEmpty: The $name of a control on the form to which the overlay should be attached/removed from. Pass an
empty string to target the entire page.

• cMessageText: (Optional) A string of text to display in the overlay.

• cCSSClass: (Optional) A CSS class to apply to the overlay. Allows you to customise the appearance of the overlay using CSS (See
below).

By default, the overlay will darkenwhatever is behind it, and display a spinner and text string. If youwish to customize the appearance,
you can do so with CSS. Create a CSS class in your user.css file, and pass this class name as the cssClass parameter.

The loading overlay comprises a toplevel div, which will be given your CSS class name. This contains a div with the CSS class name
of “container”, which contains a div with the “indicator” class and a ‘p’ element with the “message” class. You will need to use CSS
to style all of these. Look at the ‘jsLoadingOverlay’ JS form in the HUB sample library which contains ‘getUserCss’ and ‘getUserCss2’
methods which build up examples of the necessary CSS and may be useful to form the basis of your CSS.

Subform Sets

There are a number of client commands, all prefixed ‘subformset_’, that allow you to create and manage subforms in a subform set:
see the Subform Client Commands section for more information.

Subform Palettes

Subform palettes can be opened or closed using subformpaletteshow and subformpaletteclose, or a subform palette can be closed
by clicking outside the subform: see Using Subform Palettes.

PDF Printing

The showpdf and assignpdf client commands allow you to print and display PDF files in the client browser: see the PDF Printing in
the JavaScript Client section for more information.

Push Connections

Remote tasks can have a single “push connection”, established using the client command openpush, to allow you to send data to the
client: see the Push Connections section for more information.

Dragging and Dropping files

The readfile and closefile client commands enable files to be read from evDrop event while dragging files from the end user’s system.
See Dragging and Dropping files for more details.

110

03jscomps.html#dragging-and-dropping-files

Push Notifications

The enablepushnotifications client command enables and disables push notifications for mobile apps: this is described in a separate
doc available with the JavaScript Wrapper download.

Toast Messages

The showtoast client command activates a “toast message” which displays a message to the user in a small popup which disappears
after a timeout, either 5000ms or specified amount: see the Toast Messages section for more information.

Locale Commands

The setlocale and clearlocale client commands can be used to manage the locale on the client: see the Localizing Remote Forms
section for more information.

Theme Command

The settheme client command can be used to set the JS Theme in the JS Client: see the Changning the Theme section for more
information.

Remote Menus

The Remote Menu class allows you to add various types of menus to remote forms and individual controls. A remote menu can be
opened as a Popup Menu control, added to a Tab Control or Split Button, or opened as a Context menu for the remote form itself or
individual controls (Popup menus, Tab menus, and Split buttons).

There is an example app showing how to use a Remotemenu in the Samples section in the Hub in the Studio Browser, and the same
app is available in the JavaScript Component Gallery.

Creating Remote Menu Classes

When you design a Remote menu, you need to create a title, specified in the $title property, and add individual menu lines: the text
for a menu line is added to the $text property for the menu line.

To create a Remote Menu

• Click on the New Class>>RemoteMenu option in the Studio Browser

• Click into the menu header and enter the text for the menu title

• Press Return to create a newmenu line, or Right-click on the menu header and select Add Line

• After creating a newmenu line, assuming it is selected, you can type the text for the menu line; alternatively, you can click into
the $text property in the Property Manager and enter the text for the menu line

• To create another menu line, you can press Return or Right-click on a menu line and select Add Line; you can use the same
context menu for delete a line

• To add a dividing line, add a new line and do not add any text; you can drag menu lines or dividing lines to reorder the options
in the menu.

A remotemenu does not containmethods, rather each line has a separate ID which is specified in the $commandid for themenu line.
When amenu line is selected at runtime, you can use the line ID to detect which line was selected and branch your code accordingly.
For example, when a remote menu is used as a popup menu and the menu is clicked, the evClick event is triggered and the value of
$commandid for the selected menu line is reported in pLinenumber.

111

https://www.omnis.net/developers/resources/download/jswrapper.jsp
06localization.html#localizing-remote-forms
03jscomps.html#changing-the-theme
https://bit.ly/OmnisJSGallery

Menu Line Icons

You can add icons to Remotemenu lines and can be chosenwhen you create the remotemenu class, alongwith the text for themenu
line (they must be 16x16 if using PNG icon images). The icon in each menu line is specified by $iconid. Checked menu lines use the
checked state of the icon if the icon is multi-state.

Note that $objs.$add for a remote menu instance does not have a parameter to add an icon id. You can only set this after adding the
menu line, by assigning $iconid for the new line (since the newmenu line needs to reference the icon on the server, which cannot be
done while executing $add).

Icon Colors

The $iconcolor and $defaulticoncolor properties control the color of icons when using themed SVG icons. The $iconcolor property for
a remote menu line sets the icon color when using a themed SVG icon. The $defaulticoncolor property for a remote menu class sets
the icon color when using a themed SVG icon and the $iconcolor property of the item is kColorDefault. If $defaulticoncolor is also
kColorDefault, then the themed icon uses the text color.

Text Alignment

You can change the text alignment in Remote menus. The pContextMenu event parameter in evOpenContextMenu events has an
$align property. This can be used to specify the text alignment of a menu. For example:

Do pContextMenu.$align.$assign(kCenterJst)

Possible values are kLeftJst (default), kRightJst and kCenterJst.

Context Menus

A contextmenu is amenu that can be opened by the end user by right-clicking on the background of a form, or within the border of a
form control. You can implement context menus for remote forms or individual form controls by setting the $contextmenu property
of the form or control to the name of a Remote menu class. Each line in a remote menu has the $commandid property, so when the
user selects a line in the menu this ID can be used to trigger a specific action in your code. When a line in a remote menu is selected,
an evExecuteContextMenu event is reported to the form or field with event parameters containing the Command ID of the selected
line, and for fields, a reference to the field which was clicked on.

Remote forms and controls have the $disabledefaultcontextmenu property to disable default menus from opening when the
end user right-clicks the form or object: the default menu for the edit control could be the clipboard menu. If true, the de-
fault context menu for the object will not be generated in response to a context click ($clib.$disabledefaultcontextmenu and
$cobj.$disabledefaultcontextmenu must both be false for the default menu to be generated).

Context Menu Events

Remote forms or controls report the following events in response to a context click.

• evOpenContextMenu
Sent to a field or a remote form when a context menu is about to open; the event contains the parameters:
pContextMenu is a reference to the remote menu instance that is about to pop up as a context menu;
pControlMenu is kTrue if the menu is a control menu, or kFalse if it is a context menu, see below;
pClickedField is a reference to the field which was clicked.
For data grids only, the pPosition parameter for the evOpenContextMenu event contains a co-ordinate string, such as “4,2”,
where the first number is the row and the second is the column: the column part will always be populated with the column you
right-clicked under, but the row part will only be non-zero if you right-click on a row

• evExecuteContextMenu
Sent to a field or remote form when a context menu item is selected; the event contains the parameters:
pCommandID is the command ID of the selected remote menu item;
pControlMenu is kTrue if the menu is a control menu, or kFalse if it is a context menu, see below;
pClickedField is a reference to the field which was clicked

112

The remotemenu instance itself only exists during the evOpenContextMenu event, therefore it is possible tomodify themenu before
it is displayed on the client, or you can discard the event to prevent the menu from being displayed.

Remote form instances have the property $remotemenuwhich is the name of the remotemenu instance (set only when evOpenCon-
textMenu for the field or form is being processed): for hierarchical menus, this is the item reference to the remote menu instance of
the attached remote menu.

After evOpenContextMenu completes, and the user selects a remote menu item, the client sends an evExecuteContextMenu event
to the form or form control that received the evOpenContextMenu, passing the event parameter pCommandID containing the value
of $commandid of the selected menu line.

Control Menus

All controls with a menu, such as Tab, Popup menu, or Split button, generate the evOpenContextMenu and evExecuteContextMenu
events when using their own control menus. The pControlMenu parameter can be used to distinguish between Control menus and
Context menus; it is kTrue if the menu is a Control menu, or kFalse if it is a context menu.

Subform Sets

You can open a special kind of subform or group of subforms that behave like separate “floating” windows inside the main remote
form in the JavaScript Client. The subforms in a Subform Set (SFS) are different to standard subforms (which are embedded in a
Subform control, and described in the JavaScript Components chapter), in that they have a title bar and resizable borders, and the
end user can move or resize them within the “main” or parent remote form instance running on the client. Such dynamic subforms
within a subform set allow you to create highly flexible user interfaces in your apps, by allowing a high degree of interactivity for the
end user.

The subforms in a subform set are created at runtime in the JavaScript Client within a remote form instance, or they can be opened
within the context of a single page in a paged pane in a remote form, which are referred to as Subform panels. Each separate subform
in the Subform Set is an instance of a standard Remote form class that you have previously created in your library, which is referenced
and added to the Subform set on the client.

In addition to opening one or more subforms in Subform set, you can open a subform as a Subform Palette; see Subform Palettes.

There is an example app in the Samples section in the Hub in the Studio Browser showing how you can setup and use a subform set,
and the same app is available in the JavaScript Component Gallery.

Figure 94:

Subform set windows respect their container’s dimensions when opened, that is, if subforms that are larger than the available space
are opened (or are too far to the right or bottom to fit thewhole subformarea), then theywill be resized and repositioned automatically.

113

/developers/resources/onlinedocs/WebDev/03jscomps.html#subform
https://bit.ly/OmnisJSGallery

Specifically, the left and/or top values will be reduced, If these reach 0, and there is still not enough space for the subform, the width
and/or height values will also be reduced.

Stacking Order List

The subforms in a SubformSet have a “stacking order” (or Z-order) relative to one another, so the top-most form in the setwill appear in
front of any forms lower in the stacking order if they intersect. Clicking on a form lower in the stacking order brings it to the front. The
tab order of the remote form excludes controls on the subforms in a Subform Set behind the top form in the set. There is a maximum
of 256 remote form instances (including subform instances) in a remote task instance. When you have more than one Subform Set
open (this is allowed but not recommended) there is no relative stacking order between the sets.

Creating Dynamic Subforms

There is a set of client commands to open and manage the subforms in a Subform Set which you can execute using the $clientcom-
mand() method. These client commands should be executed in the context of the current remote form instance using $cinst. The
$clientcommand()method requires two parameters: the cCommand to be executed and awRow variable containing the parameters
for the command, with the syntax:

Do $cinst.$clientcommand(cCommand,wRow)

where $cinst is the current remote form instance.

Subform Client Commands

The following client commands are available for creating and managing subform sets or the subforms in a subform set, including
subform dialogs.

subformset_add

The subformset_add command creates a Subform Set within the current remote form instance.

Do $cinst.$clientcommand("subformset_add",rowVariable)

Where rowVariable is row(setname, parent, flags, ordervar, formlist)

Note the parent parameter is available if youwant to create the subform set inside a pagedpane, rather than the remote form instance.
The columns for the row variable parameter are as follows:

setname: a string which is the name of the subform set, which must be unique within the current remote task.

parent: the container for the set, either:

• pagedpanename:page (e.g. pp:5), so that the subforms belong to the specified page of the paged pane)

• or empty, meaning that the subforms in the set belong to the remote form instance invoking $clientcommand.

flags: the sum of the following constants (e.g. kSFSflagMinButton+kSFSflagMaxButton), which effect the behavior of the subforms in
the set:

• kSFSflagCloseButton: The subforms in the set have a close button

• kSFSflagMinButton: The subforms in the set have a minimize button

• kSFSflagMaxButton: The subforms in the set have a maximize button; note the subform can only be maximized (resized) if
kSFSflagResize is enabled

• kSFSflagResize: The subforms in the set have a resize border so that they can be resized using themouse or when theMaximize
button is pressed

114

• **kSFSflagOpenMin, kSFSflagOpenMax, kSFSflagMinAsTitle, kSFSflagAutoLayout: are used to open a subform set within a
“panel” or container, such as a paged pane control: see Subform Panels later in this section

• kSFSflagPreventDrag: the user will not be able to drag the subforms in the SFS

• kSFSflagScrollable: allows subform sets to scroll; only effects non-responsive subform sets since responsive subform sets are
scrollable by default

• kSFSflagAllowOutsideOfBounds: allows subforms to be positioned outside of their container boundaries, both by notation and
the end user dragging them

• kSFSflagEscToClose: the subforms in the set can be closed by pressing the Escape key

ordervar: the name of an instance list variable in the remote form invoking the $clientcommand. The client keeps this list variable up
to date with the stacking order and position information for the subforms in the set: see below.

formlist: a list which defines the subforms to be added initially to the subform set (this list can be empty), i.e. a list of remote form
classes that you have previously created in your library. The order of the forms in this list represents the stacking order from top to
bottom, so that once the set has been added, the top-most subform will be for line 1, and the bottom-most subform will be for the
last line. The columns in the list are as follows:

• Column 1: uniqueID: An integer which must uniquely identify this subform in the set.

• Column 2: classname: The name of the Omnis remote form class for the subform.

• Column 3: params: Literal parameters to be passed to the $construct and $init of the subform, e.g. “ ‘Test’,200”

• Column 4: title: The title of the subform - text displayed in the title bar of the subform.

• Column 5: left: The left coordinate of the subform (for Desktop browsers, or portrait if amobile device). The constant kSFScenter
centers the form horizontally in its parent.

• Column 6: top: The top coordinate of the subform (for Desktop browsers, or portrait if amobile device). The constant kSFScenter
centers the form vertically in its parent.

• Column 7: width: The width of the subform. If the forms in the set are resizable, then the form cannot be made narrower than
the minimum of this width and the width designed for the remote form class.

• Column 8: height: The height of the subform. If the forms in the set are resizable, then the form cannot bemade taller than the
minimum of this height and the height designed for the remote form class.

• If the subforms are to be displayed on a mobile device, Columns 9-12 are landscape left, top, width and height respectively. If
these are omitted, the landscape values default to the portrait values.

When formLeft or formTop parameters are set to kSFScenter, the subform will be displayed in the center of the current viewport or
the current form, whichever is the smaller of the two: note that horizontal and vertical centring work independently of each other.

Formlist for Responsive forms

When using the “subformset_add” and “subformset_formadd” client commands you can pass dimensions for the subforms for each
breakpoint in a responsive remote form in the formlist parameter (instead of the single set of left, top, width, height parameters). The
samemethod applies to both client commands, but the example below shows directly adding a form with “subformset_formadd”:

Do lDimList.$define(lBreakpoint,lLeft,lTop,lWidth,lHeight)
Do lDimList.$add(310,10,10,200,200)
Do lDimList.$add(600,kSFScenter,kSFScenter,300,300)
Do lDimList.$add(1000,kSFScenter,kSFScenter,600,600)
Do $cinst.$clientcommand("subformset_formadd",row(cSetName,vUniqueID,cParams,cTitle,lDimList,iModal))

115

The dimensions list replaces the 4 separate parameters, and so condenses the command to a minimum of 5 parameters (6 if passing
a value for iModal): this only works for responsive forms, whereas single and screen type formsmust use the original set of parameters
to avoid confusion.

The client will use the value passed in lBreakpoint to assign the values to the correct breakpoint for the containing form. If the break-
points do not match, then the values will be used from the next breakpoint down. For example, if you had the list of dimensions as
defined above, but your form used the following breakpoints:

310 - would use the values from 310 as they match

590 - this is smaller than the next value of 600, so would again use the values from 310

900 - this is smaller than the next value of 1000, so would use the values from 600

1200 - this is greater than the values from 1000, so uses those values.

subformset_formadd

Having created a subform set using subformset_add, you can use the subformset_formadd client command to add a form to the
subform set.

Do $cinst.$clientcommand("subformset_formadd",rowVariable)

Where rowVariable is row(setname, uniqueID, classname, params, title, left, top, width, height, modal)

The row variable parameter are as follows:

setname: a string which is the name of the set to which the subform is to be added.

uniqueID: an integer which must uniquely identify this subform in the set.

classname: the name of the Omnis remote form class for the subform.

params: A comma-separated list containing literal parameters to be passed to the $construct and $init methods of the subform
instance, e.g. “ ‘Test’,123”. Note strings have to be quoted, and can contain spaces and commas. $init is run in serverless client subforms.

title: the title of the subform - text displayed in the title bar of the subform.

left: the left coordinate of the subform (for Desktop browsers, or portrait if amobile device). The constant kSFScenter centers the form
horizontally in its parent.

top: the top coordinate of the subform (for Desktop browsers, or portrait if a mobile device). The constant kSFScenter centers the
form vertically in its parent.

width: the width of the subform. If the forms in the set are resizable, then the form cannot be made narrower than the minimum of
this width and the width designed for the remote form class.

height: the height of the subform. If the forms in the set are resizable, then the form cannot bemade taller than theminimum of this
height and the height designed for the remote form class.

Note the 4 separate parameters (left, top, width, height) can be replaced by a list containing the dimensions for each breakpoint: see
above regarding the formlist for subformset_add.

modal: zero if the subform is non-modal, or 1 if the subform is fully modal, and prevents the use of any other form or subform in the
remote task’s user interface (the form is grayed out and clicks outside the subform are ignored).

If the subforms are to be displayed on amobile device, the next four columns are landscape left, top, width and height respectively. If
these are omitted, the landscape values default to the portrait values.

The parameters above, starting with uniqueID, are identical to those in the formlist (for the subformset_add command), except the
modal indicator is present between the two sets of coordinates.

subformset_remove

The subformset_remove command removes a set of subforms. All subforms in the set will be destructed and removed from their
parent.

Do $cinst.$clientcommand("subformset_remove",rowVariable)

Where rowVariable is row(setname) where setname is set to be removed.

116

Figure 95:

subformset_formremove

The subformset_formremove command removes a subform from an existing set and destructs it (removing it from its parent).

Do $cinst.$clientcommand("subformset_formremove",rowVariable)

Where rowVariable is row(setname, uniqueID, focus)

The row variable parameter are as follows:

setname: a string which is the name of the set from which the subform is to be removed.

uniqueID: an integer which identifies the subform in the set to be removed.

focus: optional (default value is kFalse). If the focus parameter is kTrue, sets focus to the new top form in the set unless it is minimized.

subformset_formtofront

The subformset_formtofront command brings a subform in a set to the top of the stacking order, and gives it the focus. You must
use this command to display a subform that has previously been minimized.

Do $cinst.$clientcommand("subformset_formtofront",rowVariable)

Where rowVariable is row(setname, uniqueID)

setname: a string which is the name of the set containing the subform.

uniqueID: an integer which identifies the subform in the set to be brought to the front.

Subform Dialogs

subformdialogshow

The subformdialogshow command opens a single subform as a modal dialog.

Do $cinst.$clientcommand("subformdialogshow ", rowVariable)

Where rowVariable is row(classname, params, title, width, height, closeButton, resizable, maxButton, openMax). The parameters are
as follows:

Parameter Description

classname String, the name of the remoteform
params String literals to pass to the subform

117

Parameter Description

title String, the title of the modal dialog
width Integer, the width of the dialog
height Integer, the height of the dialog
closeButton Boolean (Optional), defaults to true, show

close button
resizable Boolean (Optional), defaults to false, if true

allows resizing
maxButton Boolean (Optional), defaults to false, if true

shows maximize button (resizable must be
set to true)

openMax Boolean (Optional), defaults to false, if true
opens dialog in a maximized state
(resizable must be set to true)

This command generates a new subform set and adds one modal subform to it. The name of this set is internal only, and cannot
be added to or removed from. Another modal subform dialog can be opened above the previous one by running subsequent calls,
preventing access to the first one until the second is closed (using the subformdialogclose command).

subformdialogclose

The subformdialogclose command closes the topmost subform dialog. This command only works for subforms opened using the
subformdialogshow command, and has no parameters as such modal dialogs must be closed in reverse order of them opening.

Using the Stacking Order Variable (ordervar)

When you use the subformset_add client command a list called ordervar is created containing a list of the subforms in the subform
set. The ordervar variable allows you tomanage the subforms in the set. It has the same definition as the formlist, and like the formlist
it contains the subforms in the order of the top to the bottom of the stacking order. Note that if coordinates have been centered using
kSFScenter, the ordervar contains their actual values rather than the value kSFScenter.

Whenever the stacking order changes, or a form is moved or resized, the client updates the values in ordervar. This results in:

• Automatic updates to controls which are data-bound to the ordervar.

• A call to a client method in the container form for the SFS. If you add a client-executed method called $sfsorder, with a single
parameter, which is the set name, you can add processing that occurs each time the set is updated. For example, you could use
a tab control to display a tab for each member in the set, where the current tab represents the top-most subform.

You can use the ordervar list in conjunction with the subformset_formtofront $clientcommand to manage the subforms in the set,
e.g. bring a form to the front by selecting a line in a popup menu (this is the only way to restore a minimized subform). For example:

the ordervar list is assigned to iOpenForms, C1 contains the subform ID
Do $cinst.$clientcommand("subformset_formtofront",row('SubformSet',iOpenForms.[pLineNumber].C1))

If a subform has been minimized, you would you have to use such a method to display the subform again since minimized subforms
are not visible in the parent remote form.

Load Finished Method

Remote forms have the $loadfinished client-executedmethod which is called after all the subforms that belong to the parent remote
form instance have finished loading and their $initmethods have been called; so you could create a clientmethod called $loadfinished
to perform any actions you want after all subforms have loaded.

118

Trapping the Close event

You can add a method to a subform in a subform set to trap the close event before the $destruct for the subform is run. The method
should be named $sfscanclose and should be set to be client-executed (which should be enabled automatically). The method can
contain whatever processing you want to run. If the return value (a Boolean) from this method is kFalse the subform cannot close.
Otherwise, if the return value from this method is kTrue, the subform can close. If $sfscanclose is not present, the subform closes by
default.

Dialog and Palette style subforms can call into $sfscanclose() when attempting to close via the close button (X) in a dialog subform,
or clicking the background outside the palette for a palette style subform. As with other subforms, it would be possible to test a
conditional statement in $sfscanclose() and if it returns kFalse the close event will be cancelled.

Scroll Position

The kSFSflagPosnScroll flag allows you to control howa subform is positioned relative to its container if the container has been scrolled.
When the kSFSflagPosnScroll is set the subform in a subform set (SFS) will open relative to the current scroll position of its container.
For example, on a long form which is currently scrolled to the bottom of the page, with a subform opening at left position 100 and
top position 100, it will open 100 pixels in from the top of what can currently be seen in the viewport. Similar behavior would apply if
it belonged to a paged pane that has been scrolled.

When the flag is not set, it will be positioned absolutely to the defined position: therefore, in a long form that has been scrolled to the
bottom of the page, the subform will be placed at the top of the page if its top position is set to 0.

However, when opening a modal subform in a subform set, if its position is set to kSFSCenter, it will always be positioned relative
to the current scroll position of the form, as modal subforms always belong to the form, not a paged pane (since a modal subform
requires interaction and closing before any other action can be taken on the form). If kSFSCenter and kSFSflagPosnScroll are both not
used, then a subform will be placed at its specified position, even if that is out of the current view of the user (which is the behavior in
previous versions).

Subform Styles

The styles and colors used in subformswill be those set in the subform classes; the colors for the subform set are taken from the theme
used in the main JS form.

Subform Titles

You can use $cinst.$title to change the title text for a member of a subform set.

Subform References

You can obtain a reference to any subform instance within a subform set using the $sfsmember root notation. For example:

$root.$sfsmember(cSetname,iUniqueID)

returns an item reference to the remote form instance for the subform setmemberwith the specifiedunique ID in thenamed subform
set in the current remote task. This notation can be used in server and client methods.

Subform Panels

You can open a set of subforms as a group of collapsible panels within a container, such as a paged pane control. The subform panels
are arranged vertically and the end user can expand and collapse each subform by clicking or tapping on the subform title bar or the
minimize icon. Subform panels cannot be nested.

There is an example app called JS Subform Set Panels in the Samples section in the Hub in the Studio Browser showing how you can
setup and use subform panels, and the same app is available in the JavaScript Component Gallery.

119

https://bit.ly/OmnisJSGallery

Figure 96:

Configuring the panels

You can create a set of subform panels using the “subformset_add” client command along with the “kSFSflag…” constants, which can
be found in the Catalog (F9) in the ‘Subform sets’ group. The subformset_add command creates a set of subforms within the current
remote form instance or a parent, such as a paged pane.

Do $cinst.$clientcommand("subformset_add",rowVariable)

where rowVariable is row(setname, parent, flags, ordervar, formlist). The flags can be summed to specify the complete behavior of
the panels in the set: see the example method below to see how to use subformset_add and the flags.

kSFSflagOpenMin

The subform panels in the set are opened in the minimized state. Normally, all subforms in the set are opened in the un-minimized
state. This flag overrides this default behavior.

kSFSflagOpenMax

The subform in the set is opened in the maximised state. Sizes/positions should still be set as the subform will return to these values
if it is restored.

kSFSflagMinAsTitle

When a panel (subform) in the set is minimized, just the title bar is shown. This flag overrides the default behavior which is to reduce
the subform to nothing when it is minimized.

You can use the kSFSflagMinButton flag to add a minimize button to each subform to allow the end user to expand and contract the
panel (in addition to clicking on the title).

kSFSflagAutoLayout

Automatically lay out the panels (subform set members) vertically within their parent, ignoring the specified left and top. Turns on
kSFSflagMinAsTitle and turns off kSFSflagResize and kSFSflagMaxButton. When using kSFSflagAutoLayout, the user can drag and
drop the title bar of the panels in the set, to re-order them. If you open a modal subform in a set with kSFSflagAutoLayout set, the
modal form opens at the top of the parent form, and does not become part of the vertically laid out forms.

120

kSFSflagParentWidth

Only applies when kSFSflagAutoLayout is specified. Ignores the width parameter for each set member, and sets the width of each
subform to the width of parent. This flag also sets edgefloat for each subform to kEFright. Using kSFSflagParentWidth allows you, for
example, to create a paged pane page populated with panels implemented as subforms, where the panels resize when the paged
pane resizes.

kSFSflagSingleOpen

Only applies when kSFSflagAutoLayout and kSFSflagMinButton are both specified. When specified ensures that at least one window
is always open.

kSFSflagMinButtonIsTitle

The minimize button icon is removed and the whole title bar becomes the minimize button. Only applies when kSFSflagAutoLayout
is specified.

Expanding and Collapsing Subform panels

End users can expand or collapse (open or close) subformpanels using a single click (in previous versions, a double-click was required).
This is enabled by making the title bar on the subform behave like the minimize button, and therefore the title accepts single clicks.
The kSFSflagMinButtonIsTitle flag for the ‘subformset_add’ action needs to be set to allow this behavior, and only applies when
kSFSflagAutoLayout is specified.

When in auto layout mode, and not using single open or open minimized modes, you can indicate that a form is to be opened min-
imized modes by prefixing its class name with the ~ (tilde) character. This means that when you open a number of subforms in a
subform set, you can specify which subforms will open minimized (collapsed).

Subform Panels Example

The following example of a set of subform panels contained in a paged pane (available in the Samples section in the Hub), with both
the auto layout and parent width flags set.

Figure 97:

The following method constructs the subform set and assigns it to a paged pane in the remote form. In this case, the subform only
contains anedit controlwhich receives some text tobedisplayed in the subform (“This is panel #”). The list of subforms is built including
the text and background color which is assigned to a paged pane using a row variable and the subformset_add client command.

121

create list vars lFormList and lSetRow and all columns
create the list of subforms in lFormList
Do lFormList.$define(lFormID,lClassName,lFormParams,lFormTitle,lFormLeft,lFormTop,lFormWidth,lFormHeight)
Do lFormList.$add(1,'jsSubformSetPanelsSubForm',con(1,chr(44),rgb(221,221,255),chr(44),chr(34),"This is panel 1",chr(34)),'Panel 1',,,,160)
Do lFormList.$add(2,'jsSubformSetPanelsSubForm',con(2,chr(44),rgb(204,204,255),chr(44),chr(34),"This is panel 2",chr(34)),'Panel 2',,,,160)
Do lFormList.$add(3,'jsSubformSetPanelsSubForm',con(3,chr(44),rgb(187,187,255),chr(44),chr(34),"This is panel 3",chr(34)),'Panel 3',,,,160)
Do lFormList.$add(4,'jsSubformSetPanelsSubForm',con(4,chr(44),rgb(170,170,255),chr(44),chr(34),"This is panel 4",chr(34)),'Panel 4',,,,160)
construct the row for the subformset_add command in lSetRow
Do lSetRow.$define(lSetName,lParent,lFlags,lOrderVar,lFormList)
Do lSetRow.$assigncols("SubformPanelsSet",'PagedPane:1',kSFSflagSingleOpen+kSFSflagMinButton+kSFSflagAutoLayout
+kSFSflagParentWidth,'iOpenForms',lFormList)
Do $cinst.$clientcommand("subformset_add",lSetRow)

In this case the flags kSFSflagSingleOpen, kSFSflagMinButton, kSFSflagAutoLayout, and kSFSflagParentWidth have been summed
to create the complete properties for the set of panels.

An example containing a set of Subform Panels is available in the JavaScript Components Gallery on the Omnis website.

Modal Subforms and Paged Panes

If youassociate a subformsetwith apagedpaneandyouaddanewMODAL form to the set, thenewsubformwindowwill be associated
with the remote form as a whole, rather than the paged pane.

Subform Set Example

The following code creates a subform set containing two subforms.

the following setupSubformSet method could be called from $construct
Create vars: iFormList (List), iID, iClassName, iParams, iTitle, iLeft, iTop, iWidth, iHeight
Create local vars in setupSubformSet: lRow (Row), lSetName, lParent, lFlags, lOrderVar
jsSub1 and jsSub2 are remote forms in the library
Do iFormList.$define(iID,iClassName,iParams,iTitle,iLeft,iTop,iWidth,iHeight)
Do iFormList.$add(1,"jsSub1",,"subform1",10,10,200,200)
Do iFormList.$add(2,"jsSub2",,"subform2",220,10,400,200)
Do lRow.$define(lSetName,lParent,lFlags,lOrderVar,iFormList)
Do lRow.$assigncols("SubformSet",,kSFSflagCloseButton+kSFSflagMaxButton + kSFSflagMinButton+kSFSflagResize,,iFormList)
Do $cinst.$clientcommand("subformset_add",lRow)

The code creates the subforms in the main remote form within the browser:

TheMemo sample app available in the Applets section of the Hub uses subform sets.

Using Subform Palettes

A Subform Palette is a subform that can be opened next to a specified control. Such a subform could allow the end user to set an
option, or to provide some information such as a help tip. Subform palettes can be opened or closed using the client commands
subformpaletteshow and subformpaletteclose, or a subform palette can be closed by clicking outside the subform.

There is an example application called JS Subform Dialogs in the Samples section of the Hub in the Studio Browser showing how to
use the subform palette client commands.

Showing a Subform Palette

The subformpaletteshow command shows a remote form as a subform palette:

Do $cinst.$clientcommand("subformpaletteshow",rowVariable)

122

Figure 98:

Figure 99:

123

Where rowVariable is row(cClass, cParams, cControl, iWidth, iHeight [,iPositionFlags] [,bShowOverlay] [,cTitle] [,bPreventClose])

The row variable parameters are as follows:

Parameter Description

cClass Character, the class name of the remote
form to use in the palette.

cParams Character, parameters to pass to the
remote form, e.g. you could pass a
message (text) to be displayed in the
subform palette, as in the example app.

cControl Character, the name of the related
control to pop up the palette next to.

iWidth Integer, the width of the subform palette.

iHeight Integer, the height of the subform
palette.

iPositionFlags Integer (Optional), a combination of up
to 2 kSFSPalette… constants to specify
the position (defaults to kSFSPalettePos-
FlagRight+kSFSPaletteAlignFlagCenter).
See further description of flags below.

bShowOverlay Boolean (Optional), if kTrue, shows the
form overlay while the palette is open
(defaults to kFalse).

cTitle Character (Optional), the title of the
subform (this is not displayed anywhere,
but is used to populate the aria-label
property of the palette for screen
readers).

bPreventClose Boolean (Optional), if kTrue, the user
cannot close the palette by clicking
outside it (defaults to kFalse); in this case,
you must use subformpaletteclose to
close the palette.

The Positioning flags should contain up to 1 Position flag (top, right, bottom, or left) and 1 Align flag (start, center, or end) to set the
position of the subform palette relative to the control specified in cControl.

Constant Description

kSFSPalettePosFlagTop Position the palette above the related
control

kSFSPalettePosFlagRight Position the palette to the right of the
related control

kSFSPalettePosFlagBottom Position the palette below the related
control

kSFSPalettePosFlagLeft Position the palette to the left of the
related control

kSFSPaletteAlignFlagStart Aligns the palette at the start of the
specified position (top/right/bottom/left)

kSFSPaletteAlignFlagCenter Aligns the palette in the center of the
specified position (top/right/bottom/left)

kSFSPaletteAlignFlagEnd Aligns the palette at the end of the
specified position (top/right/bottom/left)

If the palette were to overlap the opposite side of the control, e.g. because of the lack of space, Omnis will try to place the subform on
a different edge automatically. If Omnis cannot place the subform in an acceptable position, it will fallback to using the initial state.

124

There is also an arrow which will point to the center of the given control. However, it is restricted by the size of the subform palette,
and so will be placed towards the edge of the palette closest to the center of the control, as appropriate.

In the example app (in the Hub), the following code is in the $event method for the button which opens a subform palette next to
the button (iPaletteMessage is populatedwith a textmessage from the form, while iPalettePosValue and iPaletteAlignValue are taken
from droplists in the form):

Do $cinst.$clientcommand("subformpaletteshow",row("jsSFDPalette",con(kDq,iPaletteMessage,kDq),"ShowPalette",220,120,
iPalettePosValue+iPaletteAlignValue,kFalse,"MyTitle"))

Closing a Subform Palette

The subformpaletteclose client command closes the top-most subform palette. No row parameter is required. Note the end user can
close a subform palette by clicking outside the subform (which can be prevented using bPreventClose).

Running JavaScript in the Client

The JavaScript: command (including the colon) allows you to execute any native JavaScript in the client browser directly from your
Omnis code; this can include calls to other JavaScript embedded into or linked to the HTML page containing your JavaScript remote
form. Omnis does not perform any validation of the code you insert into the JavaScript: command in the method editor (you can
check for errors in the JavaScript console of the browser). You cannot include any square bracket notation in the code parameter
of the JavaScript: command, since the code needs to be evaluated by the server when generating the script file. A simple example
would be to open an alert in the browser with the standard alert() function, as follows:

JavaScript:alert("Hello World");

Since this command executes native JavaScript code on the client it must be executed in a client-side method. The JavaScript: com-
mand will only appear in the Command list in a method that is enabled to execute on the client. Omnis will not allow the JavaScript:
command to be present in a server method (an error occurs). If you try to execute JavaScript: on the server, by calling a client-side
method from a server method, a debugger error will occur.

You can include JavaScript in the HTML page containing your remote form (inline or linked), and call code in these scripts from your
remote form code using the JavaScript: command. To extend the alert() example above, you could embed a JavaScript function in
your HTML page, like this:

<html>
<head>

<script type="text/javascript">
function show_alert()
{
alert("Hello World");

}
</script>

</head>
<body>

<!-- body including the omnisobject containing your form -->
</body>

</html>

And call this function from your Omnis code using the JavaScript: command as follows:

JavaScript:show_alert();

Another example could include using the JavaScript: command to “push” events to Google Analytics to track certain actions or events
in your application. To do this you would need to add the standard Web Analytics code provided by Google into your HTML page
(containing your remote form) and call the gaq.push() function with the correct parameters from within your Omnis code.

125

Example Using the JavaScript: Command

A possible use for the JavaScript: command is for an event handler. You could use the $init method to install an event handler, such
as:

JavaScript:document.getElementById("jsTEMP1_1076_client").onselect=function(event) { __form.callMethodEx("selected",0,event); };
JavaScript:window.addEventListener("keydown",function(event){ __form.callMethodEx("keydown",0,event) }, true);

Note that in both of these examples you can use __form.callMethodEx to call an instance method of the remote form. The second
parameter (zero in these examples) are flags which control how callMethodEx behaves – these must always be passed as zero.

You could use the $init method to assign additional style information to controls on the form. For example:

Do $cinst.$objs.$sendall($cinst.$addboxshadow($ref))

$addboxshadow is a form method with parameter pObj. The following JavaScript: command adds a box shadow if the browser
supports it.

JavaScript:pObj.elem.style.boxShadow="0px 0px 5px 5px #888888";

Styled Text

You can insert various text styles in some of the JavaScript components wherever text is displayed. For example, you can insert colors,
font styles, and images into the text within the list control, the droplist control, the data grid control, and the hyperlink control.

Text styles can be inserted using the style() function, in both server and client methods. The style() function inserts a style-character
represented by anOmnis constant into a calculation or a text block. The styles that can be used include some of the existing constants
(listed under ‘Text Escapes’ in the Omnis Catalog) and a few new ones, prefixed kEscJs…, introduced for the JavaScript Client. The
following style constants can be used:

Style Description

kEscColor In a client-side method, the color
parameter can be a numeric literal, a
constant such as kRed, or HTML color
string enclosed in double quotes.

kEscStyle In a client-side method, the style parameter
must be a numeric literal or constant.

kEscBmp In a client-side method, the icon id
parameter must be either a numeric literal,
or the sum of a numeric literal and an icon
size constant e.g. 1710+k48x48

kEscJsNewline No additional parameters are required.
Inserts a line break tag. See *

kEscJsClose No additional parameters are required.
Closes the current open style information
(inserted by kEscColor or kEscStyle) in the
styled text and reverts to the original color
and text style. Note - kEscColor and
kEscStyle insert a tag to style the text.
kEscJsClose closes the tag.

kEscJsHtml Inserts raw HTML (the second parameter to
style()).

* You can use the br() function as a short-hand to insert a new line. The br() function and kEscJsNewline can only be used with styled
text for the JavaScript client.

The parameters for style() can use any HTML color string, such as “#FF0000”. For client methods that execute on the client, the
color parameter must be a literal string and therefore enclosed in double quotes. For example, style(kEscColor,“#FF0000”), or

126

Figure 100:

style(kEscColor,“rgba(0,0,255,0.5)”). Omnis does not validate the HTML color syntax, so you should check the syntax is correct to avoid
runtime errors.

The following example code produces a list line which looks like this from the styled text data in iChar:

Calculate iFloatRight as style(kEscJsHtml,"")
Calculate iFloatLeft as style(kEscJsHtml,"")
Calculate iSmallFont as style(kEscJsHtml,"")
Calculate iCloseSpan as style(kEscJsHtml,"")
Calculate iIcon as style(kEscBmp,1710+k32x32)
Calculate iOpenP as style(kEscJsHtml,"<p style='height:36px;margin:0px'>")
Calculate iCloseP as style(kEscJsHtml,"</p>")
Begin text block
Text: [iOpenP][iFloatLeft]Left text[iCloseSpan]
[iFloatRight]Right[iIcon][iCloseSpan][br()]
[iSmallFont][style(kEscStyle,kItalic)]
[style(kEscColor,kRed)]Line 2[iCloseSpan][iCloseP]

End text block
Get text block iChar

Animations

JavaScript remote forms have the methods $beginanimations() and $commitanimations() which allow you to control animations
for some controls. The animated properties are: left, top, width, height, alpha, backcolor, backalpha, textcolor, fontsize, bordercolor,
linestyle, buttoncolor (the latter is for pushbutton only).

There is a sample app calledAnimations in the JavaScript Component Gallery, and under the Samples option in theHub in the Studio
Browser showing how you can animate component changes such as size, position, and transparency.

The syntax for the $beginanimations() method is:

• $beginanimations(iDuration[,iCurve=kJSAnimationCurveEaseInOut])
after calling this, assignments to some control properties are animated for iDuration (milliseconds) by executing $commitani-
mations()
iCurve values are:
kJSAnimationCurveEaseInOut (the default), kJSAnimationCurveEaseIn, kJSAnimationCurveEaseOut, kJSAnimationCurveEase
and kJSAnimationCurveLinear

If you set the same property for an object more than once, the first property change is animated, and then the last property change is
animated when the first completes. Property changes between the first and last are ignored. The evAnimationsComplete event (for
remote forms) is generated after the last property change(s) have completed. This allows you to reverse the effect of an animation
(which is the equivalent to the autoreverse/repeat options available on iOS).

The About form in the example app is loaded into a subform using animations, which initially has the $alpha value of zero (fully
transparent) and is increased to 255 during the animation, as follows:

method behind About button
On evClick
Switch iScreensize

set aboutSubForm size for different devices
etc.

End Switch
Do $cinst.$objs.aboutSubForm.$classname.$assign("jsAbout")

127

https://bit.ly/OmnisJSGallery

Do $cinst.$objs.aboutSubForm.$visible.$assign(kTrue)
Do $cinst.$beginanimations(500,kJSAnimationCurveEaseIn)
Do $cinst.$objs.aboutSubForm.$alpha.$assign(255)
Do $cinst.$commitanimations()

Time Zones and Dates

The JavaScript Client exchanges dates and times between the server and client using UTC time, regardless of where your server is
located (note that UTC is essentially the same as GMT but UTC is used globally as the standard time for web servers). You should
therefore store all dates and times in UTC and use the time zone offset of the client to either determine or set the local time of the
client. The $construct row variable parameter for the remote task/form has a column JStimezoneOffset, which is the timezone offset
in minutes for the client relative to UTC time. For example, if the client’s local time zone is UTC+2 (or GMT+2), JStimezoneOffset will be
120. See the Construct Row Variable section for more information about the $construct row variable for tasks/forms.

Time Zone Functions

There are a number of Omnis functions that allow you to convert local dates and times to UTC since the client and server need to both
use UTC time: they are listed in the ‘Date and Time’ group in the Omnis Catalog (F9/Cmnd-9).

• loctoutc() and utctoloc()
Converts the specifieddatetime (or time) from the local timezone toUTC (CoordinatedUniversal Time), or vice versa, and returns
the result

• tzcurrent(), tzdaylight(), tzstandard()
Returns the character string identifying: the current time zone, the daylight saving time zone, or the standard time zone, re-
spectively, of the current date and time of Omnis (plus tzoffset() returns the system time zone offset from UTC time in minutes)

You should note that on 32-bit Windows the TZ codes returned by the timezone (tz) functions are the long time zone names and not
the short abbreviated time zone names. If you want to use the short time zone names, you can add amapping to studio.stb, from the
full name to the abbreviation you wish to use.

Local Time

The $localtime task property allows you to switch to Local time rather than UTC. If true, the JavaScript Client and the Omnis App
Server exchange date-time values in local time rather than UTC time. $localtime must be set in design mode: it cannot be assigned
at runtime.

Date and Time Conversion in SQLite

When converting Date and Time data in a SQLite database to dates in a remote form (i.e. in the JavaScript client), the subtype of any
Date/Time data is taken into consideration. In this case, ‘Short Date…’ data subtypes will return a date only (no time component), and
‘Time’ data subtypes will return a time only (no date component).

PDF Printing

The PDF Device is a printing device (external component) to allow you to print a report from Omnis to a PDF file and display it in the
JavaScript Client in the end-user’s web or mobile browser. There are two client commands (used with $clientcommand) to allow you
handle PDF reports (if the end user’s device supports PDF). See the Report Programming chapter in theOmnis Programmingmanual
for more information about creating report classes to format your PDF reports; this section describes the PDF Device.

There is an example app called JS PDF Device in the Samples section in the Hub in the Studio Browser, and the same app is available
in the JavaScript Component Gallery.

Supporting Files

The PDF Device component is available for Windows and macOS and is located in the ‘xcomp’ folder and is loaded automatically.

128

/developers/resources/onlinedocs/Programming/10reports.html
https://bit.ly/OmnisJSGallery

Node.js

Omnis usesNode.js to print reportswhich is installed ready to use inOmnis Studio. Note that Node.js is used for PDFprinting inOmnis
(as well as several other functions) subject to the MIT license from PDFKit: https://github.com/foliojs/pdfkit/blob/master/LICENSE

Note: In versions prior to Studio 11, Python (reportlab) was used for PDF printing, but this is no longer used and the python.zip file has
been removed from the Omnis development tree. If you are converting to Studio 11, you do not need to adjust your application code
or interface to use Node.js.

Fonts

The PDF device will only work with Reports that use TrueType fonts, and using other fontsmay cause an error during PDF generation.
Specifically only fonts contained in “.ttf”, “.ttc” or “.dfont” files can be used. Therefore youmust choose TrueType fonts for your report if
you intend to print using the new PDF device.

PDF Print Destination

The component is called OmnisPDF and the “Print to PDF” option appears in the Print Destination dialog, available to end users from
the main File menu. If the end user selects PDF as the report destination, then when they print a report, it will either be sent to a
report file specified in $prefs.$reportfile, or if this preference is empty Omnis will prompt the user to select the path of the output PDF
file. Note that this mechanism can be overridden programmatically by using the $settempmethod (see below).

PDF Folder

You can specify an alternative folder in which to place PDFs, rather than using the default “omnispdf” folder. There is an item called
“omnispdfFolder” in the “pdf” section in config.json that allows you to specify the path of a folder to receive PDFs, overriding the
default location. The item defaults to empty, which means Omnis will use the current “omnispdf” folder. The folder specified in
“omnispdfFolder” must already exist, otherwise Omnis reverts to the default omnispdf folder.

Printing PDF Using Code

To send a report to PDF programmatically, you can use the following code:

Calculate $cdevice as kDevOmnisPDF
Set report name MyReportClass
Print report
; or
Calculate $cdevice as kDevOmnisPDF
Set reference lReportInst to $clib.$reports.NewReport.$open('*')
Do lReportInst.$printrecord()
Do lReportInst.$endprint()

In both of these cases the report will be sent to a report file specified in the $prefs.$reportfile preference. Note that there is a separate
value of $prefs.$reportfile for each Omnis App Server stack (thread) and themain Omnis thread. If $prefs.$reportfile is empty, and the
code is running in the main Omnis thread, Omnis will prompt the user for the destination PDF file; otherwise, if $prefs.$reportfile is
empty and the code is running in another thread, Omnis will generate a runtime error.

PDF Device Functions

The PDF device has a number of functions to allow you to set up reports sent to temporary PDF files, to set up document properties,
and to add security features such as passwords and encryption.

$settemp()

The $settemp function allows you to specify that the next report will print to a temporary PDF file in the omnispdf/temp folder. The
function returns the name of the file that will be created in omnispdf/temp (or an empty string if bTemp is kFalse). You can specify a
timeout in minutes whereupon the temporary PDF file will be deleted.

129

https://github.com/foliojs/pdfkit/blob/master/LICENSE

Do Omnis PDF Device.$settemp(bTemp,iTimeout) Returns cID

Parameter Description

bTemp A Boolean: kFalsemeans a temporary file
will not be used. kTrue means the next
report sent to PDF by the current task
instance will be written to a temporary
file in the folder “omnispdf/temp” in the
data part of the Omnis Studio tree. Note
that after the next report has been sent
to PDF, the stored value of bTemp will
revert to kFalse.

iTimeout An integer: Only used when bTemp is
kTrue. If omitted defaults to 10. The time
in minutes for which the next PDF file
generated by the current task will
remain on disk. When the time expires,
the Omnis PDF device automatically
deletes the file. Note that Omnis
automatically deletes any files left
behind in omnispdf/temp when it starts
up.

Each task instance (including remote tasks) stores its own information set up using $settemp. This allows $settemp to be used in one
thread on the Omnis Server without effecting other threads/clients.

$setdocinfo()

The $setdocinfo function lets you specify the author, title and subject properties for the PDF documents generated by the current
task. The author, title and subject parameters are all strings, and the function returns kTrue for success.

Do Omnis PDF Device.$setdocinfo(cAuthor,cTitle,cSubject) Returns bOK

You can add keywords to the PDF file’smetadata by adding extra parameters to $setdocinfo, specified as a string of comma-separated
keywords, for example:

Do Omnis PDF Device.$setdocinfo(cAuthor,cTitle,cSubject,'keyword1, keyword2, keyword3') Returns bOK

$encrypt()

The $encrypt function sets encryption (security) properties for the PDF documents generated by the current task, and the function
returns kTrue for success. The full syntax is:

Do Omnis PDF Device.$encrypt(cUserPassword[,cOwnerPassword='',bCanPrint=kTrue,bCanModify=kFalse,bCanCopy=kTrue,bCanAnnotate=kFalse]) Returns bOK

The parameters are as follows:

130

Parameter Description

cUserPassword A character string: The user password
for the document. If this is set to empty
then none of the other arguments
apply and the document will not be
encrypted; otherwise the document
will be encrypted and the user
password and other properties
specified by this function will be
applied to it.

cOwnerPassword A character string: The owner password
for the document. The default is no
password is assigned.

bCanPrint A Boolean: Specifies if the user can
print the PDF document. The default is
kTrue.

bCanModify A Boolean: Specifies if the user can
modify the PDF document. The default
is kFalse.

bCanCopy A Boolean: Specifies if the user can
copy from the PDF document. The
default is kTrue.

bCanAnnotate A Boolean: Specifies if the user can
annotate the PDF document. The
default is kFalse.

Security in Third-party PDF readers

The optional security parameters will be applied to the PDF file if you include them in the $encrypt() function, but you should note that
the third-party PDF viewer the end user is using may not support these settings or may just choose to ignore them. The password
specified in cUserPassword should be interpreted by all PDF readers.

Completing PDF Printing

When a PDF report completes, the device sends a message to the task (or remote task) that printed the report. The message is
$pdfcomplete, and it takes two arguments:

1. The pathname of the output report file.

2. A Boolean which is true for success, false if an error occurred generating the PDF.

Icons

You can include icons in text in a report printed to PDF using the style() function and the kEscBmp escape constant. For example, you
can use con(style(kEscBmp,1400),’some text’) in a report entry field calculation to display an icon on a report.

PDF Printing in the JavaScript Client

PDFs generated by the PDF device can be usedwith the JavaScript Client. The showpdf and assignpdf client commands can be used
with $clientcommand to display PDF files on the client. You should avoid generating large PDF documents to use with the JavaScript
Client since the generated PDFs are streamed from theOmnis App Server (i.e. via aWeb Server). An alternativewould be to output the
PDF document into the Web Server’s file system and link to it using a URL to the PDF on the Web Server and the getpdf command
to send it to the client: see Linking to PDFs.

There is an example app called JS PDF Device in the Samples section in the Hub in the Studio Browser showing how you can print
reports to PDF in the JS Client.

131

showpdf

The showpdf client command opens the specified PDF in a new browser window or tab. There is no control over whether the PDF is
opened in a new window or tab: typically, this depends on the end-user browser settings, including their setting for popups.

Do $cinst.$clientcommand("showpdf",rowVariable)

Where rowVariable is row(pdf-id, timeout, pdf-filename)

• pdf-id
A character string. Either a full pathname of a PDF file on the Omnis server (pdf folder must be specified in getpdfFolders
config.json item; see below), or an id returned by $settemp

• timeout
An integer being the time in seconds that the client is prepared to wait for PDF generation to finish. Defaults to 60. If PDF
generation does not complete in time, or an error occurs, Omnis returns a PDF document containing a suitable error message.

• pdf-filename
the file name of the PDF file

The following method generates a PDF and displays it on the client:

Calculate $cdevice as kDevOmnisPDF
Do Omnis PDF Device.$settemp(kTrue,1) Returns lID
Set report name New Report
Do Omnis PDF Device.$encrypt('bob','owner',1,0,0,0)
Do Omnis PDF Device.$setdocinfo('Bob','Title','Subject')
Print report
Do $cinst.$clientcommand("showpdf",row(lID,20))

assignpdf

The assignpdf client command opens the specified PDF in a PDF viewer control in the current remote form instance. The PDF must
be assigned to an HTML control in the remote form which tries to open the PDF file using the PDF viewer installed in the end user’s
browser.

Do $cinst.$clientcommand("assignpdf",rowVariable)

Where rowVariable is row(html-object-name, pdf-parameters, pdf-id, timeout, pdf-filename)

• html-object-name
The name of an HTMLObject control in the current remote form instance. The HTML content of this object will be replacedwith
that necessary to display the PDF document in a PDF viewer control.

• pdf-parameters
PDF viewer parameters. These apply when the PDF is viewed in a browser that uses the standard Adobe PDF viewer control.
They control the look and behavior of the PDF viewer. See the Adobe website for details about the PDF Open Parameters.

• pdf-id
A character string. Either a full pathname of a PDF file on the Omnis server (pdf folder must be specified in getpdfFolders
config.json item; see below), or an id returned by $settemp

• timeout
An integer being the time in seconds that the client is prepared to wait for PDF generation to finish. Defaults to 60. If PDF
generation does not complete in time, or an error occurs, Omnis returns a PDF document containing a suitable error message.

• pdf-filename
the file name of the PDF file

The following method creates a report and assigns it to an HTML control in the remote form.

132

Calculate $cdevice as kDevOmnisPDF
Do Omnis PDF Device.$settemp(kTrue,1) Returns lID
Set report name New Report
Do Omnis PDF Device.$encrypt('bob','owner',1,0,0,0)
Do Omnis PDF Device.$setdocinfo('Bob Smith','Title','Subject')
Print report
Do $cinst.$clientcommand("assignpdf",row("htm","toolbar=1&zoom=20",lID,10))

If you set the $html property of the HTML Object control to “<div %e></div>” the PDF viewer will have the same border, position and
dimensions as the designed control on the remote form. Note that this command will not work on Android with the default web
browser, since it does not support the application/pdf plug-in. If the application/pdf plug-in is not available on Android, it executes
showpdf instead.

PDF Path Names

The character length of the path name when creating a PDF is unlimited (in versions prior to Studio 11, the limit was 255
characters). Under Windows, for very long path names, you may need to enable long paths by setting the registry key Com-
puter\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem\LongPathsEnable to 1 and restart.

PDF Version and Encryption

You can set the PDF version and encryption used in the PDF file using the $setpdfversion method, which can be one of the kDe-
vOmnisPDFVersion… constants identifying the PDF version and encryption to be used when encrypting the PDF file. The default is
kDevOmnisPDFVersion13 which specifies 40-bit RC4 encryption. The following constants are available:

Constant Description

kDevOmnisPDFVersion13 Version 1.3, 40-bit RC4 encryption
kDevOmnisPDFVersion14 Version 1.4, 128-bit RC4 encryption
kDevOmnisPDFVersion15 Version 1.5, 128-bit RC4 encryption
kDevOmnisPDFVersion16 Version 1.6, 128-bit AES encryption
kDevOmnisPDFVersion17 Version 1.7, 128-bit AES encryption
kDevOmnisPDFVersion17ext3 Version 1.7 ExtensionLevel 3, 256-bit AES

encryption

PDF/A support

You can set the PDF/A subset type for a PDF file, which is used to create archival versions of documents. The standard version PDF/A-1
is supported, as well as PDF/A-2 a/b and PDF/A-3 a/b.

You can use the $setpdfsubsetmethod to set the PDF/A subset type using one of the following constants:

Constant Description

kDevOmnisSubsetPDFA1a PDF/A-1a - Part 1 Level A (accessible)
conformance

kDevOmnisSubsetPDFA1b PDF/A-1b - Part 1 Level B (basic)
conformance

kDevOmnisSubsetPDFA2a PDF/A-2a - Part 2 Level A (accessible)
conformance

kDevOmnisSubsetPDFA2b PDF/A-2b - Part 2 Level B (basic)
conformance

kDevOmnisSubsetPDFA3a PDF/A-3a - Part 3 Level A (accessible)
conformance

kDevOmnisSubsetPDFA3b PDF/A-3b - Part 3 Level B (basic)
conformance

asof 35439 kDevOmnisSubsetNone Unsets the PDF subset

If you wish to unset the PDF subset, you can use the kDevOmnisSubsetNone constant with the $setpdfsubset() method.

133

Linking to PDFs

You can use the getpdf parameter when executing a URL such as the following to reference a PDF:

http://127.0.0.1:5912/jsclient?__OmnisCmd=getpdf,C:\myreport.pdf

To enhance security, the getpdf parameter only gets files with a “.pdf” extension, and it only works with parameters that are associated
with an open remote task instance which is stamped with a creation time value.

Setting PDF Folders

To enhance security, you can limit the folders fromwhich PDF files can be retrieved using showpdf, assignpdf, or getpdf by specifying
the folders in the config.json configuration file, and thereby excluding all other folders. To do this you need to add the getpdfFolders
item to the “server” member in config.json and list the folders. For example:

"getpdfFolders": [
"c:\\dev\\unicoderun",
"c:\\dev\\temp"

]

The item can be an array of folder paths, and any subfolders of a configured folder is also allowed. Each entry is a valid folder path,
without a trailing file separator.

Print PDF Example

The followingmethods will allow the end user to print a report to a PDF file: thesemethods use the built-in PDF Devicemethods and
the client commands.

button to open PDF report
create var lID (Char)
On evClick
Do $cinst.$createReport() Returns lID
Do $cinst.$clientcommand("showpdf",row(lID,60))

or button to display PDF report in current remote form
create var lID (Char), oHTML is an HTML obj on the form
On evClick
Do $cinst.$createReport() Returns lID
Do $cinst.$clientcommand("assignpdf",row("oHTML","toolbar=1&zoom=20",lID,20))

the code for the $createReport() remote form method:
Calculate $cdevice as kDevOmnisPDF
If iSaveCopy ;; linked to check box on the form
Do Omnis PDF Device.$settemp(kFalse) Returns lID
Calculate lSaveLocation as left(sys(10),rpos(sys(9),sys(10)))
Calculate lSaveLocation as
con(lSaveLocation,"savedReports",sys(9),iFileName)
Calculate $prefs.$reportfile as lSaveLocation

Else
Do Omnis PDF Device.$settemp(kTrue,1) Returns lID

End If
Set report name repNice
If iEncrypt
Do Omnis PDF Device.$encrypt(

iUserPass,iOwnerPass,iCanPrint,iCanModify,
iCanCopy,iCanAnnotate) Returns #F

End If
Do Omnis PDF Device.$setdocinfo(iAuthor,iTitle,iSubject) Returns #F

134

Print report
If iSaveCopy
Quit method lSaveLocation

Else
Quit method lID

End If

Toast Messages

Toast messages are small notification type messages that that can be “popped up” in a remote form to alert the end user about
something: the concept is derived from “toast messages” on Android. (Note this section refers to toast messages for remote forms
and not desktop toast messages.)

Toast messages are activated using the “showtoast” client command ($cinst.$clientcommand) which displays a message to the user
in a small popup window which disappears after a timeout, either 5000ms or specified amount.

Do $cinst.$clientcommand(“showtoast”,rowVariable)

Where rowVariable is row(text, [timeout, posX, posY, containerName, floating, originX, originY, speakMessage, assertive])

The toast message rowVariable parameters are:

Parameter Description

text The message text. The container’s size will
scale with the amount of text. You can use
‘\n’ to insert a new line.

timeout (Optional) The length of time (ms) the
message will be shown for (5000 ms by
default).

posX (Optional) The horizontal position of the
toast message in pixels. Centered if not
specified. If containerName is specified, this
position is relative to the control.

posY (Optional) The vertical position of the toast
message in pixels. Positioned near the
bottom of the form if not specified. If
containerName is specified, this position is
relative to the control.

containerName (Optional) The name of the control to
position the toast message relative to.
Options are limited to paged pane and
subform controls.

fixed (Optional) This determines whether or not
the toast message will stay in position when
the container scrolls (true by default).

originX (Optional) The toast message’s origin that
posX references. Possible values are: kLeftJst
(default), kRightJst and kCenterJst.

originY (Optional) The toast message’s origin that
posY references. Possible values are:
kJstVertTop (default), kJstVertMiddle and
kJstVertBottom.

speakMessage (Optional) If true, screen readers will
announce the message. This is an
accessibility feature to convey information to
visually impaired users.

135

Parameter Description

assertive (Optional) If speakMessage is true, this
instructs screen readers whether or not to
interrupt current speech.

The originX and originY parameters are used to set the point on the toast message that posX and posY reference. For example, if
originX is kRightJst and originY is kJstVertBottom, the bottom right corner of the toast message will be at the position specified by
posX and posY.

Chapter 3—JavaScript Components

TheComponent Store contains over 40 ready-made components for use in Remote Forms and the JavaScript Client. The components
are arranged in functional groups in the Component Store, including a group for Buttons, Containers, Entry Fields, and so on. The
JavaScript components are listed in this chapter in alphabetical order, starting with the Activity Control, and are listed in the table
below in their respective groups.

You can create your own JavaScript components using JavaScript and C++: see the JavaScript Component SDK online docwhich has a
tutorial and component reference. Alternatively, you can create your own custom JavaScript components, defined using JSON, which
will appear in the JSON Components group in the Component Store: these are described in the JSON Components chapter.

Example Apps and Code

There is an example app for most of the JavaScript components under the Samples option in the Hub in the Studio Browser. Open
these apps to examine the remote forms and look at the code behind each component: you can double-click on a JavaScript compo-
nent in design mode to see its code methods in the method editor.

In addition, the Applets option in the Hub in the Studio Browser has several sample web apps that use many of the JavaScript com-
ponents, including a Contacts app, a Holidays app, and aWebshop app which has a product catalog and a prototype shopping cart.

The sameexample apps are featured in the JavaScriptAppsGalleryon theOmniswebsite, availablehere: www.omnis.net/platform/#jsgallery

or you can use the following shortcut to open the Omnis Components gallery: tinyurl.com/jsgallery11

JavaScript Components

The following components are available in the Component Store, arranged here in their respective groups.

Group Icon Name Description

Favorites See Favorites Contains any controls marked as Favorite

Buttons Button Control Standard pushbutton which reacts to clicks

Check Box Control Check box for on/off values

Floating Action Button A round button that pops up a list of
actions when tapped or hovered over

Radio Button Group Displays a group of radio buttons for
exclusive selection

136

/developers/resources/onlinedocs/JavaScriptSDK/01overview.html#javascript-component-sdk
04jsoncomps.html#chapter-4json-components
https://www.omnis.net/platform/#jsgallery
https://tinyurl.com/jsgallery11

Group Icon Name Description

Split Button A button with a droplist of alternative
options

Switch Control Allows on/off selection; you can specify an
icon for on/off state

Trans Button Control Interactive button with alternate hover
image

Containers Paged Pane Can contain fields & other objects on
multiple panes

Scroll Box Allows you to group other controls with the
option to display a scroll bar if the content
does not fit

Tab Pane A compound object containing a Tab bar
and Paged pane

Entry Fields Entry Field Standard edit field for data entry or display

Rich Text Editor Rich text editor allowing end users to edit
and format text

Labels Label Object Basic label object

Lists Combo Box Control Field combining entry box and droplist

Complex Grid Grid which can display all types of data and
formatting

Data Grid Control Simple grid for text and numerical data
display

Droplist Control List that drops down when clicked

List Control Standard list field for displaying list variable
data

Tile Grid Displays a scrollable grid of tiles which can
be configured to show images, text and
buttons

137

Group Icon Name Description

Tree List Control List for displaying hierarchical data or list of
options

Media Camera Control Allows the end user to capture images,
scan QR codes or barcodes

File Control Allows end users to upload or download
files

HTML Object Object to display HTML content

Picture Control Standard field for displaying images

Video Player Plays a YouTube or other hosted video

Menus Popup Menu Control A menu that pops up when clicked

Native Native List List control with platform dependent
appearance

Native Slider Slider control with platform dependent
appearance

Native Switch Switch control with platform dependent
appearance

Navigation Hyperlink Control List containing hyperlink style options

Navigation Bar Control Navigation bar with page selection

Navigation Menu Object Dropdownmenu with hierarchical options

Page Selector Allows selection of page pane using touch

Segmented Bar Navigation control with different buttons or
“segments”

Tab Bar Control Multiple tabs to control selection of page
pane

138

Group Icon Name Description

Toolbar Control Toolbar with custom buttons (icons and
text), auto overflow and optional sidemenu

Other Activity Control Animated image to display during a long
process or Omnis Server activity

Color Picker Allows the end user to select a color from a
color palette, or RGB, HSL, or HEX number

Date Picker Control Date picker with touch selection

Device Control Allows access to hardware and services on
a mobile device using the JS wrapper

Map Control Displays a Google map for specified
location(s)

Progress Bar Control Shows progress of server process or
calculation

Slider Control Slider component for setting values

Timer Control Timer object triggers an event at a
specified interval

Shapes Background Shape Object you can set to Rectangle, Line,
Triangle, or Image

Subforms Subform Control Allows you to display another remote form
class as a subform in the main form (or you
can create a subform set)

Visualization Bar Chart Control Displays a bar chart based on a list of values

Chart Control Displays different chart types including
Line, Bar, Radar, Pie, Doughnut, Polar Area,
Scatter and Bubble

Gauge Control Displays numerical values on a circular or
linear scale

139

02jsremoteforms.html#subform-sets-1

Group Icon Name Description

Pie Chart Control Displays a pie chart based on a list of values

Favorites

The Favorites group contains any components that you have marked as ‘Favorite’; it is shown initially with a Star icon and grayed out.
To add a favorite, Right-click on the icon for the component in a sub-menu and select the Favorite option. Adding components to
the Favorites groupmakes it easier or quicker for you to select any controls that you use constantly. To remove a component from the
Favorites group, right-click on the component in its original group and deselect the Favorite option.

Creating JavaScript Components

To create or add a JavaScript Component to a remote form, you need to open the Remote form in designmode. The Component Store
will open automatically docked to the left side of the Remote form editor. If for some reason the Component Store is hidden (maybe
it is undocked and behind another window), you can bring it to the top, by pressing the CStore button on the main Omnis toolbar, or
by pressing the F3 key on Windows or Cmnd-3 on macOS. The following screenshot shows a Remote form in design mode, and the
Entry fields group in the Component Store.

Figure 101:

You can configure the appearance of the Component Store by Right-clicking on it and selecting various text options from the context
menu. You can show or hide the text for the group or components, and you can select 1 or 2 column mode. You can also set the
Docking mode, either Auto, Left, Right, or No docking.

Layout breakpoints

Before adding any JavaScript components to your remote form, youmaywant to change the current Layout Breakpoint or add a new
one. A new remote formhas two breakpoints 320 and 768 pixels, and you are advised to add components to the larger breakpoint first
and then rearrange or resize the components on the smaller breakpoint (the 768 breakpoint is selected by default). You canRight-click
on the background of a remote form and choose Copy Layout From Breakpoint to copy the position and size of components from
one breakpoint to the current breakpoint.

140

Adding a new JavaScript component

To select a component, and add it to your Remote Form, you can do one of the following:

• Click on the main group icon to open the sub-menu popup, then click and drag a component icon from the sub-menu, and
drop it onto the form or window; as you drag the component out of the Component Store, the outline of the component is
shown allowing you to place it precisely in the form or window.

• Click and drag the icon shown in the main group to create a component of that type; for example, you can drag the Button
icon from the Buttons group to create a button, which is initially the default icon in that group (note the group icon/default
component will change as you select different components).

• Double-click an icon in the main group or any sub-menu popup to add a component of that type; in this case, the component
is added to the center of the form or window (double-clicking is not supported for report classes).

• Press Return to add the currently selected component to the design window (not supported for report classes).

Alternatively, you can use the keyboard to select a component:

• To use the keyboard, press F3 to put the focus on the Component Store, use the Up or Down arrow keys to select a main group,
press the Space key to open the sub-menu popup for the group, then use the Arrow keys to select a component, and press the
Return key to add the component to the center of the form or window; you can use the Esc key to deselect/close a sub-menu
popup.

Themost recently selected group is highlighted in a color, while the icon for themost recently chosen component fromany sub-menu
popup is shown as the initial/default icon for the group; therefore, as you select different components from different groups, the initial
or default icons will change. For example, if you previously chose a Combo box from the Lists group, the Combo box icon is shown in
themain Lists group, and you can then drag or double-click the Combo box icon from the Lists groupwithout opening the sub-menu
to create a Combo box in your form.

Remote Form Object Limit

You cannot place an unlimited number of objects on a Remote form class. The object limit is 8191 for a Remote form, including objects
on subforms, although in practice the limit is likely to be less due to platform limitations.

Copying Components

In design mode, you can use the standard Copy/Paste menu options in the Editmenu, or Ctrl-C and Ctrl-V keyboard options, to copy
and paste a component on the same form. Alternatively, you can hold down the Ctrl key onWindows or theAlt/Option key onmacOS,
then click and drag a component to a new position on the form to make a copy of the component.

You can also drag a component from one remote form and drop it onto another remote form to make a copy of a component (for
formswith the old kLayoutTypeScreen layout type, the formsmust be set to the same value of $screensize to copy objects in this way).

Component Properties

You can set the properties for the component using the Property Manager; if the Property Manager is hidden, press F6 on Windows
or Cmnd-6 on macOS to open it or bring it to the top. The following screen shot shows the Pie Chart example app (available in the
Hub under Samples), with the JavaScript Pie Chart component selected; the Property Manager on the right shows the properties of
the currently selected object.

$dataname for JavaScript Controls

The variable specified in the $dataname property of a JavaScript componentmust be an instance variable, or in some cases a column
in a row instance variable in the form VarName.ColumnName. The Property Manager will display an errormessage if you try to assign
an invalid $dataname property. (This applies to $dataname as well as other similar properties such as $listname which require a
variable.)

141

Figure 102:

Naming JavaScript Controls

When you create a component in your remote form, a name is generated automatically and assigned to the $name property of the
component. This is usually in the format <remoteformname>_<component-type>_<number>, such as ‘rftest_edit_1001’ for an edit
control on a remote form called rftest. However, you can enter your own name for a component whichmay better describe the object
within the context of your form; for example, an edit field to allow the end user to enter their first name could be named Firstname.
You can change $name of a component under the General tab in the Property Manager, or enter name into the Search to find the
$name property.

The name you assign to an object does not have to conform to any convention other than any conventions you may like to use in
your forms or the application to identify different objects. However, the name of a component (the value of $name) is used in the
Omnis notation and throughout your library to refer to the object. Therefore, you should not use spaces and try to use alphanumeric
characters only for object names to avoid any possible conflicts in your code. For example, an object name should not include the
dollar sign ($) since this would cause a conflict when you reference the object using the Omnis notation which prefixes property and
method names with the dollar sign.

Numeric Object Names

The PropertyManager does not allow all numeric names to be assigned to $name. The PropertyManager validates the value assigned
to $name for remote form objects (as well as remote menu, report, schema, menu, toolbar and window class objects). The validation
is applied when the name starts with a digit, and the remaining characters cannot all be a digit or the following characters “+-.”.

This is controlled by the allowNumericObjectNames item in the ‘ide’ section of config.json. You are not recommended to allow nu-
meric object names, as there can be clashes between names and idents, and notation strings of the form …$objs.[lName] (where
lName is a variable containing the name of an object) will fail to locate the object if lName is an integer, since Omnis will treat lName
as an ident rather than a name.

Using $edgefloat and Component Resizing

The “floating edge” ($edgefloat) capabilities for JavaScript components allow the components to be resized automatically when the
end user resizes their web browser window or when the layout changes on a breakpoint. The $edgefloat property can be set to one of
the kEF… constants which determines which edges of the component, if any, will “float” or reposition automatically when the browser
window is resized. The possible values for $edgefloat are:

• kEFall and kEFnone
All or no edges float

142

• kEFbottom
Bottom edge only floats

• kEFleftRight
Left and right edges float; in effect, the component floats to the right or left and does not resize

• kEFleftRightBottom
Left, right and bottom edges float

• kEFright and kEFrightBottom
Right edge only floats, or Right and bottom edges float

• kEFtopBottom
Top and bottom edges float; in effect, the component floats up or down and does not resize

• kEFrightTopBottom
Right, top and bottom edges float

• kEFcenterLeftRight, kEFcenterTopBottom, kEFcenterAll
means the Left & Right edges float, or the Top & Bottom edges float, or All edges will float, and the control will also be centered
horizontally and/or vertically within its parent

• kEFbottomAndCenterLeftRight
the bottom edge of the object will float or move up or down, while the object stays centered horizontally in the form (a combi-
nation of kEFbottom and kEFcenterLeftRight)

• kEFrightAndCenterTopBottom
the right edge of the object will float or move to the right or left, while the object stays centered vertically in the form (a combi-
nation of kEFright and kEFcenterTopBottom)

• kEFleftRightAndCenterTopBottom
the control floats with the right edge of its container, and remains centered vertically (a combination of kEFleftRight and kEF-
centerTopBottom)

• kEFtopBottomAndCenterLeftRight
the control floats with the container’s bottom edge, and remains centered horizontally (a combination of kEFtopBottom and
kEFcenterLeftRight)

• kEFposn… positioning constants
all edgefloat constants prefixed with kEFposn… will reposition the control in the specified region of the screen; as you select
one of these constants in design mode the control will snap to the chosen region, and when the form is resized at runtime the
control will “stick” to this region; the kEFposnClient constant stretches the control to fit the available area within its parent or
subform

You can store a different setting of the $edgefloat property for each component, for each different layout breakpoint. When setting
$edgefloat in the PropertyManager in designmode, you can set the value of $edgefloat for a component on all breakpoints by holding
the Control key when selecting the $edgefloat value.

The setting of $edgefloat for a component is used to resize the component (or not if set to kEFnone) when the form or container field
is resized at runtime, and when one or more of the following occurs:

• When the component is in a subform and the subform is resized (that is, its size at runtime is different to the size of the subform
class)

• When applying a different mobile device size while running in a mobile device custom wrapper

• When the component is in a resizable subform in a subform set and the subform is resized

Centering Objects

There are somekEF…contstants to control howobjects are centered relative to the remote formorparent: kEFruntimeLeftRightCenter,
kEFruntimeTopBottomCenter and kEFruntimeAllCenter. They are only applied at runtime, and in this case, their behavior is identical
to kEFleftRight, kEFtopBottom or kEFall respectively, except that the offset is divided by two, to keep an object or a number of objects
centered within the parent.

In addition, the Align context menu for the remote form editor contains options to allow you to center objects vertically, horizontally
(or both) in their parent.

143

Responsive Forms and $edgefloat

To understandwhat kind of edgefloat properties you can use, you can look at thePicsWebForm in the Pics2.lbs available in the tutorial
download (or in the ‘welcome/tutorial/final’ folder); or you could create your own remote formusing the formwizard. ThePicsWebForm
remote form was created using the SQL Remote Form wizard and uses edgefloat properties to control the floating edge behavior of
the controls. The form has two layout breakpoints, 768 and 320, and the edgefloat properties is set differently for some of the controls
on each breakpoint. The following image shows the layout for the 768 breakpoint, and the $edgefloat setting (a kEF.. constant) for
each control is shown in red.

Figure 103:

The PicsWebForm uses a Page pane containing all the data controls, e.g. Pic_Category, Pic_Name, etc; the $edgefloat property of the
Page pane is set to kEFrightBottom to ensure it stretches across to the right and down as the form is resized in a browser window or
is displayed on different sized tablet screens.

The $edgefloat property for most of the controls inside the page pane is set to kEFright, so the right edge “floats” or stretches to the
right, but the bottom edge is not resized; the ID field has no floating edges so it keeps its size. The $edgefloat property for the push
buttons on the right of the form is set to kEFleftRight (i.e. both left and right edges), which means the buttons will “float” from right
to left horizontally, but they will not resize or move vertically. The combination of all these edgefloat settings on all of the controls,
means that the push buttons keep to the right-hand edge of the browser window or device screen, while the data controls will resize
to accommodate any screen or device size. Now examine the layout for the 320 breakpoint:

The push buttons on the 320 layout breakpoint are positioned at the top of the form and their $edgefloat property is set to kEFnone,
so they will not move or resize as the form is resized. The $edgefloat property for the data controls is set to kEFright so their right
edges will stretch to accommodate different phone sizes (widths), from 320 pixels upwards.

As the form is resized, on a web browser window or is displayed on a larger device screen, the controls will resize to fill the screen, until
the next breakpoint is reached, which in this case is a screen or device width of 768 pixels, and the layout for that breakpoint is loaded.

144

Figure 104:

145

Draggable Component Borders

End users can resize some JavaScript components dynamically at runtime in their web browser by dragging the border of the com-
ponent. When the end user’s mouse is over the edge of a component that can be resized, the cursor changes to indicate that the
border can be dragged and resized.

To allow this functionality, JavaScript components have the $dragborder property, which only applies when a component has its
$edgefloat property set to one of the kEFposn… constants (other than kEFposnClient or kEFposnJoinHeaders). If $dragborder is set to
true, and you have set $edgefloat as above, the end user will be able to resize the component in the browser by dragging the border
of the component with the mouse.

You can store a different setting of the $dragborder property for each component, for each different layout breakpoint, therefore
components on the same form could be resizable for web desktop browsers and not for mobile devices. When setting $dragborder
in the Property Manager in design mode, you can set the value of $dragborder for all layout breakpoint values by holding the Control
key when selecting the $dragborder value.

The appearance of the drag border area is defined by the styles div.omnis-db-vert and div.omnis-db-horz in core.css, which can be
modified by overriding them in user.css.

Date and Time Formatting

You can set the formatting for Date and Time type data for some of the JavaScript components including Edit controls, Combo boxes,
Data grids, Droplists, Hyperlink lists and standard Lists. These components have the properties:

• $dateformatcustom
a date-time format string using the characters described below (e.g. D m y, the default); alternative formats can be provided
separated by |. If $dateformat is kFormatCustom, and the data is of type ‘Date Time’, this property is used to format the data. If
empty, it defaults to the format set using the client command ‘setcustomformat’

• $dateformat
the format used to display ‘Date Time’ data, a kJSFormat… constant as follows:

15% Format constant 85% Description

kJSFormatNone No format
kJSFormatTime Default time format for client locale
kJSFormatShortDate Default short date format for client locale
kJSFormatShortDateTime Default short date and time format for client locale
kJSFormatMediumDate Default medium date format for client locale
kJSFormatMediumDateTime Default medium date and time format for client locale
kJSFormatLongDate Default long date format for client locale
kJSFormatLongDateTime Default long date and time format for client locale
kJSFormatFullDate Default full date format for client locale
kJSFormatFullDateTime Default full date and time format for client locale
kJSFormatCustom Use the custom format in $dateformatcustom

Date formatting characters

The following standard date formatting characters are supported for $dateformatcustom:

Format character Description

A AM/PM
D day (12)
d day (12th)
E day of year (1..366)
H hour (0..23)
h hour (1..12)
M month (06)
m month (JUN)
N Minutes

146

Format character Description

n month (June)
s hundredths
S seconds
V day of week (Fri)
w day of week (Friday)
y year (1989)
Y year (89)

Some additional characters are supported for Date/Time formatting for the JavaScript Client components only, as follows:

Format character Description

j day with no leading zero (6)
P month with no leading zero (6)
K hour with no leading zero (0..23)
k hour with leading zero (1..12)
a am/pm
O timezone offset (+01:00)

The date codes are listed on the Constants tab in the Catalog (F9) under “Date codes” (some are not JS client) and “Date codes
(JavaScript Client only)”.

Date formatting and Locale

When the client connects, the server sends it the date formats, day names and month names for the client locale (the server reads
these from ICU). If you assign $ctask.$stringtablelocale in $construct of your remote task, the server sends the client the formats and
so on for the assigned $stringtablelocale locale.

Date Initialization

Local Date variables in client methods with no initial value set are initialized to an empty string, i.e. representing an empty date (from
Studio 10.22 onwards), whereas previously they were initialized to ‘undefined’. Setting a Date variable to 0 on the client now sets the
date to 31 Dec 1900, whereas previously it was set to today’s date. To set a date to today’s date, you should use #D.

Number Formatting

All JavaScript controls that can display number data have the property $numberformat, which specifies how Number and Integer
data is formatted or displayed in the control. The JavaScript controls affected include the Edit Control, Combo box, Data grid, Droplist,
Hyperlink list and standard List control. The formatting is used when the control displaying the data does not have the focus, that is,
the formatting is only applied when the end user tabs or clicks away from the number field.

The $numberformat property uses a single % format tag for the number followed by one or more elements, for example, the number
format %.2F displays a number with 2 decimal places with a thousand separator. The following elements are available (in this order):

An optional “+” sign that forces to precede the result with a plus or minus sign on numeric values. By default, only the “-” sign is used
on negative numbers.

An optional padding specifier used for padding (if padding is required). Possible values are 0 or any other character preceded by a ’.
The default is to pad with spaces.

An optional “-” sign, that causes the string to left-align the result of this placeholder. The default is to right-align the result.

An optional number that says how many characters the result should have. If the value to be returned is shorter than this number,
the result will be padded.

An optional precisionmodifier consisting of a “.” (dot) followed by a number, specifies howmany digits should be displayed for floating
point numbers. When used on a string, it causes the result to be truncated.

A type specifier that can be any of the following:

147

Type specifier Description

display a literal ” character
b display an integer as a binary number
c display an integer as the character with

that ASCII value
d display an integer as a signed decimal

number
D as above but include thousand separators
e display a float as scientific notation
u display an integer as an unsigned decimal

number
f display a float as is
F as above but include thousand separators
o display an integer as an octal number
s display character(s) after the s specifier as a

string, e.g. to display hours you could use sh
to display 5h

x display an integer as a hexadecimal
number (lower-case)

X display an integer as a hexadecimal
number (upper-case)

Decimal and Thousand Separators

Numbers will be displayed using the default decimal and thousand separators specified by the language set in the client’s browser,
so you do not need to do anything to display the correct decimal and thousand separators for a client. However, you can override the
default separators by changing the thouChar and dpChar items in the jOmnis client object: you can do this using JavaScript in the
$init method for a JavaScript form, for example:

$init method, which must be client executed
JavaScript:jOmnis.thouChar = ".";
JavaScript:jOmnis.dpChar = ",";

Autoscrolling

You can enable automatic scrolling for Edit controls, Lists, Tree lists, Hyperlink controls, Pictures and Html controls by enabling the
$autoscroll property. If this property is kTrue for the control, and the client is not a mobile device, the client automatically displays
scrollbar(s) when not all of the content in a field is visible.

Setting $autoscroll to kTrue changes $horzscroll and $vertscroll to kFalse, and in doing so means you cannot set $horzscroll and
$vertscroll. By default, $autoscroll is enabled for Edit controls, Lists and Tree lists, while for Hyperlink controls, Pictures and HTML
controls $autoscroll is set to kFalse.

Note that in addition to controlling scroll bars, Data Grids and Lists have the $vscroll and $hscroll properties which allow you to scroll
a grid or list vertically or horizontally at runtime in the client browser: the numeric value of these properties is either column or row
offset for grids, or the row number for lists.

Component Borders

The borders of JavaScript components are drawnwithin the bounds of the control, for bothWindows andmacOS, and have the same
dimensions for both platforms. The color is controlled using $bordercolor.

Most JavaScript components can have rounded borders by specifying the corner radius in pixels in the $borderradius property; for
buttons this is $buttonborderradius (single value only). To set all the corners of the object to the same radius you can enter a single
value, or to specify the radius for different corners you can use the syntax “n-n-n-n” which follows the same rules as CSS 3 rounded
border syntax. The order for the radius parameters is top-left, top-right, bottom-right, bottom-left. If bottom-left is omitted the top-
right value is used, if bottom-right is omitted the top-left value is used, if top-right is omitted the top-left value is used.

148

Control Classnames

All JavaScript controls have a base class name to allow you to control the appearance of controls using CSS, to allow you to apply a
consistent appearance for each type of JavaScript control. (Note that from Studio 10.2 onwards you can use JS Themes tomanage the
colors for controls on a remote form.)

The classnames listed below can be added to the ‘user.css’ and CSS properties applied to the classname to control the appearance of
each type of control. Note these classnames are contained in the JavaScript controls by default and if they are added to the user.css
are applied to the control automatically, that is, these classnames do not need to be included in the $cssclassname property of a
control to be applied (this property is used to apply your own custom style names, see below).

JavaScript Control Class Name Additional notes

‘Frame’ element for all controls omnis-[control]-frame
Activity Control omnis-activity
Background Control omnis-background
BarChart Control omnis-barchart
Button Control omnis-button
Checkbox Control omnis-checkbox
Combo Box Control omnis-combo The dropped list has “ctrl-drop-list”

assigned. If ($cssclassname) the opened
items list will be assigned the class of the
first class in $cssclassname suffixed with
”-dropped-list”

Complex Grid omnis-complexgrid omnis-complexgrid-header and
omnis-complexgrid-hheader for header
and horizontal header areas. Each row has
omnis-complexgrid-row and either ‘odd’ or
‘even’ depending on their line number. If
($cssclassname) the header/hheader will
have class $cssclassname+”-header” and
“-hheader”

Date Picker Control omnis-date
Data Grid Control omnis-datagrid
Droplist Control omnis-droplist The dropped list has “ctrl-drop-list”

assigned. If ($cssclassname) the opened
items list will be assigned the class of the
first class in $cssclassname+”-dropped-list”

Edit Control omnis-input
File Control omnis-file
HTML Object omnis-html
Hyperlink Control omnis-hyper
Label Object omnis-label
List Control omnis-list
Map Control omnis-map
Menu - used for context menus, popup menus and tab menus omnis-menu omnis-menu-main for containing <div>

omnis-menu-table for table <div>
omnis-menu-row for row <div>
omnis-menu-cellcheck for check or icon
element in the menu omnis-menu-celltext
for the text element
omnis-menu-cellcascade for the cascading
menu element Popup and tab menus will
implement If ($cssclassname) the opened
items list will be assigned the class of the
first class in
$cssclassname+”-opened-menu”

Native List Control omnis-nativelist
Native Slider Control omnis-nativeslider
Native Switch Control omnis-nativeswitch
Navigation Bar Control omnis-navbar

149

JavaScript Control Class Name Additional notes

Navigation Menu Object omnis-navmenu
Page Control omnis-pagectl
Paged Pane omnis-pagedpane
Picture Control omnis-picture
Popup Menu Control omnis-popup Also contains the classes from omnis-menu

as it uses this object for the menu element
of the control.

PieChart Control omnis-piechart
Progress Bar Control omnis-progress
RadioGroup Control omnis-radio
Rich Text Editor Control omnis-rich
Segmented Control omnis-segmented
Slider Control omnis-slider
Subform omnis-subform
Switch Control omnis-switch
Tab Control omnis-tabs Also contains the classes from omnis-menu

as it uses this object for the menu element
of the control.

TransButton Control omnis-trans omnis-trans-text To address text element of
a trans button.

Video Control omnis-video

For example, to add CSS styling to all the Edit controls in your remote forms you could add the following CSS to the user.css file in
the ‘html/css’ folder in themain Omnis folder: in this case, the base classname .omnis-input is used with the properties 2px solid grey
border and a 6px radius.

.omnis-input {
border: 2px solid grey;
border-radius: 6px;

}

Custom CSS Styles

You can create your own CSS classes or styles (in addition to the base class names listed above) and apply them to the objects in your
web and mobile apps, allowing you to have more control of the styling, coloring, and overall design of your apps.

CSS classes for Controls

All the JavaScript components have a property called $cssclassnamewhich allows you to apply your own CSS class to the component.
You can add the CSS classes to a file called ‘user.css’ which is located in the ‘html/css’ folder in the main Omnis Studio folder. A style
can be applied to a control by setting its $cssclassname property to the name of a style. The properties you define for each style in
user.css must be flagged as !important to override the JavaScript Client inline styles.

$cssclassname adds the classes listed above to the client element in all JavaScript controls, and adds the same classes to the frame
element with the “-frame” suffix.

When you deploy your application on the Omnis App Server, you must put your custom ‘user.css’ file in the ‘html/css’ folder on the
server.

Component Transparency

Themajority of the JavaScript components have the $alpha and $backalpha properties which allow you to set the transparency of the
foreground and background colors of the component.

150

Form Errors

It is possible to display form errors either to the right or under controls in a remote form. This makes it easier for end users to fill out
forms in your web and mobile applications by providing them with helpful tips if they make a mistake in the form. The errors appear
on the form as a text field either under a control, or to the right of a control, so you need to design your remote forms to allow space
for the error text. The style of the error text and the outer HTML of the control containing the error are controlled in CSS which you
can change if required.

Figure 105:

$errortext

All JavaScript Client controls have the $errortext property which contains the text to be displayed when there is an error in the field or
control. The initial value of $errortext when a form is constructed is empty.

The $errortext property is only supported for subform controls when they are not scrollable, i.e. when $vertscroll & $horzscroll are both
kFalse and the subform class is not responsive.

$errortextpos

The $errortextpos property specifies the position of the error text set using $errortext. The value can be one of:

• kJSErrorTextPosUnder
The error text is positioned under the control, the default.

• kJSErrorTextPosRight
The error text is positioned to the right of the control.

• kJSErrorTextPosHidden
hides the error text, so just the control outline indicates that there is an error (default is a red border). Thismight be useful where
there is limited space to display the error text in the remote form, but you still want to show the end user that there was an error

Note that Omnis stores a separate value of $errortextpos for each screen size. As a shortcut when designing a form, you can hold the
control key down when assigning $errortextpos, in order to assign the value to all screen sizes.

$errorline

$errorline is a runtime property of the JavaScript Complex Grid control, usedwhen assigning $errortext to an object in the row section
of a complex grid. The line number to which $errortext will apply.

Clearing form errors

The client command “clearerrors” allows you to clear all error text messages for the form:

Do $cinst.$clientcommand(“clearerrors")

equivalent to assigning $errortext to empty for all controls on the form which have error text.

151

Changing the appearance of error text

The following CSS classes control the appearance of the error text and border. These classes are stored in the core.css, which can be
modified by overriding them in user.css.

• div.om-error-text
This class styles the error text.

• div.om-error-border
This class styles the outer div of a control which has error text.

Field List

The Field List provides a list of all the components on a remote form, including all those controls in container fields, and is often useful
if you need to select a specific componentwhich is partly obscured or hidden in the form, or is hidden deep inside the object hierarchy.
To open the Field list, select the Field List option from the form or component context menu (Right-click to open), or press the F7 key.

Figure 106:

The currently selected component is checked in the Field list, expanding the tree nodes and scrolling the list if necessary. Conversely,
you can open the Field List and check a component name in the list to select it in the form. For example, in the following screenshot,
the Order Now button has been checked in the Field List and the corresponding control is selected in the remote form, scolling the
design screen if required to locate the control.

When the focus is on the Field List, you can use the arrow keys to navigate up and down the list and use Space bar to select a control,
as required. The Shift-Space keypress allows you to select (or deselect) multiple, discontinuous controls in the list.

The Field list can be useful if you need to select the background of a form, for example to set its properties in the Property Manager,
but the form is completely filled with components and no form background is available to click on, as can be the case for mobile
forms. To select the form in this case, you can open the Field List and check the form name at the top of the list (which will deselect

152

Figure 107:

any components), or if you click on any individual component, then shift-click it to deselect it, the focus will be returned to the form
background and its properties will be shown in the Property Manager.

Searching the Field List

The Search at the top-left of the Field List is useful if your remote form containsmany nested objects, or youwant to search for objects
with a specific prefix. The search looks for items containing the search string. The following shows all objects in the Field list containing
the string ‘prod’.

Renaming Objects in the Field List

You can rename a component or background object directly in the Field List, either using the Rename option in the Context menu,
or by clicking into the selected line, or by selecting the line and pressing Return to select the existing name. The $name property for
the object in the form is updated automatically.

When you rename an object on a remote form (using the Property Manager or Field List), Omnis searches for any properties using
the old name, and replaces them with the new name, including properties such as $arialabelledby and $linkedobject.

Component Events

Most of the JavaScript components report eventswhich you canhandle in a specialmethod called an “eventmethod”which is inserted
behind the component. The eventmethod for a componentmust be named $event. For example, when the end user clicks a button,
an evClick is generatedwhich you can trap in the $eventmethod for the button; thismethod could contain code to display amessage,
call another method or determine some other action depending on the code in the event method itself. Most of the components
contain a template $event method with a code stub for you to use as a starting point to handle the event.

Enabling Events

To report an event, the eventmust be enabled for the component. Many of the components have their events enabled by default, but
for some you may need to enable specific events in the $events property for the component.

153

Figure 108:

Figure 109:

154

To enable an event

• Select the component and open the Property Manager (press F6)

• Click on the $events property in the Property Manager to drop down the list of events for that component (the property will
show “No Events” when no events are selected)

• Check (enable) the events you wish to trigger for this component

You can select multiple objects of the same type and specify the events for all of the objects at the same time. For example, you can
select a number of check boxes and enable the evClick event under the $events property to enable the event for all the selected check
boxes.

Editing Event Methods

If you double-click a component in design mode, the Method Editor will open displaying the method for that individual component.
For componentswith events, the $eventmethodwill be shownautomatically. For example, if youdouble-click onabutton, theMethod
Editor will open displaying the $event method containing the code On evClick; you can add more code after this line to be run when
the end user clicks the button. See the example code for each component for example $event methods.

For some components, the $event method may not contain any template code including the On event command, but you can add
you own. You will need to enter the On command and select the appropriate event code (a constant beginning ev) from the Helper
window in the Code Editor.

Event Method Validation

Omnis validates the event codes you have entered when adding or editingOn event commands in the Code Editor. Therefore, Omnis
will check to see if the event code is valid for the current object, and if not, it will flag it as an error.

If the event is not specified in the $events property, Omnis will add it to $events automatically when editing amethod named $event
in a non-inherited object (Omnis displays a temporary status bar message when it does this).

You can turn off this validation using the validateEventsForOnCommand entry in themethodEditor group of config.json; set it to false
to turn off event method validation.

Standard Field Events

Most JavaScript fields or controls report the evBefore and evAfter events, which are triggeredwhen the focus is about to enter or leave
the control, respectively. Note that for edit controls, if the data does not change then an evAfter is not triggered as the focus leaves
the control.

You can use the On event command to detect events in your event handling methods, and for most controls the $event method will
contain a template event handling method into which you can add your own code. For example, in the $event method for an Edit
control you could use the following commands to detect the evBefore or evAfter event.

On evBefore
do something..

On evAfter
do something else..

Buttons and Lists

Buttons and all the list type JavaScript controls report the evClick event, as well as evBefore and evAfter; and some list types also report
the evDoubleClick event. For example, theData Grid control reports evDoubleClickwhich you could detect and initiate a search based
on the content of the grid line clicked on.

155

evAfter event queue

When an event is being executed in the JavaScript client, such as a click on a button, a transparent overlay is applied to the whole
remote form, to prevent user interaction anywhere else in the form and tomaintain theOmnis event ordering. If the user clicks on this
overlay, the click will be prevented, although most events happen almost instantaneously so in this case the overlay is not displayed.

For evAfter events that show the overlay, Omnis shows a feedback effect at the point of the click when the overlay prevents the click,
to make it clear to the user that their click was not registered. The feedback effect is a No Entry icon, with “bubble” animation, that
appears and disappears directly after the user click. In this case, the click will be queued and will fire once the overlay is removed.

Unfortunately, Firefox does not treat the active state of elements in the same way as other browsers. As such, it was not possible to
implement these changes for that browser.

Drag Border Event

All JavaScript controls report the evDragBorder which is triggered when the border is dragged – the event is reported to the control
containin the border being dragged and any that share the border area being dragged. When it is triggered it could mean that the
end user has resized the field (and therefore other fields in the same parent have resized) using the drag border.

Component Icons

Some of the JavaScript Controls, such as the Button control, allow you to add an icon to create a better appearance and UX for your
apps. Such controls that support icons have the $iconid property which allows you to specify an icon image file to be used for the
control.

You can use SVG image files for JavaScript component icons, as well as PNG image files (supported in versions prior to Studio 10.2).
You can use SVG image files in an icon set, alongside an existing icon set containing PNG files, and these will appear in the Select Icon
dialog when you assign an icon to a JS component.

In addition to single component icons, you can add notification or ‘Icon Badges’ to JS component icons to provide additional infor-
mation, such as a number count: see Icon Badges.

Selecting an icon

You can assign an icon to a JavaScript Component by setting its $iconid property in the Property Manager under the Appearance tab:
when you click on the dropdown menu for the $iconid property the Select Icon dialog opens, allowing you to select an icon image
from those available in Omnis.

When you first open the Select Icon dialog you should see the ‘material’ icon set from which you can select an icon; the 48x48 icon
size may be selected under the Size list, but you can select a different icon size, including 16x16 or 32x32, or you can set a custom size.
When specifying $iconid in the Property Manager, the id edit field allows you to enter the size of an SVG icon by entering iconid+wxh,
e.g. to set an alarm icon with a width of 22 and height of 33, you can enter alarm+22x33.

You can scroll the list of material icons to find an icon you need, or you can enter a search string into the Search box to filter the list.
For example, the following screenshot shows the 48x48 material icons and the search ‘add’.

You can add your own icons to the Select Icon dialog by adding your own icon set; see below. You should use scalable SVG icons for
your web and mobile applications, which will be displayed correctly in high definition on phones, tablets and HD monitors. In most
cases, you should add your own icon set, tailored to the unique functionality or style of your application, and for all new applications
you are advised to use SVG images for icons.

You can use the icons in the ‘studio’ icon set but these are PNG image files and may not lend themselves to your application, so you
are advised to source your own SVG icons.

IMPORTANT: You should not use any icons listed under ‘Omnispic’, ‘Userpic’, ‘#ICONS’, or ‘IPHONECONTROLS’ since these only contain
low definition or non-alpha image files and are only present for backwards compatibility for older applications.

Icon sets

SVG icon image files must be stored in an icon set, which is a sub-folder of the ‘iconsets’ folder in the main Omnis tree (do not use
the ‘icons’ folder which contains the legacy icon datafiles, such as Omnispic). Note that an icon set cannot be named ‘datafile’, ‘lib’,
‘studio’, or ‘studioide’ since those names are already in use and would cause a conflict.

156

Figure 110:

157

Figure 111:

In order to use any icons in an icon set, you need to add the icon set name to the $iconsets library preference, which is a list of icon
sets for the library. Once you have added an icon set to $iconsets for a library, the icons will appear in the Select Icon dialog, prefixed
SET. (Note this library preference was called $iconset in versions prior to Studio 10.2 and only allowed a single icon set to be used.)

Icon Search Order

Icons can potentially be stored in various locations in Omnis including the ‘studio’ icon set, as well as any icon sets you have added,
plus the various icon data files used in older versions of Omnis: this may become an issue where duplicate icon names or IDs exist
across the different locations, so Omnis employs a specific ‘icon search order’ that determines how icons are located and displayed. If
an icon with the same name or ID is included in another folder, after an icon has been found, it is ignored in subsequent folders and
an error is written to iconsetlog.txt. You should therefore avoid having the same icon names, IDs, or icon set names inmultiple folders
to avoid any potential confusion. Omnis looks in the following icon sets or datafiles in this order:

1. The icon set(s) specified in the $iconsets library preference, in the order listed in the property

2. #ICONS for the library, if used (would only be the case for older applications not using SVG or HD PNGs)

3. User icon datafiles (other than Omnispic and Userpic), if used; this is for legacy apps only

4. The ‘studio’ icon set, under the ‘iconsets’ folder

5. Omnispic or Userpic (.df1 files located in ‘icons’ folder), if used

When using a web server for deploying your web or mobile application, any icon sets used in your library must be placed in the
‘html/icons’ folder in the web server tree, even if they are in one of the other folders in the Omnis Server tree.

During SCAFgeneration (for the serverless client), theOmnis Server nowpasses all the files for all icon sets in $iconsets to the serverless
client library.

SVG Icons

SVG images are vector based and are inherently scalable, therefore a single SVG file can provide multiple sizes for icons: in practice,
an SVG icon will scale to fit the icon area available in a control, such as a button (unless you fix its size, see below). By contrast, PNG
images have a fixed size and therefore you have to create a separate image file for each icon size or resolution you wish to support
and place all the separate files in an icon set in the Omnis tree. In addition, a single SVG image will have a much smaller file size than
mulitple PNG files, giving your app a smaller footprint on the client.

On macOS, SVG icons only render in the thick client when using macOS 10.13 or later.

On Windows, SVG icons only render when using the Windows 10 Creators Update or later. In general, support for SVG in Windows is
more limited than on macOS, for example, Windows does not support classes in SVG files – read here about Windows SVG support:

https://docs.microsoft.com/en-us/windows/win32/direct2d/svg-support

Material SVG icon set

Google provides a large set of SVG icons in itsMaterial design scheme,which are issued under the Apache License Version 2.0:

(https://fonts.google.com/icons?icon.set=Material+Icons)

You are free to use these in your Omnis applications with the proper attribution in your product licensing.

158

https://docs.microsoft.com/en-us/windows/win32/direct2d/svg-support
https://fonts.google.com/icons?icon.set=Material+Icons

We have selected over 100 of the Material icons (from the “black rounded” style) and placed them in an icon set folder called ‘material’
under the ‘iconsets’ folder in the Omnis tree. The material icon set will appear in the Select Icon dialog by default, and you are free to
use these in your applications; the following screenshot shows some of the material icons, with the 16x16 size selected.

Figure 112:

These material icons have been ‘themed’ using the Omnis SVG Themer tool and therefore support JS Themes. You could download
other icons from theMaterial website and add them to this folder, if required, or create your own new iconset, and use the SVG Themer
tool if you want them to support themes (in the Tools>>Add Ons menu). See the Themed Icons section about how to theme icons.

Using SVG Icons

If a JavaScript component can support SVG icons (and most do), then the icon names of any SVG icons will appear in the Select Icon
dialog when you assign the icon via the Property Manager and the Select Icon dialog (if a component does not support SVG icons,
then they are not shown in the Select Icon dialog).

In general, SVG icons are supported by any controls that previously required an icon, including the following classes or features:

• Remote Form class components (JavaScript Client controls), including buttons, menus, toolbars, lists, tabs, check boxes

• Styled text, including styled text on reports sent to the Omnis PDF report destination

• The background icon for the main Omnis window on the Windows platform ($root.$prefs.$backgroundiconid)

• The $componenticon class property

You should note the following for JS controls only:

• Some JS controls use background-image CSS, so when using an SVG image, it will not always scale as expected if the aspect
ratio in the SVG is fixed, and the desired dimensions of the background-image do not have the same aspect ratio.

• JS Popup menu and JS Navmenu controls have hot iconid properties – in this case, the hot and equivalent non-hot iconid
properties must either both use SVG or both use PNG

159

Creating SVG Icons

You can create your own SVG icons, or you may be able to acquire a set of icons from a third-party, either paid-for or for free (subject
to the appropriate licensing). SVG image files must be saved with the .svg file extension (see naming below) and should be placed in
an icon set in the ‘iconsets’ folder in the Omnis tree, and the icon set name needs to be added to the list of icon sets in the $iconsets
preference in your library.

From our testing, we found that Adobe® Illustrator® allows you to export vector images in SVG format, and on the export to SVG
options dialog you can select the ‘Inline Style’ option to ensure classes are not used in the output SVG. There are many other image
editors that can output SVG.

SVG icon file names

The base icon ID of an SVG icon is the name of the SVG file, without the file extension, and converted to lower case, up to a maximum
of 32 characters. The naming restrictions for SVG icons are as follows:

• The base icon ID must not represent an integer (the icon ID had to be an integer for PNGs, but does not have to be for SVG
image files)

• The base icon IDmust not contain the characters + # , ; = ? (plus, hash, comma, semicolon, equals, or question mark); note + is
used to add a size restriction, see below

An icon ID or name can now be either an integer or a string, and integer icon IDs work exactly as they did before (the naming of PNG
icon images remains the same).

You cannot use the same file name with different case in an icon set folder, plus it’s always good practice to make icon IDs or names
unique across different icon sets, since the icon with the first instance of a specific icon ID or name is used.

Any errors related to the naming requirements are written to the icon set log file, which is in the folder logs/iconsets, in the data part
of the Omnis tree.

Multi-state SVG Icons

If you want to include icons for different states of a control (for example, checked, highlighted, and checked highlighted for a check
box control), you can include separate SVG files with a suffix in their name:

• _c for checked

• _h for highlighted

• _ch for checked and highlighted

For example, SVG files for a check box could include the files: checkbox.svg (for the unchecked icon), checkbox_c.svg, checkbox_h.svg
and checkbox_ch.svg (for the different states). These 4 files all result in a single icon with id ‘checkbox’, and Omnis will select the
correct SVG file according to the state of the checkbox.

Fixed and Custom Icon Sizes

An SVG icon will always expand to fit the available space within a control, but it is possible to fix or restrict the size of an icon by adding
size information to the end of the icon ID name. The size information has the syntax +<w>x<h> where <w> is the integer width and
<h> is the integer height. For example, an SVG icon ID could be any of the following:

• testsvg (unrestricted size)

• testsvg+16x16 (restricted to 16x16, for example, for a menu)

• testsvg+32x48 (restricted to 32 wide x 48 high)

160

When selecting an SVG icon, the size list includes the configured sizes from config.json, and the current size of the icon, in addition to
the standard sizes and kDefSize. There is a + button in the heading of the size list that allows you add a new size. There is an option
on the dialog to add the new size to config.json.

The ‘customSizes’ item in the ‘svg’ section of config.json allows you to add other sizes. The size list in the Select Icon dialog will show
any other sizes specified in the config.json file:

"svg": {
"customSizes": \[

"256x256",
"64x64",
"128x128"

]
}

When a custom size is selected in the size list for a full page SVG icon, in addition to the + button, there is a - button which you can use
to remove the size from the list, and optionally remove it from config.json.

Omnis uses the default width and height specified in an SVG file to determine the aspect ratio of the icon image. To obtain this,
Omnis looks for the width and height attributes of the svg element in the SVG file and uses these if present. If width and height are
not present, Omnis uses the viewBox attribute of the svg element to determine the aspect ratio. In this case, you can add a size using
the + button in the Select Icon dialog, and use the Keep Aspect Ratio option, to fix the aspect ratio.

Icons for Lists

Certain controls, such as the Icon Array, use a list column to contain an icon ID. To make use of SVG icons, this column needs to be
defined as Character. Where you use amixture of SVG icons and existing PNG icons, the icon IDs can be specified as strings or integers
as appropriate.

Icon Caching

You can control the cache size for all icon sets (using PNG and SVG icons) in config.json using the maxCachedIconSetBitmaps entry.
This is an integer, which defaults to 1000 bitmaps. If Omnis needs to create a new bitmap for an icon from an icon set, and the current
number of cached bitmaps is at this limit, Omnis will free up the least recently used bitmap.

Assigning a URL for images

When you set the $iconid of a JavaScript control you can also assign aURL. In servermethods, if the value being assigned is a character
value that contains a “/” character then Omnis treats it as a URL generated by the iconurl function (meaning that it can contain
alternative icon files for the different client resolutions, and also that the server will pick the correct icon for the client resolution).

In client methods, if the value being assigned is not an Icon ID (a literal integer or integer + icon size constant) then Omnis treats the
value as a URL generated by the iconurl function on the server, and the client picks the correct icon for its resolution.

You could generate the required URLs with iconurl() (see below) in the $construct() method of your remote form, and store them in
an instance variable list which could then be used in client executed code to assign the correct image to each object.

Image handling for tree lists

For the JavaScript Tree control, the iconid column is an iconurl column, and the $iconurlprefix property is redundant although existing
libraries that use $iconurlprefix will continue to work. Instead, the iconurl column should be defined to be of type character, and it
should be populated using a server-only function, iconurl(iconid), which returns a URL string containing the name of the image file or
a semi-colon separated list of file names if an icon exists in more than one resolution. This enables the client to pick the correct icon
for its resolution.

161

Exporting Icons from an Icon Datafile

Youmay want to use some existing icons located in an Icon Datafile and either add to or replace some of themwith higher resolution
versions. To enable you to export existing icons as separate files, there is a tool in the Tools>>Add Onsmenu, called the ‘JS Icon Export’
tool, which is available in the ‘Web Client Tools’ dialog (scroll to the bottom of the list of Web Client tools). The ‘JS Icon Export’ tool
will export all the icons in a selected Icon Datafile and place them in a folder in the ‘iconsets’ folder, applying the correct image file
names. The $iconid property of a control will now reference the external image file in the icon set and not the icon datafile image,
since Omnis looks in the iconset folder for the library before any icon datafiles. The Icon Export tool will only export icon images that
support Alpha, i.e. the icon page containing the existing icon(s) must be set to Alpha.

Icons Folder Name

Apache often redirects a URL with “/icons/” to the /usr/share/apache2/icons folder, and you would then need to place all the icons for
your app in that folder. Therefore, if you deploy your web ormobile app to an Apache server, youmaywant to rename the ‘icons’ folder
in Omnis by editing (adding) an entry in the Omnis configuration file (config.json). The “iconsFolder”:“omnis_icons” configuration item
in the server group of config.json defaults to “icons” if omitted or is empty, so you can change the name by adding your own value. You
are recommended to use the same value for development and runtime, since the folder name is stored in the HTML for each remote
form class.

PNG Icons

From Studio 10.2 onwards, you are advised to use SVG images for component icons, although you can still use PNG images. In this
case, you should create PNG image files that are 16x16, 32x32, or 48x48 pixels either at a standard pixel density suitable for displaying
on standard monitors, or image files that are 1.5 and 2 times the size, suitable for displaying on phones and other HD devices. When
your app is displayed on different devices and screen resolutions, Omnis will display the correct icon size and resolution.

PNG Image File names

Each PNG image file within an icon set must conform to the following naming convention:

<text>_<id>_<size>_<state>_<resolution>.png

• <text> is a string, i.e. the name of image, which must not contain underscore. This string is used in the icon picker dialog when
you set an object’s $iconid in the Property Manager so it should describe the icon. Icon files that are the same image, but
different resolutions should have exactly the same <text> name.

• <id> is the positive integer id to be used as the icon id. It can be in the range 1 to 10000000. Icon files that are the same image,
but different resolutions should have exactly the same <id>.

• <size> is the CSS pixel size of the image, i.e. the resolution independent size of the image, meaning that for all resolutions of the
same image this has the same value.

The value of <size> has the form <width>x<height>, where the values 16x16, 32x32 and 48x48 are special values since they correspond
to the standard icon sizes supported by Omnis.

• <resolution> is the factor by which the pixel density is greater than a standard monitor and is one of the following:
“_2x” for HD devices such as the Retina display
“_15x” for some devices e.g. certain Android phones that have a 1.5x pixel density.
an empty string is the default and is for standard resolution devices, equivalent to _1x

Any files (or folder names) that do not conform to the naming conventions are ignored.

Note that the image file names are case insensitive and they must be unique across all platforms and file systems (that is the case of
file names is ignored).

If you are unsure about the file naming for PNG icons, you can examine the icons in the ‘iconsets/studioide’ folder.

162

PNG Check Boxes Icons

You can use PNG images for check box and radio button icons, using the following naming:

• <state> is the checked, highlighted, or normal state of the icon for multi-state icons and can be one of the following:
an empty string for the normal state of the icon
“c” is the checked state of the icon
“h” is the highlighted state of the icon
“x” is the checked highlighted state of the icon

PNG Image Scaling

You do not have to create an icon PNG image for all resolutions, although it would be advisable to do this for the best appearance.
Omniswill use an icon image closest to the resolution being referenced, scaling as appropriate, and aswith all image scaling it is better
to force Omnis to scale an image down rather than scale it up. In this case, you may like to provide the highest possible resolution
image for your icons and allow Omnis to scale the images down to display an icon for lower resolutions, but the scaling may produce
unexpected results.

When the JavaScript Client connects, it sends its resolution to the Omnis App Server. This allows the server to use the appropriate
icon when setting iconid properties in server methods.

Non-standard PNG image sizes

You can create PNG images with a size other than the standard sizes (16x16, 32x32, 48x48) by creating the image at a non-standard
size and including the image size in the file name when the file is saved. For example, you can create an image 100x200 pixels and
name it something like “mygraphic_1688_100x200.png”, and you can create a high resolution version at 200x400 pixels and name it
“mygraphic_1688_100x200_2x.png”. (This is the equivalent of an ‘Icon Page’ in older versions of Omnins.)

Icon Data files and #ICONS

NOTE TO EXISTING USERS: The method of storing icons in #ICONS or an Icon data file (such as Omnispic) and assigning the numeric
Icon ID ($iconid) to controls will continue to work, but this is only useful for icon images that are 16x16 pixel (or 32x32 for high def). In
this case, if you run your application on an HD display and your library uses an icon data file or #ICONS, Omnis will try to use a 32x32
icon (if it exists and the icon page is marked as containing 32x32 icons), in place of the corresponding 16x16 icon. If a 32x32 image does
not exist in your icon data file or #ICONS, the existing 16x16 imagewill be usedwhichmay have a very poor visual appearance on newer
screens and devices. In order to support high definition 16x16 icons you will need to create a new version of each image at 32x32 pixels
and import each one into the icon data file or #ICONS into the 32x32 section on the same icon page using the same icon IDs.

If you have used 32x32 or 48x48 pixel icons in your libraries (in #ICONS or an Icon data file), and youwish to display themonHDdisplays,
then you will need to adopt the use of icon sets, which support icon images up to 96x96 pixels, that is, 2x the largest 48x48 icon size.
Note that icons in an icon set will take precedence over icons in #ICONS, Omnispic or Userpic in the icon search order.

Icon Badges

You can add notification badges or ‘Icon Badges’ to JavaScript component icons to provide additional information, such as a number
count, or to alert the end user, in order to enhance the UI in your applications. (Note you can also apply icon badges to Window class
component icons.)

Icon badges are additional icons or notifications that can be added to any JavaScript component icon, that is, a badge can be added to
any control that supports icons, such as Push buttons, Toolbar buttons, Menu items, or Tab bar tabs. The following screenshot shows
some examples, including button icons, toolbar icons, and tabbar icons.

Whenassigning to$iconid for a JavaScript component, you canuse the iconidwithbadge() function to assignan iconbadgeor number
count notification and its properties. Therefore, when an icon ID uses an SVG icon name, iconidwithbadge() allows you to append
additional values to the SVG name to define a badge to be added to the main icon. The syntax is:

iconidwithbadge(svgIcn, count_or_secondary_icon [, badge_options, backcolor, icontextcolor])

The parameters are:

163

Figure 113:

• svgIcn
the ID of the primary icon for the object / toolbar object

• count_or_secondary_icon
the count to be displayed on the badge, or the ID of a smaller secondary icon

• badge_option
kIconBadgeAlignTop, kIconBadgeAlignBottom, or the default is the position set by the OS, also kIconBadgeBackgroundHide,
see below.

• backcolor
the color of the badge, the default is kJSThemeColorSecondary

• icontextcolor
the color of the count, or secondary icon, the default is kJSThemeColorSecondaryText

For example, the following lines of code set up icon badges for buttons:

Do $cinst.$objs.button.$iconid.$assign(iconidwithbadge(‘tablet_mac’, 9))
Do $cinst.$objs.button.$iconid.$assign(iconidwithbadge(‘tablet_mac+32x32’, 9))
Do $cinst.$objs.button.$iconid.$assign(iconidwithbadge(‘tablet_mac’, 99, 0, kDarkGreen, kWhite))

Some Omnis objects used fixed icon sizes, such as menu items or tabbar tabs, therefore when applying a badge to these objects you
cannot supply an icon size for the primary icon as the size will be fixed by the object, for example:

Do $imenus.NewMenu.$objs.Item.$iconid.$assign(iconidwithbadge(‘tablet_mac’, 9))

Whenusing iconidwithbadge() in a client-executedmethod, the SVGparametersmust beURLs, which can be generatedwith iconurl()
in server-executed code.

The default icon badge background colour is kJSThemeColorSecondary, while the count or secondary icon is kJSThemeColorSec-
ondaryText (for window class controls the colors are the standard OS colors).

Badge Options

The constants kIconBadgeAlignTop and kIconBadgeAlignBottom can be used in the badge_option parameter in iconidwithbadge()
to specify the position of the badge. Omitting this or passing 0, Omnis will use the default position for the OS – by default, macOS will
draw a badge at the top right of an icon, and Windows at the bottom right.

The constant kIconBadgeBackgroundHide allows you to hide the default colored circle badge when used with a secondary icon. If
the badge has a count and not an icon, the badge background is always drawn and this option ignored. For example:

$iconid.$assign(iconidwithbadge('tablet_mac', 'star', kBadgeIconHideBackground, kDefault, kRed))

164

Tab panes and Tab strips

To set an icon badge on a tab pane or tab strip, you can use a newmethod $settabinfo() – this allows you to alter a tab name or icon
at runtime without first changing the current tab. The syntax is:

$settabinfo(** *tabnumber*, *caption*, *icon*)

The parameters are:

• tabnumber
a valid tab from 1 to $tabcount

• caption
the new tab caption or empty to leave caption untouched

• icon
the icon for the tab; you can use iconidwithbadge()

The new iconidwithbadge() function can be used to specify the icon badge. For example:

Do $cinst.$objs.tabpaneorstrip.$settabinfo(1, '', iconidwithbadge('tablet_mac', 1))

Component Fonts

The font for all JS controls is set using the $fontproperty. TheRoboto Flex font is thedefault font for all JS components (in new libraries),
including Entry fields and labels. Roboto is a Google font and included in the folder html/fonts; its use is subject to the Apache License
Version 2.0: https://www.apache.org/licenses/LICENSE-2.0

The “system-ui” font is also available for most controls and uses the Operating System’s default font, so changes between platforms.
This may be useful if you are designing a mobile app to run in the wrappers, giving your app a more native look.

The $fontstyle and $fontsize properties sets the font style or weight, and font size, respectively. This includes semi-bold (kSemiBold)
if the font supports it (Roboto does). Using both kBold and kSemiBold causes an extra bold font style to be used.

Drag and Drop Data

Drag and drop for the JavaScript Client provides the ability for end users to drag data from one JavaScript control in a remote form,
and drop that data onto another JavaScript control. In addition, end users can drag files from their desktop and drop them onto a
JavaScript control within a remote form displayed in their web browser.

IMPORTANTNOTE: Support for drag and drop in JavaScript remote forms is limited to desktop browsers only, including Chrome, Edge,
Firefox, IE 11, and Safari – drag and drop is not supported in mobile browsers. Also note drag and drop only applies from one control to
another control, or a file onto a control – you cannot drag data to or from a remote form.

To drag and drop some data, the end user can click and hold down the pointer over a JavaScript control on a remote form, then drag
the highlighted control onto another control and release the pointer when the target control is highlighted. To enable drag and drop,
you have to set various properties in the source and target JavaScript controls, and handle various events in each control as the drag
and drop events occur.

Existing users should note that the event constants and their parameters work in a very similarmanner to those for the drag and drop
mechanism in the thick client, with the addition of the pDropId parameter which identifies the area of a control over which the drop
is to occur (see under Events).

Example Library

There is an example library demonstrating how you can drag and drop images between JavaScript controls, and the library allows
image files to be dropped onto a control from the desktop. The example library is called Drag andDrop and is available in the Samples
section in the Hub in the Studio Browser, in the JavaScript Component Gallery.

165

https://www.apache.org/licenses/LICENSE-2.0
https://bit.ly/OmnisJSGallery

Dragging Data

Dragging data is limited to certain data-bound JavaScript controls and is not possible for all types of JavaScript controls. JavaScript
client controls that support dragging data will have the $dragmode property. This can be set to either kNoDragging or kDragData.

Note that the $dragiconid property used in the thick client is not supported for drag and drop in the JavaScript client, for a number
of technical limitations in various browsers. The dragged image is typically an image of the dragged element created by the browser,
using the content of the element when the drag starts – the client performs various temporary adjustments to the element to make
the dragged image correspond to the dragged data as appropriate.

Dropping Data

A drop can occur on any JavaScript control, but remotes forms do not accept drops. You can specify that a control can accept dropped
data by setting its $dropmode property. When a control can accept somedata, the JavaScript client highlights the destination control.
For JavaScript client controls, $dropmode can be one of the following constants:

• kAcceptControl
Data from a JavaScript client control can be dropped onto this control.

• kAcceptFiles
Files dragged from the system (desktop) can be dropped onto this control; this would allow you to upload the file, for example,
which is described in Dragging and Dropping Files

In addition, the list, tree list and data grid controls have the $hiliteline property, indicating that data can be dropped on a specific list
line or tree node rather than the entire control. This also means that rather than highlighting the entire control, the client highlights
the current destination line or node when a drop can occur.

Scrolling

When the end user is dragging data, they can scroll a destination control vertically by placing and holding the pointer near the bottom
or top of the control. This is useful with long lists, grids or tree controls, when the $hiliteline property is enabled.

Events

In order to process a drag and drop procedure, you have to handle some events in the $eventmethod in the source and target controls.
The drag and drop events must be enabled as required in the $events property for a control.

evDrag

The client sends evDrag when the user attempts to start a drag. evDrag must be executed in a client-executed $event method, and
it has the following event parameters:

Parameter Description

pDragType Always set to the value kDragData
pDragValue Described in the Drag Values section below

If you use Quit event handler (discard event) during evDrag, you prevent the drag from starting.

Since it is not always convenient to mark $event for a control as client-executed, the client provides an alternative mechanism. You
can implement a client-executed method named $drag for the object, with two parameters (type Var): pDragType and pDragValue.
$drag returns true if the drag is allowed, false if not.

The client first attempts to call $drag. If $drag exists and returns true or false, then the drag starts or is not allowed to start respectively.
If $drag does not exist, or does not return a value, Omnis sends evDrag if it is selected to execute in $events, and if $event is client-
executed.

The drag will only fail to start if $drag executed and returned false, or if evDrag was sent and discarded by Quit event handler.

Data grids, lists and tree controls may select a line or node when the drag starts. This will result in a click event being sent just before
$drag is called or evDrag is sent. If the click is sent to the server, it will execute in parallel with evDrag or $drag.

166

evDragFinished

The client sends evDragFinished when the user has finished a drag (released the pointer). It has no event-specific parameters. ev-
DragFinished can be server or client executed.

evCanDrop

The client sends evCanDrop when the pointer is over a control that can accept a drop of the current drag type (kDragData or kDrag-
Files). evCanDrop must be executed in a client-executed $event method, and it has the following event parameters:

Parameter Description

pDragType kDragData if data is being dragged
from a control, or kDragFiles if a file or
files are being dragged from the
system

pDragValue Described in the Drag Values section
below. Note that if pDragType is
kDragFiles, this is empty during
evCanDrop, since information about
the files being dragged is not
provided by the browser

pDragField If pDragType is kDragData, this
contains the name of the field from
which data is being dragged. If
pDragType is kDragFiles, this is empty.

pDropId The identifier of the area of the control
over which the drop is to occur. Either
a line number or ident (when
$hiliteline is true), or zero if the control
is not list-based (or $hiliteline is false).

If youuseQuit event handler (discard event) during evCanDrop, youprevent a dropon to the current control andpDropId combination.

Since it is not always convenient tomark $event as client-executed, the client provides an alternativemechanism. You can implement
a client-executed method named $candrop for the object, with four parameters (type Var): pDragType, pDragValue, pDragField and
pDropId. $candrop returns true if the drop is allowed, false if not.

If pDragField=$cobj.$name
Quit method kFalse

End If

The client first attempts to call $candrop. If $candrop exists and returns true or false, then the drop is allowed or not allowed respec-
tively. If $candrop does not exist, or does not return a value, Omnis sends evCanDrop if it is selected to execute in $events, and if
$event is client-executed.

The drop will only be denied if $candrop executed and returned false, or if evCanDrop was sent and discarded by Quit event handler.

evWillDrop

The client sends evWillDropwhen a drop occurs over a control and drop id combination for whichwhich a drop is allowed according to
the can drop processing. The client sends evWillDrop to the control being dragged - therefore, evWillDrop is not sent when dragging
files from the system. evWillDrop can be server or client executed. It has the following event parameters:

Parameter Desciption

pDragType kDragData
pDragValue Described in the Drag Values section

below.

167

Parameter Desciption

pDropField The name of the control where the
data is being dropped.

pDropId The identifier of the area of the control
over which the drop is occurring.
Either a line number or ident (when
$hiliteline is true), or zero if the control
is not list-based (or $hiliteline is false).

Quit event handler with discard event has no effect on evWillDrop.

evDrop

The client sends evDrop when a drop occurs over a control and drop id combination for which a drop is allowed according to the can
drop processing. evDrop can be server or client executed. It has the following event parameters:

Parameter Description

pDragType kDragData if data is being dragged
from a control, or kDragFiles if a file
or files are being dragged from the
system.

pDragValue Described in the Drag Values
section below.

pDragField If pDragType is kDragData, this
contains the name of the field from
which data is being dragged. If
pDragType is kDragFiles, this is
empty.

pDropId The identifier of the area of the
control over which the drop is
occurring. Either a line number or
ident (when $hiliteline is true), or
zero if the control is not list-based
(or $hiliteline is false).

Quit event handler with discard event has no effect on evDrop.

The following $event method is behind an image control and processes the dropped data (this is available in the example library).

On evDrop
If pDragType=kDragData

If pDragField='LeftImage'
Calculate iLeftImage as iRightImage
pDragValue is base64, convert to binary for consistancy
Calculate lBase64 as mid(pDragValue,pos(',',pDragValue)+1)
Calculate iRightImage as binfrombase64(lBase64)

End If
Else
Calculate lLine as 1
pDragValue can contain many lines use first file only
Calculate iRightImageIdent as pDragValue.[lLine].4
Do $cinst.$clientcommand(

'readfile',row(iRightImageIdent,'iReadFileBin',kTrue))
readfile is a client command - see below

End If

168

Drag Values

This section describes both the controls for which data can be dragged, and the drag values generated for each drag.

Combo box

pDragValue is the selected text dragged from the current selection in the entry field component of the combo box. To drag text, you
must click and hold the pointer somewhere in the selection before dragging.

Data grid

pDragValue is a list. For a single select data grid, the list has one line, containing the list line being dragged. For amultiple select data
grid, the list contains the selected lines being dragged.

Entry

pDragValue is the selected text dragged from the current selection in the entry field. To drag text, youmust click and hold the pointer
somewhere in the selection before dragging.

List

pDragValue is a list containing the list line being dragged.

Picture

pDragValue is a character string containing the URL of the picture being dragged. If the picture is populated using a variable and
$mediatype, the URL is a data URL.

Rich text

pDragValue is the selected text dragged from the current selection in the entry field component of the rich text control; note that this
is the plain text without any formatting. To drag text, youmust click and hold the pointer somewhere in the selection before dragging.

Tree

The tree only supports dragging when it is in dynamic mode (i.e. when $datamode has the value kKSTreeDynamicLoad). pDragValue
is a row containing information about the node being dragged. The row has 3 columns:

Column Description

ident The ident of the node
tag The tag of the node (a character string)
text The node text

If the $hiliteline property is kTrue for a tree control, and the dropmode indicates that the tree is a potential drop target, the client will
expand a node when the pointer enters it while dragging.

Tab control

The tab control contains some special logic that allows you to switch tabs while dragging, if this is the functionality you require. For
can drop, it sets pDropId to the tab number of the tab under the pointer (or it sets pDropId to the current tab number if the pointer
is over an area of the control which is not a tab). To switch tabs, implement a client-executed $candrop method for the tab control
which executes:

Calculate $cobj.$currenttab as pDropId
Quit method kFalse

169

Dragging and Dropping Files

In addition to dragging and dropping data from one control to another, end users can drag files from their desktop and drop them
onto a JavaScript control in a remote form in their browser. There are two client commands that allow you to process dropped files,
using the $clientcommandmethod.

closefile

The client records file idents (and their JavaScript File objects) in a table. Use closefile to remove the table entry and release resources.
You should really do this for every ident passed in the drag value to evDrop, unless you use readfile which removes the table entry after
reading the file.

The row passed to the “closefile” $clientcommand has a single column, which is the ident of the file to remove from the table. If you
pass a row where the ident is zero, the client removes all entries from the table.

readfile

The readfile client command allows you to read the contents of a file identified by its ident. After attempting to read the file, the client
removes the ident from the table, so a call to closefile is not required.

The row passed to readfile has the following structure:

row(ident,instance variable name,base64)

The columns are as follows:

Column Description

ident The ident of the file
instance variable name The name of an instance variable in

the form used to call $clientcommand,
that will receive the contents of the
file. Note that this is a character string
containing the instance variable
name, not the instance variable itself

base64 A Boolean. If true, the file is read as
base64; otherwise the file is read as
text

The JavaScript FileReader which the client uses to read the file operates asynchronously, so a call to readfile starts the file reading
process. When the file read is complete, the client calls the client-executedmethod $filereadcomplete in the form used to call $client-
command. $filereadcomplete has two parameters:

Parameter Description

ident The ident of the file.
error text Empty if the file was read successfully,

meaning that the named instance
variable has been populated with the
file contents (either as text or
base64-encoded text). If not empty,
some text describing why the file read
failed.

Files dragged from system

For file dragging, pDragValue is only populated for evDrop. It is a list of the files dragged from the system, with columns defined as
follows:

170

Column Description

name The file name. Note this is just a
name, not the path to the file.

type The MIME type of the file if this
was determined by the browser
before passing it to the drop
event.

size The size of the file in bytes.
ident An integer, unique in the context

of the client, that identifies this
dropped file. You can use this with
the client commands described in
the later section about processing
files.

Drag and Drop for Thick Client

evCanDrop, evWillDrop and evDrop for the thick client have the pDropId parameter. This is significant when $hiliteline for the control
is true, and contains the id of the location in the control where the drop would occur or is occurring, e.g. the list line for a list.

Copying data

The end user can copy data in any control and the content can be returned via a client executedmethod called “$clipboardcopy”. For
example, the end user can copy selected rows in a data grid and the content can be returned as tab-separated values. In this case,
you can add a $clipboardcopy client method to the grid control to handle the clipboard content. The method can return character
data or a list. If it is a list, column 1 must be the MIME type and column 2 must be the content. For example:

$clipboardcopy client method
Do lList.$define(lMime,lContent)
Do lList.$add("text/plain","Copy this as plain text")
Do lList.$add("text/html","Copy this as <u>HTML</u> instead")
Quit method lList

Side Panels

A Side Panel is a vertical panel that can be displayed down the left or right side of a remote form (like a sidebar), containing clickable
options, such as a menu of options or other content. Side panels are a common UI element in dashboard style designs and allow you
to create a more interactive UI for your web & mobile apps. Note that there is not a separate side panel component, instead many
existing JavaScript controls can be marked as a side panel by setting the $sidepanel property of the control to kTrue.

A Side Panel will pop out on the left or right side of a form automatically,when the end user hovers their pointer over the left or right
edge of the form. Alternatively, a side panel can be opened and closed manually using a button. When a side panel is opened it is
animated, so when activated, it will slide in or out.

In practice, it would normallymake sense to use a container object, such as a Paged pane, Subform, or Scroll Box as a side panel since
you can then add other controls to the container which the end user can interact with. Alternatively, a Tree list could be switched to
a side panel which would function as a Navigation bar for your web app.

There is an example app called JS Side Panels under the Samples option in the Hub in the Studio Browser, that demonstrates the
basic behavior of side panels.

Panel Mode Property

The $sidepanelmode property determines the panel mode, that is, how or when the panel is popped out; the mode is set using a
kSidePanelMode… constant, as follows:

• kSidePanelModeNone
the default mode meaning the side panel will not pop out automatically when the end user hovers over the edge of the form,
but the $showpanel method can be used to show the side panel (e.g. executed behind a button)

171

Figure 114:

172

• kSidePanelModePush
the side panel pops out automatically when the end user hovers over the edge of the form and “pushes” or moves the other
controls and content on the remote form either to the right or left

• kSidePanelModeCover
the side panel pops out automatically when the end user hovers over the edge of the form and “covers” the other form content,
i.e. the panel is placed over the top of the other controls and content on the remote form

Panel Mode Method

You can use the $showpanel()method to showor hide a side panel, when $sidepanelmode = kSidePanelModeNone; themethodmust
be executed on the client.

• $showpanel(iAction, [iMode=kSidePanelModeAuto])
Performs an action (iAction) on a side panel object, one of the following:
kSidePanelActionHide hides the side panel.
kSidePanelActionShow shows the side panel.
kSidePanelActionToggle either hides or shows the side panel depending on its current state.
The panel mode (iMode) is optional and only applies when iAction is kSidePanelActionShow; if omitted, the default is kSidePan-
elModeAuto which uses the setting in the $sidepanelmode property, either kSidePanelModePush or kSidePanelModeCover

For example, you could set the $sidepanelmode property to kSidePanelModeNone (i.e. the panel will not pop out automatically), and
use the $showpanel() method behind a button to pop it out, as follows:

On evClick ## set to execute on client
Do $cinst.$objs.panel.$showpanel(kSidePanelActionToggle,kSidePanelModePush)

Events

The following events are reported by a component when it is enabled as a side panel.

Event Description

evWillShow Sent at the start of the animation when the side panel is about to open
evShown Sent at the end of the animation when the side panel has finished opening
evWillHide Sent at the start of the animation when the side panel is about to close
evHidden Sent at the end of the animation when the side panel has finished closing

evWillShow and evWillHide can only be executed on the client. This is so the events can be discarded, if required, which will prevent
the panel from being shown or hidden.

Tab Order

The $order component property determines the Tab Order for the controls within a remote form, that is, the order in which remote
form controls receive the focus as you press the Tab key. The value of $order for each control is assigned automatically as you add
controls to a form in designmode, starting at 1 and increasing by 1 for each control (note the $order values do not change if youmove
or rearrange the controls on the form). You can change the $order value of a control to change its tab order: when you change the
value of one control, the $order value of other controls on the form will be adjusted in sequence automatically.

When you tab into a container, such as a page pane, the tab order takes you through all of the fields in the container, before tabbing
out of the container.

The $startfield remote form property specifies which field in a remote formwill get the focus when the form is opened, overriding the
control with its $order property set to 1; $startfield takes the field number as specified in the $order property of the control. Note this
property may have an impact on accessibility, insofar as the field specified in $startfield may not be the first field on the form, thereby
going against most accessibility practice.

173

Remove from Tab Order

The $removefromtaborder property allows you to remove a control from the tab order. If $removefromtaborder is true, the control is
not included in the tab order for the remote form, except for Complex grids which cannot be removed from the tab order. If a control
does not have this property, it is always excluded from the tab order, i.e. it cannot be tabbed to.

Design tab order

All JS components have a $taborder read-only property in design mode which shows the resolved tab order within the form, taking
into account container fields, such as paged panes or complex grids. The context menu on a remote form has a “Show $taborder”
option, so that you can see the value of $taborder for all controls on the form. You can still alter the tab order of the controls in a form
by modifying $order for each control.

Next Tab Object

All JS components have the $nexttabobject property which allows you to override the default tab order, set by the $order property for
all the controls in a remote form. The$nexttabobject property allows you to specify thename ($name) of the control youwant the focus
to jump to after the current object, overriding the tab order set by $order. You can specify the row when setting the $nexttabobject
property to a complex grid child.

You should not overuse this property, as it does incur some overhead by setting up additional event listeners.

Accessibility

Omnis Studio supports the Web Content Accessibility Guidelines (WCAG 2.0) which will help to make your applications more acces-
sible, primarily for people with disabilities. These guidelines have been adopted by many government agencies and guarantee an
acceptable level of access to information and services via websites and applications for people with disabilities. You can read the
following pages to gain a basic understanding of the WCAG requirements:

https://www.w3.org/WAI/standards-guidelines/

The WCAG implementation in Omnis Studio calls on the ARIA specification, which according to W3.org is “Accessible Rich Internet
Applications (ARIA) defines a way to make Web content and Web applications more accessible to people with disabilities. It espe-
cially helps with dynamic content and advanced user interface controls developed with [various web technologies],” which includes
technologies such as the JavaScript Client in Omnis Studio.

In practice, most JavaScript components have ARIA compliant properties which you can use in your web andmobile apps to support
end users with disabilities. These properties will be read automatically when the screen reader capabilities are enabled in the end
user’s browser or mobile device.

ARIA Properties

Most JavaScript controls have a set of basic ARIA and other accessibility properties which are interpreted by the screen reader in the
browser. The ARIA properties in Omnis map closely to their equivalent ARIA attributes in HTML.

Several of the JavaScript controls have the following ARIA properties, while some other controls have additional properties (listed
below). These properties are designed to work in a similar way as their equivalent ARIA attributes in HTML.

• $arialabel
the text for the aria label, which is used when a text label is not visible on the form. If there is a label for the control, use the
$arialabelledby property instead

• $arialabelledby
the name of a control to act as a label for this control; for example, you could enter the name of a label object to link it to the
control. A value in $arialabelledby will override the value in $arialabel; you can use a comma separated list of controls to assign
multiple controls as labels for the component

• $ariadescribedby
the name of a control used to describe this control: similar to $arialabelledby, but could be used to providemore information or
a longer description about the control; you can use a comma separated list of controls to assign multiple controls as labels

174

https://www.w3.org/WAI/standards-guidelines/

In versions prior to Studio 11, $arialabelledby and $ariadescribedby took a space separated list of controls. When converting libraries
from 10.2 or earlier, or importing a library from JSON, spaces in $arialabelledby and $ariadescribedby will be replaced with commas.

You should note that JavaScript controls nowhave an $active propertywhichworks alongside $enabled allowing you tomake controls
active, inactive, enabled, or disabled, which helps you control accessibility and tab order in your remote forms.

Image Based Controls

You can assign an Alt text value to image-based controls, such as Picture and Activity, using the $alttext property:

• $alttext
a short text to describe the appearance or function of an image, and equivalent to the “alt” attribute in HTML; this property is
relevant for controls that contain an image or have a significant visual appearance, such as the Picture and Activity controls.

Page Panes and Landmarks

So-called “Landmark Roles” in standard accessibility guidelines allow you to identify different areas of a form to allow screen readers to
describe the structure of thepage to endusers. You candefine Landmarks in your JS remote formsusingPagepanes andby assigning
the appropriate value to the $landmark property for each pane: the options for $landmark correspond to the same keywords used for
landmarks in the accessibility guidelines (Main, Navigation, Banner).

• $landmark
specifies a role to make the page pane an ARIA landmark region, a kLandmark… constant with kLandmarkNone as the default.

The Landmark options are:

Landmark option Description

kLandmarkMain A “Main” landmark which identifies
the primary content of the remote
form

kLandmarkNavigation A “Navigation” landmark which
identifies an area containing
navigation type control or list of links
used for navigation

kLandmarkBanner A “Banner” landmark which identifies
an area usually at the top of the form,
possibly containing logo, company or
application name and search box

kLandmarkContentinfo A “Contentinfo” landmark which
typically identifies common
information at the bottom of a form

kLandmarkComplementary A “Complementary” landmark which
many contain supplementary
information or further links, such as a
sidebar

kLandmarkForm A “Form” landmark which identifies
an area containing a number of input
controls or other form controls

kLandmarkSearch A “Search” landmark which typically
would contain a Search field and
button

kLandmarkNone No landmark definition

Label controls

You can link a Label control to a specific Edit control, or you can tag a label as one of the HTML header types, using the following
properties:

175

• $labelfor
links a label to a control. If you use this with some controls such as the Edit control, the linked control will get the focus if the
label is clicked. It can be used in addition to $arialabelledby.

• $tagtype
can be used to set a label’s HTML tag type to one of the header types (<h1> etc.) which would allow the end user to navigate to
different sections of a form: the default value is kJSLabelTypeLabel, which is a standard untagged label, and the other values
include H1 to H6 for the header types.

Control text

If a control has some text assigned (e.g. a button), the screen readerwill read out the text by default, therefore it is not always necessary
to assign the ARIA properties to describe such controls. For example, the text for a Button control will be read by the screen reader, if
no ARIA properties are specified, however the value in $text will be overridden if you specify $arialabel or $arialabelledby.

Content tips

The Edit control has the $::contenttip property which is a text string which is displayed in the edit field when it is empty and before the
end user has entered any text. This can be used in addition to the ARIA label properties, to help label the edit controls on your forms:
note it is good practice to add labels to all the edit controls on your form to help with accessibility, so do not rely solely on content tips
to describe edit controls.

Keyboard Accessibility

As well as the ARIA properties, the behavior when using various keys to navigate a remote form, or inside more complex controls, has
been improved. For example, when the end user presses the Tab key, the focus will jump from one control to another in a remote
(web) form, or for complex items such as a Tab bar, the Tab key will put the focus inside the control and the arrow keys can be used to
move from one element to another. In addition, the Arrow keys can be used to interact with controls, such as dropdownmenus, while
Enter and Spacebar can be used to select options or items. The Page Up/Down keys can be used to scroll a form or long list which has
the focus.

The following table summarizes what keys end users can use in which JS remote form controls:

Key Action Applies to which controls

Tab Tab to next field (previous
with Shift + Tab)

All controls. More complex controls such as datagrid and complex grid will tab to the next
field within the control while editing

Arrow Keys Move within list a control List based controls such as List, Droplist, Combo box, Datagrid and Datepickers
Page Up Page Down Move by multiple lines up or

down
List based controls such as List, Droplist, Combo box, Datagrid, Complex Grid

Home End Move to the start or end of a
list

List based controls. Complex grid requires Ctrl to be pressed

Ctrl + [Ctrl +] Move to next/previous in
more complex controls

Complex grid: move to next/previous line Subform sets: move to next/previous subform in
set

Accessibility and tabbing order

For increased accessibility in your applications, you should carefully consider the tab order of the controls in your forms. In general, it
is good practice to make the tab order run consecutively, that is, from one control to the next in a logical order: this could be from left
to right starting at the top of the form, but the exact order may depend on the specific functions of your app. The tabbing order of
the controls in the form is also used by the screen reader to “read out” or describe the contents of the form, so it’s important how you
specify the tabbing order of the fields in your form.

Form Example

With the ARIA labels specified and the correct tabbing order defined, the end user can navigate the controls on a form from the
keyboard, and, in addition, the screen reader can describe each control or area of the form page in turn.

176

Consider the following JavaScript remote form. In the first image, as the end user tabs to the First Name edit field, the field border
will highlight, the screen reader will say aloud: “First name, Edit text”, and if there is a value in the field, as in this case, it will read that
as well: “First name, Peter, Edit text”.

Figure 115:

Using the Tab key, the end user can move from one control or area of the form to another. Successive tab presses will enter the Tab
bar at the top of the form, then the Right and Left Arrow keys can be used to move along the Tab bar, and the Return key can be
used to select a tab. Once the tab is selected, the screen reader will describe the item selected: “Careers / Education Experience, Tab
selected, 2 of 4”.

JS Themes

You can apply a consistent set of colors to JavaScript components on a remote formby selecting colors defined in a theme – underlying
a theme is a set of CSS styles which are applied to controls at runtime on the client. Omnis has a number themes which you can use
to style your JS client applications: a default theme, which provides an effective and pleasing UI across all JS controls and devices, and
a range of different color themes, such as the dark theme, which provides an alternative set of darker colors.

When designing a remote form, you can change the current theme in the JS Theme Select dialog by pressing Ctrl-J/Cmnd-J, or select
the JavaScript Theme option from theViewmenu (you can edit a theme fromhere by Right-clicking on a theme or background of the
dialog and selecting the Open JavaScript Theme Editor option). To select a theme, click on the theme preview and close the dialog.
The selected theme is applied to the current remote form and to all the remote forms in your library since the theme is anOmnis-wide
preference. The following screenshot shows a Remote form with the ‘vintage’ theme selected.

The current theme is stored in theOmnis root preference, $javascripttheme (in $root.$prefs), which is set to the default theme initially,
and controls which theme is used to render themed colors for all remote forms in designmode (but you can set or change the theme
on the client using the ‘settheme’ client command; see later).

Selecting Colors

When you select the color for a JS control, you can choose a theme color from the color palette in the Property Manager, under the
Theme color button (the default, on the left) in the color picker toolbar. For example, select a button, click on the Text tab in the
Property Manager and click on the color palette for $textcolor.

177

Figure 116:

Figure 117:

178

Figure 118:

179

The color setting for most properties, such as $textcolor, is set to kColorDefault,which means the appropriate color from the current
theme is used. If a text color property is set to kColorDefault, and it sits on an element with a background color which comes from a
themed color constant, the text will be rendered in the associated <theme color>Text color. For example, if a button’s $buttoncolor is
set to kJSThemeColorPrimary and its $textcolor is set to kColorDefault, the text will be rendered using kJSThemeColorPrimaryText.

The colors defined in a theme and shown on the color palette have corresponding color constants, whose names begin kJSTheme-
Color, as follows:

kJSThemeColorBackground kJSThemeColorPrimary
kJSThemeColorBackgroundText kJSThemeColorPrimaryDark
kJSThemeColorBorder kJSThemeColorPrimaryDarkText
kJSThemeColorDialog kJSThemeColorPrimaryLight
kJSThemeColorDialogText kJSThemeColorPrimaryLightText
kJSThemeColorDialogTitle kJSThemeColorPrimaryText
kJSThemeColorDialogTitleText kJSThemeColorSecondary
kJSThemeColorDisabled kJSThemeColorSecondaryDark
kJSThemeColorDisabledText kJSThemeColorSecondaryDarkText
kJSThemeColorError kJSThemeColorSecondaryLight
kJSThemeColorErrorText kJSThemeColorSecondaryLightText
kJSThemeColorFocusedRow kJSThemeColorSecondaryText
kJSThemeColorFocusedRowText kJSThemeColorSurface
kJSThemeColorNeutral kJSThemeColorSurfaceText
kJSThemeColorNeutralText

Theme Editor

You can create JS themes, or modify an existing theme using the JS Theme Editor, available under the Add-Ons > Web Client Tools
menu option and select JavaScript Theme Editor.

The editor provides a preview of the current theme on the right side of the editor screen, and you can click on an area or text item
within the preview to view or set its color (you can also set colors by clicking in the list on the left).

The colors in a theme are categorized as Primary and Secondary, plus there are specific color for errors, borders, dialogs, and so on.
The primary colors are used throughout your application and set the general tone or style of the theme, while the secondary colors
provide an accent to certain parts of the UI.

Creating a new theme

To create a new theme, you can duplicate an existing theme and make any changes to the copy. To do this, open the Theme Editor,
select a theme from the dropdown list or use the default theme (selected initially by default), click on Save as and give the new
theme a name – then change individual colors and use the Save option to save any modifications. The Set theme option sets the
$javascripttheme preference to the theme currently shown in the editor. If youmake anymodifications to the current theme, all open
remote forms will be updated automatically.

A theme is stored as a .json file and an associated .css file in the ‘html/themes’ folder. When deploying your application, the themes
folder and its contents must be copied to the corresponding location on the Omnis App Server.

When designing the colors in a new theme, you may want to follow the guidance provided by the Google Material design system,
which may help you create a theme containing colors which complement one another and provide maximum useability and acces-
sibility across different platforms and devices. Google provides a Material Color Tool which you may find useful to create a set of
complementary colors for the dark/light variants.

Themed Icons

Omnis supports the use of SVG images for component icons. SVG icons can be “themed” which means an icon will be tinted using
the control’s text color as specified in the current JS theme (the ‘fill’ color in a themed SVG file is set to the text color from the theme).
This allows a single themed SVG icon file to be used with different themes and its color is set automatically.

Omnis includes an icon set named ‘material’ which contains over a 100 themed SVG icons. The material icon set is located in the
‘iconsets’ folder and if you have used any of the icons in your app the icon set needs to be copied to the Omnis App Server when
deploying your application.

180

https://material.io/resources/color

Figure 119:

181

The following are examples of a single icon from the material icon set with different color themes applied (note the icon is rendered
using the button text color):

Figure 120:

SVG icon files can be ‘themed’ using the SVG Themer tool under the Tools >> Add Onsmenu option. You can open a single SVG file,
preview it using one of the test colors (note the preview colors are not saved to the file), and save it using the Export button.

The SVG Themer tool converts a standard SVG image file into an Omnis themed SVG file format: specifically, the first element in the
root svg element in the original file is converted to a ‘g element’ with fill=“var(–om-tint-color)” and id ‘omTheme’ which reference the
color from the current theme. The ImageData tab shows the source for the converted SVG filewhich you can edit if required, although
the converter should convert the SVG file as necessary.

Like other SVG icon files, any themed SVG icons need to be placed in an icon set folder. For example, you could create or acquire a set
of SVG icons and convert them using the SVG Themer tool ready for use in your JS client apps. In order to use your own SVG iconset(s),
you need to add the icon set name to the $iconsets library property in your library, which can contain one or more icon set names
separated by commas.

HTML Template & Client theme setting

The JS client’s theme is set in the ‘data-themename’ attribute in the omnisobject div in the HTML file for your remote form, e.g. data-
themename=“dark”.

The special value of “_JT_” is used in the HTML template (jsctempl.htm) which is replaced this with the current value of $javascript-
theme when Omnis generates the HTML file for your remote form.

In addition, the ‘data-appid’ attribute specifies the application a page belongs to. It defaults to ‘<lib name>.<form name>’ each time a
form is tested (the ‘_APPID_’ placeholder in the template .htm file is replaced when a from is tested).

182

Figure 121:

The current theme: $construct

The current theme is passed in the $construct row parameter, in a column named theme.

Changing the Theme

You can change the theme on the JS client in your code using the ‘settheme’ client command ($clientcommand) which takes a row
parameter whose first column is the name of the new theme. Note that a remote form needs to be reloaded in the browser for a
change of theme to take effect. Once you have set the theme using the ‘settheme’ clientcommand, the client stores it in the client
localStorage and will use that theme for subsequent visits to the page. To revert to the default theme specified in the HTML page, you
need to call the ‘settheme’ clientcommand, passing an empty string as the theme name (or clear the client’s localStorage).

Passing the theme by URL

You can specify a themewhen opening a remote form in a browser by passing an extra themeparameter. You can pass the ‘omTheme’
URL query parameter when loading a remote form (HTML page) in a browser to specify the JS theme to use for the form (and all other
forms in the application during that browser session). For example, to specify the dark theme, use the following URL:

http://127.0.0.1:9110/jschtml/jsForm.htm?omTheme=dark

Active and Enabled Properties

All JavaScript controls have the $activeproperty, which is set to kTrue for all newcontrols (except the Label Controlwhich is kFalse). The
$active property allows you to control whether a component is active (kTrue) or inactive (kFalse) – in an inactive state, a component
cannot be interacted with at all, so the end user cannot tab to it, the contents cannot be selected or scrolled (in a list), and user clicks
on an inactive control are ignored. Therefore, when a control is inactive, it is completely ignored in the tabbing order, so when the end
user tabs the focus will jump to the next active control – in the context of accessibility, an inactive component will be ignored.

The $enabled property allows you to disable a control, and many controls have this property, including the Bar Chart, Combo Box,
Data Grid, Date Picker, Edit, List, Map, Pie Chart, Rich Text, and Tree list.

183

Default Inactive Appearance

When controls are inactive, that is, when $active=kFalse, they tend to have their own default inactive appearance, which is often a gray
overlay or background. If you set $defaultinactiveappearance to kFalse you can override this default inactive appearance. The default
value for $defaultinactiveappearance is kTrue to maintain backwards compatibility.

Default Disabled Appearance

All controls that have the $enabled property have the $defaultdisabledappearance property. When $enabled = kFalse the $default-
disabledappearance property defaults to true and the ‘omnis-notenabled’ css class is applied to the client element of the control. If
$defaultdisabledappearance = kFalse, this class is not applied, which is what sets the text colour to grey when disabled.

Context Menus

Contextmenus are opened if $active of the control is kTrue, regardless of $enabled. If youwish to disable this behavior for a control, you
should use Quit event handler (discard event)when handling evOpenContextMenu in your event handling methods for the control.

Creating Customized JavaScript Components

You can add your own customized JavaScript components to the Component Store under your own tab. This might be useful if you
alwayswant to create edit controls or buttonswith certain properties (e.g. colors or fonts), so creating your own customJS components
might save you some time. You will need to edit the Component Store library (comps.lbs) to change the contents of the Component
Store.

To create your own customized JS components, you need to create a new JS remote form in the Component Library, copy any compo-
nents you want to customize from the JSFormComponents form, add them to your own form, and then customize then as required.

Opening the Component Library

You can open the Component Library by Right-clicking on the Libraries node in the Studio Browser tree and selecting the Show
Comps.lbs option. Unless you want to copy classes from another library to the Component Library, it is recommended that you close
all other libraries before you edit the Component Library.

When you select the Show Comps option, the contents of the Component Library is displayed in the Browser Browser. You can switch
the Browser to Details view and click on one of the column headings to show the different types of component either by Name or
Type. You can hide and show specific types of class in the Component Library using the Class Filter option in the Browser.

Adding your own form and components

We recommend that you do not change the components in the JSFormComponents form since these are the default components
that appear in the Component Store, rather you should create your own customized components using the following method.

Add a new JS remote form class to the Component Store library (comps.lbs); note that the name of the new remote form will be used
as the tab name in the Component Store toolbar so choose something appropriate. Set the $componenttype property of the remote
form to kCompStoreDesignObjects using the Notation Inspector: to do this, open the Notation Inspector, click on the Search button
(the cursor changes to a spy glass), click on your remote form in the Studio Browser, and in the PropertyManager set $componenttype
to kCompStoreDesignObjects (note the $componenttype property will only be displayed via the Notation Inspector). Then set the
$layouttype of the new remote form to kLayoutTypeSingle (not kLayoutTypeResponsive).

With your new remote form open, open the JSFormComponents remote form next to it (this form contains all JS components). Drag
any JavaScript controls you want to customize from JSFormComponents into your new remote form and change their properties or
appearance as required. After you hide the Component Store library, the customized JavaScript controls will be available in the new
group in the Component Store.

184

JavaScript Component Templates

When you add a JavaScript Component to a remote form in your code at runtime, Omnis uses a template to create the object with
all the required properties and methods. There is a template for every type of JavaScript Component, and the templates are located
in the \studio\componenttemplates folder.

The component templates match the default components in the Component Store, and should not be edited. There are templates
for report and window class components as well.

Position Assistance

When you move or resize objects in the Remote form design editor (or window class editor), colored dashed lines and arrows will
appear automatically that enable you to easily align and distribute controls and other objects in relation to the design window edges
or center and any other nearby objects – this is called Position Assistance.

As youmove or resize objects on a remote form, colored lines are shown automatically, and objects will snap into position to help you
arrange the objects in a form. In addition, the position and size coordinates are shown directly under the object or group of objects.
For example, when you place several fields on a form, Position Assistance can help you align their left-hand or top edges and ensure
they are spaced evenly. Position Assistance is also provided when you use the Arrow keys to position or resize objects.

The Show Position Assistance option on the remote form contextmenu allows you to toggle the Position Assistance feature (enabled
by default). There is a single setting for this, shared by all editors, that is saved to omnis.cfg when Omnis shuts down.

Figure 122:

The positioning lines are drawnusing the colorhighlight color in the systemgroup of appearance.json. The entry positionAssistantKey-
boardTimer in the ‘ide’ section of the config.json specifies the time that the position assistance remains visible after you stop pressing
an arrow key; this defaults to 750 milliseconds.

When positioning objects in the center of a remote form, Position Assistance uses the center of the current layout breakpoint, not the
center of the remote form design window.

Position and Size coordinates

When you move or resize an object, or group of objects in a remote form class, the position and size information for the object or
group is shown automatically. In addition, position information is provided when you drag an object from the Component Store and
drop it onto a remote form.

The current Position of an object (its x,y coordinates) is displayed in a helptip or colored box just below the object, when youmove an
object, or when you drag an object from the Component Store and drop it onto a remote form (see above left); the helptip shows the
X,Y position of the top-left corner of the object relative to the top-left corner of the remote form (or window class design screen).

The current Size of an object is shown (width x height) when you resize it (see above right). When more than one object is selected,
the position or size corresponds to the area of the whole group of selected objects.

The positionAssistantShowsPositionOrSize item in the ‘ide’ section of the config.json file allows you to enable or disable this feature
(the default is true, so the position or size is shown).

185

Figure 123:

Positioning & Aligning Objects

When the Position Assistance is enabled, Omnis gives precedence to distribution over alignment, and within alignment it prioritises
the top edge, over the center, and the center over the right edge. As soon as a visual guide is displayed for a target, any other targets
that would also cause the object to move in the same axis are dropped.

As you move or size objects Omnis displays a visual guide when the object(s) being moved or sized are within +/-2 pixels of a specific
alignment or distribution target, e.g. an alignment target is the top edge of another object or objects. When you release the mouse,
the objects will snap to the displayed target. Position Assistance is applied to objects dragged from the Component Store, as well as
objects being moved or sized within a design window. Position Assistance is provided when moving an object even if the adjacent
objects are contained inside a container field.

When sizing objects, assistance is not provided if the objects being sized have more than a single container, that is, the component
that is the parent of the objects – this can be more granular than a field, such as for complex grids, there are several containers such
as the row and header sections.

Position Assistance is provided within each section of a Complex Grid, that is, the row and header sections of a Complex Grid, and the
above behavior for container fields applies to each section independently.

Distribution

Position Assistance attempts to distribute objects by allowing them to be evenly spaced. The visual guide for distribution is a line
drawn between the objects with arrow heads.

Figure 124:

The guides are drawn for asmany objects as possible, immediately adjacent to the object(s) beingmoved or sized. Position Assistance
works bestwhenobjects are already reasonablywell arranged, either vertically or horizontally, so formore complex arrangements, with
overlapping fields may result in no visual guides being presented.

Alignment

Position Assistance attempts to align objects by giving them the same top or bottom coordinate, or centered relative to each other.
When you try to center objects, you only get visual guides when moving objects, and when the appropriate side of the rectangle
representing the objects beingmoved either fully encloses or is fully enclosed by the appropriate side of the object in which it is being
centered. The following illustrate how the Position Assistance is applied for different cases when aligning objects.

Top alignment

186

Bottom alignment

Left alignment

Right alignment

Positioning for Paged Panes (Container fields)

Assistance is provided to help you align fields inside a container field, such as a Paged Pane. In addition to the left/right, top/bottom
positioning, when youmove an object inside and near to the center of a container, a line across either the vertical or horizontal center
of the container is drawn and the object will snap to the line.

Figure 125:

187

When positioning objects inside a Paged Pane (or any container), Position Assistance is only provided for the controls within the
Paged Pane itself, so objects outside the Paged Pane are not included in the current object grouping. Similarly, if you are positioning
objects outside, but near to a Paged Pane, the objects inside the Paged Pane are not included in the current grouping.

Position for dropping objects

Information about the drop destination is shown when dragging objects on a remote form design window into a Complex grid or
Paged pane (shown in addition to the x-y coordinates). For example, as you drop a field into a Complex grid section, the position
assistance will display the section type, such as ‘Header’, ‘Horizontal header’, or ‘Row’, as shown below.

Figure 126:

Group Selection & Object Properties

When you select a group of objects, Omnis shows a colored line around the group and a single set of selection handles for the group
(this also applies to objects in a window or report class). If the objects share any properties these are shown in the Property Manager
allowing you to set the properties for all the objects in the group.

Figure 127:

If you click on an object inside the group of selected objects, Omnis shows selection handles around just this object and shows the
properties of the selected object in the Property Manager, but retains the selection line around the group, as shown below as a gray
line:

You can click on another object within the group selection, and in this case selection handles are shown on the new selected object
and its properties are shown in the Property Manager. If you want to restore the state where the properties reflect all the selected
objects in the group, you can Shift-click on the currently selected object.

188

Figure 128:

Note that when clicking, properties are not shown until you release the mouse. This allows you to drag the selected objects without
changing the properties displayed in the Property Manager.

The color of the selection rectangle shown around a group of objects is one of two colors in the ‘IDEGeneral’ section of appearance.json:

• designselectedgroupoutlinecolor
the color of the rectangle around a selected group (when no single object is selected)

• designselectedgroupoutlinesinglecolor
the color of the rectangle around a selected group when a single object is selected inside the group

Activity Control

Group Icon Name Description

Other Activity Animated image to display during a long
process or Omnis Server activity

The Activity Control provides an animated image to show some activity on the client, for example, during a long list calculation or
search operation on the Omnis Server.

There is an example app called JS Activity in the Samples section in the Hub in the Studio Browser showing the different activity
controls available and how to set a custom animated Gif; the same app is available in the JavaScript Component Gallery.

The Activity Control has the following custom properties:

Property Description

$activitystyle The style of the indicator, a constant as
below, or kJSActivityCustomLink to
specify your own image

$customlink The path of an animated GIF which can
be displayed when $activitystyle is set
to kJSActivityCustomLink

The $activitystyle property specifies the style of the control, one of the following constants:

189

https://bit.ly/OmnisJSGallery

Constant Description

kJSActivityBar

kJSActivityBlock

kJSActivityCircular

kJSActivityLinear

kJSActivityLinearDots

kJSActivitySmallSpinner
kJSActivityCustomLink the image in $customlink is used

Custom Link

The following code assigns a custom link to the activity control:

Calculate iCustomLink as 'http://www.mywebsite.com/images/animated1.gif'\
Do $cinst.$objs.Activity.$customlink.$assign(iCustomLink)

As an alternative to using the Activity Control you could consider using the showloadingoverlay client command to show a loading
indicator (animated image) over a remote form or specific control: see Custom Loading Indicator.

Background Shape

Group Icon Name Description

Shapes Background Shape Object you can set to Rectangle, Line,
Triangle, or Image

The Background Shape allows you to draw various shapes in your remote forms: you assign the shape to the object by setting the
$::shape property to one of the kJSBack… constants. It can be assigned one of a number of shapes including: Ellipse/Circle, Rectan-
gle/Square, Rounded rectangle/Square, Triangle, Horizontal Line, Vertical Line, and Image.

You can assign a solid color or gradient fill to a background component by setting its $backpattern, $forecolor and $backcolor. You
can also assign the stroke (border) thickness and color by setting $strokewidth and $bordercolor.

There is a sample app called JS Background in the JavaScript Component Gallery, and under the Samples option in the Hub in the
Studio Browser showing the various background shapes.

190

/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#custom-loading-indicator
https://bit.ly/OmnisJSGallery

Background Images

You can create a background image by setting $::shape to kJSBackImage, and setting $imagepath to a URL relative to the Omnis tree
during development or your web server for deployment; you can click on the $imagepath property to select an image.

You can drop an image from your system / desktop on to a Remote Form to create a background image. In this case, the $imagepath
property is set to the path of the image, which is copied automatically to the folder ‘images/libs/<libname>’ in the html folder in the
Omnis tree. The image can be a PNG, JPG, JPEG or SVG.

The $keepaspectratio property is set to kTrue by default which ensures the image will keep its aspect ratio.

Animations and Changing Attributes

The Background Control has the $animation and $attr properties which allow various animations or effects to be assigned to the
object, such as fading the object in or out, or for $attr various attributes of the object to be changed. The $animation and $attr
properties must be assigned at runtime and accept a string containing various parameters depending on the function or attribute.

There is an example app called JS Animations in the Samples section in the Hub in the Studio Browser showing how can use anima-
tions to move and fade objects to create a richer UI; the same app is available in the JavaScript Component Gallery.

Figure 129:

Apart from the scale attribute, the browser must support the Raphael JavaScript library to allow animations and attribute changes
(more details about the parameters you can use are available from http://raphaeljs.com).

The $animation property follows the general format:

function(newvalue, time(milliseconds), ease(optional), complete_context(optional))

The functions available in $animation are:

• scale
increases and decreases the size of the object

191

https://bit.ly/OmnisJSGallery

scale(newvalue, time(milliseconds), ease(optional), complete_context(optional))

• alpha
changes the transparency of the object

alpha(newvalue, time(milliseconds), ease(optional) , complete_context(optional))

• rotate
rotates the object

rotate(newvalue, time(milliseconds), ease(optional) , complete_context(optional))

For example:

Calculate $cinst.$objs.backgroundobject.$animation as "alpha(0,500,<>,fade_complete)"

fades the object to alpha value 0 over 500milliseconds using a ‘slow, faster, slow’ easingmethod (see below) and when complete calls
evAnimComplete with a parameter “complete_context”.

You can use the complete event to chain the next animation, therefore to pulse an object you could use:

Calculate $cinst.$objs.backgroundobject.$animation as "alpha(0,500,<>,fade_off)"

You could use the event handling method:

On evAnimComplete
If (pAnimContext="fade_off")

Calculate $cwind.$objs.backgroundobject.$animation as "alpha(0,500,<>,fade_on)"
Else if (pAnimContext="fade_on")

Calculate $cwind.$objs.backgroundobject.$animation as "alpha(0,500,<>,fade_off)"
End If

Ease transition effects

The following ease transition effects or “eases” are supported for animations:

Transition Description

= linear and default if not specified
> fast then slowing
< slow then faster
<> slow, faster, slow
bounce object bounces
elastic object stretches
backIn object backs in
backOut object backs out

Changing Background Attributes

The $attr property allows you to change various attributes of the object, such as their transparency. For example, you can assign an
alpha gradient to an object using the following method:

note must be assigned at runtime
Do $cinst.$objs.backgroundobject.$attr.$assign('attr(gradient, 0-\#FFFFFF:10-\#FFFFFF)')
Do $cinst.$objs.backgroundobject.$attr.$assign('attr(opacity,0.0)')

192

Bar Chart Control

Group Icon Name Description

Visualization Bar Chart Displays a bar chart based on a list of values

TheBar Chart control allows you to display a simple dataset contained in a list variable as a bar chart. Omnis Studio provides two chart
controls: a Bar Chart control and a Pie Chart control. The data to be represented in both these controls is contained in a list variable
which is assigned to the $dataname property of the control.

There is a sample app for both the JS Bar chart and JS Pie chart in the JavaScript Component Gallery, and under the Samples option
in the Hub in the Studio Browser.

Figure 130:

There are various properties (on the Appearance tab in the Property Manager) that allow you to control the appearance of a Bar or Pie
chart. The bars and segments use a set of default colors, but you can specify your own colors at runtime.

For Bar charts you can set $chartdirection to vertical (the default) or horizontal bars, the style of the bar ends as the $barends prop-
erty (kJSBarEndSharp is shown below), and you can display data values when the end user’s mouse hovers over the bar by setting
$showvalue to True (the default).

Specific properties for Pie charts are described under the PieChart Control section.

List data structure

To draw a simple bar or pie chart, the list variable assigned to the $dataname property of the chart component needs to contain at
least two columns. The first column contains the value for the data point, and the second column contains the label or name for the
data point. For example, to construct a simple bar chart showing a list of figures for sales agents, you could use the followingmethod:

create vars bar_data (List), amount (Number), name (Char)
Do bar_data.$define(amount,name)
Do bar_data.$add(120,'Steve')
Do bar_data.$add(230,'Dave')
Do bar_data.$add(245,'Anita')
Do bar_data.$add(125,'Claire')
Do bar_data.$add(280,'Ben')

193

https://bit.ly/OmnisJSGallery

Figure 131:

With the $showvalueproperty enabled (a value is displayedwhen the enduser passes thepointer over eachbar), themethodproduces
the following chart.

When $showvalue=kTrue, the popup label will use $backcolor for the text and $textcolor for the background of the label so that it can
be seen against the background of the control.

Main and Axis Titles

There are a number of properties in the Bar Chart to allow you to add amain title, as well as titles for the x and y axis. In addition, there
are properties to show (the default) or hide the x and y axis details or units.

Property Description

$maintitle The main title for the chart
$xtitle title for the x axis
$ytitle title for the y axis
$showxaxis if kTrue the chart shows x-axis details
$showyaxis if kTrue the chart shows y-axis details

The following chart shows all the titles and axis details.

Text and Axis Colors

The $textcolor and $axiscolor properties allow you to set the color for text and axis, including theme colors; $textcolor applies to the
color of the title, labels, axis text, and legend in the chart, where applicable.

The $axiscolor property for a Bar chart applies to the color of the both axes lines, and the unit lines which run across the bar chart.

When set to kColorDefault, both properties will set their color dynamically according to the color of $backcolor.

Bar & Segment Color

You can specify your own colors for the bars or segments in a Bar or Pie chart using the runtime-only property $colorlist, rather than
using the default colors. You need to create a list of strings representing CSS colors and assign the list to the $colorlist property, for
example:

Do iColorList.$define(iColor)
Do iColorList.$add("\#CE3D3D")
Do iColorList.$add("rgb(81, 206, 61)")
Do iColorList.$add("hsl(230, 60%, 52%)")
Do iColorList.$add("Gold")
Do $cinst.$objs.PieChart.$colorlist.$assign(iColorList)

The accepted color formats are: Hex Code RGB, Decimal Code RGB, HSL, or Color Name, and the formats can be mixed throughout
the list as in the example above.

If there are not enough colors available in the color list for the number of segments in the chart, then Omnis will repeat the colors in
$colorlist. Therefore, if you want to avoid repeating colors, create a color list containing more colors than you will generally need to
cater to the number of data points in your chart.

Theme Colors

The $colorlist property can contain kJSThemeColor… constants to allow you to match the colors in the current JS theme. Note you
cannot use standard Omnis color constants (such as kRed, etc.) in this context, since these are taken as literal text on the JS client.

194

Figure 132:

Figure 133:

195

Events

Bar charts report the evBarClicked eventwith the bar clicked in the pBar parameter. Similarly, Pie charts report the evSegmentClicked
event with the segment clicked reported in pPieSegment.

event method for bar chart, message is a field on the form
On evBarClicked
Calculate message as con("Bar clicked: ",pBar)

event method for pie chart
On evSegmentClicked
Calculate message as con("Segment clicked: ",pPieSegment)

Button Control

Group Icon Name Description

Buttons Button Standard pushbutton which reacts to clicks

TheButton control is a basic pushbutton that the enduser can clickwith the pointer or tap on amobile device to confirm something or
initiate a process, such as anOK or Cancel button, or a Print or Send button. Alternatively, you can use a Split buttonwhich combines a
button and droplist of preset options. Many of the sample apps in the JavaScript Component Gallery contain buttons, including plain
text buttons or ones with icons.

Figure 134:

The text is specified in $text as a single line of plain text, unless $textishtml is set to true and the text is treated as HTML; see below.
A button can display an icon, specified in the $iconid property (under the Appearance tab), which can be an SVG or PNG image file
from an Icon set chosen from the Select Icon dialog. See earlier in this chapter about Component Icons and specifically SVG Icons.

In addition to the icon you can assign to a button, you can add ‘Icon Badges’ to button icons to provide additional information, such
as a number count, a notification, or an alert: see Icon Badges.

The Button control has the following text and appearance properties:

Property Description

$align The alignment of the text
inside the button; centered
by default

$buttonbackiconid The icon id of background
image for the button. To use
the default system button,
set $buttonbackiconid to
zero and $buttoncolor to
kColorDefault

196

https://bit.ly/OmnisJSGallery

Property Description

$buttoncolor The color of the button. To
use the default system
button, set
$buttonbackiconid to zero
and $buttoncolor to
kColorDefault

$borderwidth The border width in pixels
(the default is 0 or no border)

$bordercolor Sets the border color when
$borderwidth is set >0

$textbeforeicon If true, and the control has
both text and an icon, and
the text is displayed to the
left of the icon

$::vertical If true, the text and icon are
arranged vertically

$textishtml Specifies that the text
entered in $text is treated as
HTML

$isflat If true, the button has a flat
appearance

Text Position

In addition to $align, there are several layout properties that give you greater control over the positioning of the text and icon on the
button (also applies to the text for the Trans button and Split button components):

Property Description

$vertalign The vertical alignment or justification of
the text and icon within the button, a
constant: kJstVertTop, kJstVertMiddle
and kJstVertBottom

$vertpadding The top and bottom padding of the text
and icon within the button (default is 4
pixels); only applies when $vertalign is
kJstVertTop or kJstVertBottom

$spliticonandtext If true, the icon and text are separated so
that the text can be aligned
independently (default is kFalse)

$icontextspacing The gap between the icon and the text
when they are positioned together
(default is 4 pixels)

When $spliticonandtext is kTrue, the icon is positioned at the edge of the button (on the left by default). The text can be aligned in
the remaining space with the $align or $vertalign property.

You can enter negative values for the properties requiring a number of pixels, which may be required in some circumstances.

You can use the existing $::vertical property to arrange the icon and text vertically, and $textbeforeicon to display the text before the
icon; after setting these to kTrue, you can use the align and padding properties to position the text.

Flat Button Style

The flat style of a button is controlled using the $isflat property. The style for all new buttons (and buttons in converted libraries) is flat
(from Studio 10.2 onwards), so $isflat is set to true. In addition, if the value of $buttonborderradius in converted libraries is set to 0, it
will now be changed to the new default of 4; any other value will be retained on conversion.

197

When$isflat is disabled abuttonhas a small drop shadowandwhen thebuttonhas the focus a larger difuseddrop shadow is displayed
around the button.

Disabled Appearance

The appearance for flat buttons when they are disabled ($active = kfalse) is as follows: if $isflat is kTrue (the default), the button back
color will become transparent (if it isn’t already) and the text color will take on the disabledText color. If $isflat is kFalse, the button
back color will take on the disabled color and the button text color will take on the disabledText color.

In addition, if $bordercolor for buttons is set to kColorDefault the color will match $textcolor. When disabled ($active = kFalse), the
border will match the disabled text color to maintain a consistent disabled appearance.

HTML Button Text

When set to kTrue the $textishtml property specifies that the text for the button (entered in $text) is treated as HTML, therefore any
HTML can be used to style the text. For example, you can insert a line break by setting this property to kTrue, and using
 in $text
for the button wherever a line break is required.

The $textishtml property also allows other styling of the button text using various character and color attributes. Note that design
mode does not render the HTML (the raw HTML code is displayed), and if you use attributes in the HTML they must be enclosed in
single quotes.

Events

When a Button is clicked an evClick event is triggered which you can handle in the event handling method behind the button.

On evClick
Do something…

Example

The sample apps in the Applets section in the Hub have an About window which is loaded into a subform and displayed using an
animation; see the Animations section for the About button code. The Close button on the About windows simply closes the About
form by sending a message to the main remote form to run a method; it has the following code:

On evClick
Do $cwind.$closeAbout()

In this case, $cwind is a reference to the main parent form which contains a method called $closeAbout which contains code to fade
out the About form and reset various buttons on the main form.

Camera Control

Group Icon Name Description

Media Camera Allows the end user to capture images,
scan QR codes or barcodes

The Camera control allows the end user to capture images or scan QR codes and barcodes fromwithin your application; this could be
the camera on a mobile phone, tablet, or laptop, or a video cam attached to a desktop PC.

You can set the capture mode by setting the $cameraaction property to one of the kJSCameraAction… constants. When returning
an image the $dataname property must be set to a Character or Binary type instance variable to receive the image (not required for
barcode scanning); for Character variables, the captured image is stored as base64 encoded data.

198

Camera Actions

The $cameraaction property allows you to set the action or mode on the current device for the camera to capture an image, QR
code or barcode. $cameraaction is a runtime only property that should be assigned a row with 1 to 3 columns as row(action [,mode,
deviceId]), where action is a kJSCameraAction… constant, mode is a kJSCameraFacingMode… constant, and deviceId is a character
string of the device ID.

Constant Description

kJSCameraActionGetDevices Gets a list of camera devices attached to the
user’s device, sent to evGetDevices. Requires
only action column, other values will be ignored.

kJSCameraActionStartCamera Starts the camera and shows viewfinder to
prepare to capture an image; note this is not
required for scanning codes. Requires at least 2
columns, with column 2 (mode) set to one of the
following: kJSCameraFacingModeDeviceId uses
a specific camera on the end user’s device,
specified by deviceId required in column 3;
kJSCameraFacingModeUser selects the user
facing camera on the device;
kJSCameraFacingModeEnvironment selects the
environment facing camera on the device.

kJSCameraActionCaptureImage Captures a still image from the camera after
kJSCameraActionStartCamera. It is
recommended to assign this action in response
to a client executed method for best
performance and user experience. Resulting
image data will be assigned to the variable in
$dataname. Requires only action column, other
values will be ignored.

kJSCameraActionStartBarcodeScanner Starts the camera in QR code/barcode scanner
mode. evBarcodeScanned will be fired upon
detection of a code. Requires at least 2 columns,
with column 2 (mode) set to
kJSCameraFacingModeUser.

kJSCameraActionStop Stops the current camera feed (both in image
capture or barcode scanning mode). Requires
only action column, other values will be ignored.

Camera UI

The $showui property allows you to show the appropriate UI for using the Camera, Barcode scanner, and to switch between the front
and back camera.

The $showui property takes a kJSCameraUI… constant (or sum of constants) to specify which UIs are shown in the control: kJSCam-
eraUINone displays no UI in the control (the default), kJSCameraUICamera shows the UI for using the camera (Start Camera, Take
photo and Stop camera buttons), kJSCameraUIBarcode shows the UI for scanning barcodes (Start and Stop Scanner buttons), and
kJSCameraUISwitchCamera shows a button to allow the end user to switch between the front and back cameras.

The $iconid property can be used to specify an icon to be shown in the control to indicate which mode the camera is in; the icon is
not shown when the camera is in video mode. For example, you could show the photo-camera icon if the control is in camera mode,
or you could show the qr-code-scanner icon if the control is in scanner mode; both these icons are available in the material icon set.

Camera Permission and Testing

Use of the camera requires the end user to accept a prompt which is popped up automatically when trying to access the camera for
the first time. This cannot be bypassed, so if the end user denies access to the device Camera, the actions will not work.

In addition, camera access using a mobile device is only possible when serving over HTTPS. Therefore, you will not be able to access
the camera on a mobile device connected to the same network, as Omnis only serves over HTTP for testing. However, you can test

199

a remote form that uses the Camera control locally on your development machine. A utility to serve your localhost server over the
internet using HTTPS can be used as a workaround, such as ngrok.

Image Aspect Ratio

If specified, the $aspectratio property forces the Camera control to maintain the aspect ratio of the image. You need to specify a
number representing the aspect ratio, such as:

$aspectratio value Description

0 Uses device default
1 A square ratio, 1:1
1.333334 Standard camera ratio, 4:3
1.777778 Wide ratio, 16:9

Providing a non-standard aspect ratio may lead to unexpected results, such as the camera feed not showing at all. Note that the
orientation of the camera is set by the device, therefore a desktop/laptop camera will tend to display in landscape orientation, while a
mobile camera will show in portrait orientation.

Capture Size

The $capturesize property should be an integer and forces the size of the captured image; if empty, the image is captured at the
size specified on the device camera. The value specifies the size of the longest edge of the image using the $aspectratio to set the
other edge. For example, if a standard ratio of 4:3 is used, and the users device captures at 1024 x 768, a $capturesize value of 640 will
produce an image of 640 x 480.

Image Type & Quality

The $imagetype property should be set to a constant to indicate the type of image to be captured. Due to limited support across
browsers, only PNG or JPEG (kJSCameraImageTypePNG or kJSCameraImageTypeJPEG) are supported.

If $imagetype is set to JPEG, you can specify a quality level in $imagequality to reduce the data size, on a scale of 0-100 with 100 being
the maximum quality.

Events

The Camera control reports the following events:

Event Description

evGetDevices Fired in response to
kJSCameraActionGetDevices being
assigned to $cameraaction. Returns
pCameraList, a list containing 2
columns, DeviceId and
DeviceDescription. The value in
DeviceId can be used for specifying a
specific camera to use when starting
the camera or barcode scanner

evImageCaptured Fired when an image has been
captured and the instance variable in
$dataname has been updated. Returns
pImageType, the image data type as an
integer

200

Event Description

evBarccodeScanned Fired in response to scanning a valid
code, with pValue containing character
data of the read code, and
pCodeFormat containing a character
representation of the code format,
e.g. QR_CODE or CODE_128

Due to the web browsers required only to support PNG files we include an integer parameter, pImageType, to state the image data
type, in case the selected type was not supported by the browser. In the case that a browser does not support the selected type, it will
always use PNG. Most modern browsers support JPEG, which is why we have included JPEG support, but it is best to check for your
own use case before using JPEG over PNG.

All JS Camera events have an additional pError param which reports any possible errors. The pError parameter is a row containing
two columns: the errorCode columnwill contain a kJSCameraError… constant, and errorDescription will contain the error information
from the browser. The error constants are:

Constant Description

kJSCameraErrorAbort An Abort error has
occurred

kJSCameraErrorNotAllowed A Not allowed error has
occurred

kJSCameraErrorNotFound A Not found error has
occurred

kJSCameraErrorNotReadable A Not readable error has
occurred

kJSCameraErrorOverconstrained An Over constrained error
has occurred

kJSCameraErrorSecurity A Security error has
occurred

kJSCameraErrorType A Type error has occurred
kJSCameraErrorUnknown An Unknown error has

occurred

Chart Control

Group Icon Name Description

Visualization Chart Displays different chart types including
Line, Bar, Radar, Pie, Doughnut, Polar Area,
Scatter and Bubble

The Chart component allows you to create different types of charts from list data to display in a remote form. It uses the Chart.js
JavaScript library, an open source library available under the MIT license, which you can use in your applications (with the correct
license attribution). The JS Chart control provides you with a wider range of chart types than the individual Bar chart and Pie chart JS
components, and provides a modern interface for displaying charts, with scalable, vector based shapes and animated transitions.

The $charttype property sets the basic chart type, a kJSChartType… constant, and the following types of chart are available.

201

Chart type Description

LineBarRadar Line, Bar, and Radar type charts
(or Labelled charts) use a label
(e.g. a month) for the X axis
(horizontal), and a value for the Y
axis (vertical).

PieDoughnutPolarArea Pie, Doughnut, PolarArea charts
(or Area type charts) use the same
list definition as the labelled
charts, but each data point has a
different color and its value is
represented by area. With pie
charts, the angle of a segment
represents its value (individual
values are taken as a percentage
of the sum of values in the
dataset). Doughnut charts are the
same as pies but have an area
cutout of the center of the circular
chart. PolarArea charts are similar
to pie charts, but the radius of a
segment represents its value (in
this case, each segment has the
same angle).

ScatterBubble Scatter charts use X and Y values
to plot points on the chart.
Bubble charts use X and Y values
to plot the position of a data point,
with an additional R value used as
the radius or size of the bubble,
giving a visual indication of the
magnitude of the data point.

All chart types can handle multiple datasets, although in practice some chart types are more suited to certain types of data than
others. For bar charts, multiple datasets are stacked next to each other, while inmost other chart types, multiple datasets are overlaid
each other.

There is an example application called JS Charts in the Samples section of the Hub in the Studio Browser demonstrating all the types
of chart available. The following image is a Labelled Bar chart in the example app:

Figure 135:

The following is a Labelled Line chart in the example; note the data is displayed in a popup when you pass the pointer over a data
point (e.g. Dataset 2 for April is shown).

202

Figure 136:

The following is a Labelled XYR Bubble chart; in this case, each data point is plotted using X,Y coordinates and a third value is shown
as the Radius (R value) of the bubble indicating the magnitude of the value.

Figure 137:

The following shows two Pie types, a Doughnutwhere values are represented as percentages of the total pie (the same as a pie chart
but has an area cutout of the center), and Polar Areawhere the radius (area) of a segment indicates its value.

Chart Data

As with other chart types in Omnis, the Chart control gets its data from an Omnis list variable, and the structure or contents of the list
needs to match the type of chart you wish to draw. The chart list should contain 2 columns, with each row in the list representing a
dataset: Column 1 is the data (a list of values for each dataset), and Column 2 is a list of display options relating to that dataset, such
as bar or segment colors.

Data (Col 1) Options (Col 2)

Dataset line 1 List of Values for dataset 1 Options for dataset 1
Dataset line 2 List of Values for dataset 2 Options for dataset 2
Dataset line 3 List of Values for dataset 3 Options for dataset 3
Etc … …

203

Figure 138:

The Data list for the chart (in column 1) will vary depending on the chart type as follows:

• The data list variable for Labelled and Area chart types (e.g. Bar and Pie) requires 2 columns, usually with a Label and a Value:
Column 1, X axis: Label type data, such as months, exam grades, etc.
Column 2, Y axis: Value, such as average temperature, number of students, etc.

• The data list variable for Scatter (XY) and Bubble (XYR) charts requires 2 or 3 columns, respectively, and are in effect points
(coordinates) on the chart:
Column 1, X axis value.
Column 2, Y axis value.
Column 3, R value: Bubbles have a Radius, which is given in pixel size.

In the JS Chart example library in the Hub, the chart list for the Labelled Bar chart has the following structure; the main chart list has
2 columns, iData and iOptions. The Data list in column 1 has 2 columns, Label and Value (Y), as shown:

The Options list in Column 2 of the main chart list must be a list of 2 columns containing key-value pairs of Options to apply to that
dataset, which are generally display options (colors/rounding on bars/etc).

Looking at the Labelled chart in the JS Chart example library, the Options list in column 2 of the main chart list has the following
structure: Key and Value, with entries for label, backgroundColor, and borderColor:

You can examine the code in the example library to see how the chart data is constructed, for example, look at the $getDatasetOptions
class method in jsCharts. The Data and Options data in the example library produces the following chart:

Any options described in the Chart.js documentation should work, however the following are the most useful:

Key Value Description

backgroundColor Valid CSS colors (e.g. #FF0000,
rgba(255,0,0,0.5), or theme
colors can be used,
e.g. kJSThemeColorPrimary.
Multiple values can be
specified, separated by
commas.

Sets the background color of the chart
elements in that dataset, i.e. the bars, pie
segments etc. If multiple values are supplied
these will be applied in order to each element,
i.e. 1st bar uses 1st color, 2nd bar uses 2nd
color, etc. If there are not enough colors for
the data points it will loop back through the
given colors.

borderColor As above Sets the border color of the chart elements,
same as the above.

204

Key Value Description

borderWidth A number in pixels Border or line width of the chart elements
borderRadius A number in pixels Radius of all corners of the rectangle

elements except corners touching the axis or
base of chart.

pointStyle One of: circle, cross, crossRot,
dash, line, rect, rectRounded,
rectRot, star, triangle

Sets the style of the point in Scatter and Line
charts

More options can be found in the Chart.js documentation at: https://www.chartjs.org/docs/latest/charts/. You can look in the Chart
Types section to find out which options apply to each chart type, e.g. under ‘Styling’ https://www.chartjs.org/docs/latest/axes/styling.
html.

Any options that can accept arrays of values should be supplied as comma separated values, for example, to have three different
background colors you could assign the following line as a value for the backgroundColor key:

'rgb(255,0,0),rgb(0,255,0),rgb(0,0,255)'

Properties

In addition to controlling the contents of a chart by setting up the list data, you can set various properties for the different chart types.
The Chart component has the following properties (some properties may not apply to all chart types).

Property Description

$dataname The name of the list instance variable, as
described above

$charttype Sets the basic chart type, a constant:
kJSChartTypeLine, kJSChartTypeBar,
kJSChartTypeRadar, kJSChartTypePie,
kJSChartTypeDoughnut, kJSChartTypePolarArea,
kJSChartTypeScatter, kJSChartTypeBubble

$titletext$subtitletext The title and subtitle text for the chart
$xtitletext$ytitletext The X and Y title text for Scatter and Bubble (XY)

charts
$titleposition$subtitleposition$legendpositionThe position of the title, subtitle, and legend, a

constant: kJSChartElementPositionTop,
kJSChartElementPositionRight,
kJSChartElementPositionBottom,
kJSChartElementPositionLeft

$legendalign Aligns the legend element relative to its position,
a constant: kJSChartElementAlignStart,
kJSChartElementAlignCenter,
kJSChartElementAlignEnd

$showlegend If true, shows the legend
$showdatatooltips If true, shows tooltips when the pointer is

hovered over chart elements
$swapaxes If true, swaps the X and Y axes; only applies to

Bar charts
$disableanimations If true, prevents the chart from animating
$legendclickhidesdata If true, the data is hidden from the chart when

the user clicks an item in the legend; clicking
again will show the data

Events

The Chart control sends the evClick and evLegendClick events with the following event parameters:

205

https://www.chartjs.org/docs/latest/charts/
https://www.chartjs.org/docs/latest/axes/styling.html
https://www.chartjs.org/docs/latest/axes/styling.html

Figure 139:

Figure 140:

206

Figure 141:

Event Description and Parameter

evClick Triggered when the user clicks on a data element such as
a bar in a bar chart. There are 2 parameters:
pDatasetIndex - The dataset line number in the main list
pDataIndex - The data index within the dataset. So for
those supplied in rows, it will be the column number, and
those supplied in lists, it will be the row number

evLegendClick Triggered when the user clicks on a legend item. There
are 3 parameters: pDataIndex - The data index of the data
in the dataset (only for Pie, Doughnut and Polar Area)
pDatasetIndex - The dataset line number in the main list
(For all except Pie, Doughnut and Polar Area) pHidden -
True, if the related data is now hidden

If $legendclickhidesdata is true (the default), when you click on an item in the legend it is toggled on/off and the dataset in the chart
is hidden or shown; its state is reported in the pHidden parameter for evLegendClick.

Mixing Chart Types

In some cases you canmix chart types. A good use case of this is to show a line of best fit on a scatter chart. You can do this by setting
the ‘type’ on the dataset which you wish to be different to your charts $charttype property. Here is an example of how you could
achieve this:

Do iData.$define(lTemp,lSales)
Do iOptions.$define(Key,Value)
Do iChartList.$define(iData,iOptions)
Do iData.$add(14.2,215)

Do iData.$add(16.4,325)
Do iData.$add(11.9,185)
Do iData.$add(15.2,332)
Do iData.$add(18.5,406)
Do iData.$add(22.1,522)
Do iData.$add(19.4,412)
Do iData.$add(25.1,614)

207

Do iData.$add(23.4,544)
Do iData.$add(18.1,421)
Do iData.$add(22.6,445)
Do iData.$add(17.2,408)

Do iOptions.$add("backgroundColor",kJSThemeColorPrimary)
Do iChartList.$add(iData,iOptions)

Do iData.$clear()
Do iOptions.$clear()

Do iData.$add(11,150)
Do iData.$add(26,650)
Do iOptions.$add("type","line")
Do iOptions.$add("borderColor",kJSThemeColorSecondary)
Do iChartList.$add(iData,iOptions)

Figure 142:

Note how the second dataset, used to portray a line of best fit, is calculated manually, i.e. there is no function to calculate an actual
line of best fit.

Check Box Control

Group Icon Name Description

Buttons Check Box Check box for on/off values

The Check Box control can represent On / Off or Yes / No values and is typically used to allow the end user to turn an option on or off,
or accept or decline a preference. Several of the sample apps in the JavaScript Component Gallery feature check boxes, such as the
Map example.

The variable you specify in the $dataname property of a Checkbox should be a Number or Boolean variable. The $text property
specifies the label text for the Checkbox. The $checkboxcolor property specifies the color for the Checkbox (and check boxes when
they appear in Lists, Data grids & Tree lists).

When a Checkbox is clicked an evClick event is triggered with the current value reported in the pNewVal parameter.

Example

There is an example app called JS Radio and Checkbox in the Samples section in the Hub in the Studio Browser to show how you can
use a check box (and a Radiogroup); the same app is in the JavaScript Component Gallery. The example uses a series of check boxes

208

https://bit.ly/OmnisJSGallery
https://bit.ly/OmnisJSGallery

and a radio button group to filter a list of people based on their gender and age group. The group of controls on the remote form
could look like this (the following screen shows the ‘professional’ JS Theme in use):

Figure 143:

The $dataname for each of the check boxes is iAgeRange1, iAgeRange2, and iAgeRange3 respectively. These are all Boolean variables
defined in the remote form, and the $dataname of the Radio button group is iFilter, which is defined as a Short integer. Each separate
check box and the Radio group has a simple event method, which is:

On evClick
Do method filter

which will call the ‘filter’ class method when any of these objects is clicked. The filter method filters the contents of the list called iList
based on the selection of the check boxes and radio buttons, and has the following code:

Do iList.$unfilter(0)

If not(iAgeRange1)
Do iList.$filter(not(iAge<=20))

End If

If not(iAgeRange2)
Do iList.$filter(not(iAge>=21&iAge<=40))

End If

If not(iAgeRange3)
Do iList.$filter(not(iAge>40))

End If

Switch iFilter
Case 1

Do iList.$filter(iGender='F')
Case 2

Do iList.$filter(iGender='M')
End Switch

209

Note the ‘Smart list’ capability has to be enabled on the iList variable to allow the built-in filtering using the $filtermethod; this is done
in the $construct method of the form in the example, using the following code:

Do iList.$smartlist.$assign(kTrue)

Color Picker

Group Icon Name Description

Other Color Picker Allows the end user to select a color from a
color palette, or RGB, HSL, or HEX number

The Color Picker component allows the end user to select a color either by sliding a color slider and clicking on the color palette, or
by entering a color number in RGB, HSL, or HEX format; an alpha slider can be shown to allow the end user to select the alpha setting
(transparency) for the color.

Youwould typically open theColor Picker in a subformor palettewindow, to allow the enduser to select a color, then close the subform
returning the selected color value to the main form to assign to an object or property. Otherwise, you could add a color picker to a
general settings panel in your app, such as a side panel. The following screenshot shows the color pickerwith the color preview swatch,
alpha slider and the format entry fields for specifying an RGBA color.

Figure 144:

The color selected in the color picker is returned to the instance variable specified in $dataname of the control, whichmust be a 64-bit
integer if you want to include the alpha channel, otherwise you can use a 32-bit integer if the alpha channel is not required.

There is an example application called JS Color Picker in the Samples section of the Hub in the Studio Browser showing the Color
Picker control, including the different color number formats and the predefined color swatches.

Properties

The Color Picker has the following properties to set up the appearance and behavior, such as showing a color swatch preview, showing
the alpha slider, or controlling which color number formats are shown (RGB, HSL, or HEX).

210

Property Description

$colorformats The color formats shown in the list
of color formats; if empty, the color
format list is hidden so the end
user cannot enter a color number.
One or more of the constants:
kJSColorPickerFormatRGB,
kJSColorPickerFormatHex,
kJSColorPickerFormatHSL
(selected via a check list in the
Property Manager). If multiple
formats are selected, a button is
shown allowing the end user to
cycle through the color formats;
see the example app in the Hub

$currentcolorformat The initial color format displayed
to the user; ignored if
$colorformats is empty or does
not include the specified format

$copybutton If kTrue, a copy button is shown
allowing the end user to copy the
currently displayed color to the
clipboard

$previewcolor If kTrue, a swatch preview of the
selected color is shown; if
$copybutton is also kTrue, the end
user can click on the color swatch
to copy the color to the clipboard

$swatchlist A list instance variable containing
a single column list of colors
which are added as color
swatches to the bottom of the
picker; if blank no swatches are
added, see below

$usealpha If kTrue (and the variable in
$dataname is capable of storing a
64-bit integer), the control
displays the alpha slider and value,
in the range 0 (transparent) to 1
(opaque)

Events

The evColorPicked event is triggered when the user has selected a color, that is, when they let go of the pointer after selecting a color,
or when they tab out of a color number input field. pColor contains a 64-bit integer representing the selected color.

The evColorChanged event is triggered each time the color is changed; pColor contains a 64-bit integer representing the selected
color. If you wish to trap this event, it is recommended you use only a client-executed event handler since this will fire a lot of events
as the user drags on a color slider.

The example app in the Hub uses the evColorPicked and evColorChanged events and the new $clientevent method. The $event
method for the color picker control handles the evColorPicked event as follows:

On evColorPicked
Calculate iColorPicked as pColor

While the $clientevent method for the control (which is set to execute on the client) handles the evColorChanged event, which
changes rapidly as you click and drag inside the color palette of the control.

211

On evColorChange
Calculate iColorChange as pColor

Predefined Color Swatches

You can add a number of predefined color swatches to the color picker to allow the end user to select a preset color; the color swatches
could be colors defined in your corporate branding or colors that are in constant use in your app. The colors are specified in a list
instance variable containing a single column list of colors which is assigned to the $swatchlist property; if empty, no swatches are
added to the picker. For example, you could define the list in the $construct method of the form and assign the iswatches list to
$swatchlist.

Define iswatches (List), lcolor (64-bit integer)
Do iswatches.$define(lcolor)
Do iswatches.$add(rgb(0,142,214))
Do iswatches.$add(rgb(15,108,177))
Do iswatches.$add(rgb(255,155,0))
Do iswatches.$add(rgb(0,54,200))
Do iswatches.$add(rgb(225,216,29))
Do iswatches.$add(rgb(205,00,105))

The following screenshot shows the color picker with a set of predefined color swatches displayed at the bottom, defined in the
iswatches list and assigned to $swatchlist.

Figure 145:

Combo Box Control

Group Icon Name Description

Lists Combo Box Field combining entry box and droplist

The Combo Box control is a combination of a data field and a dropdown list from which the end user can make a selection or enter
their own value into the field. There is an example app in the Samples section in the Hub in the Studio Browser (called JS Droplist,

212

Figure 146:

Combo, Popup); the same app is available in the JavaScript Component Gallery. The following screen shows a Combo Box using the
Soft JS Theme.

The variable for the data field part is specified in the $dataname property. You can specify a default list of options in the $defaulttext
property, which is a comma-separated list of options, or build the list dynamically (with $::listname, see below). When $defaulttext is
specified, $defaultline specifies the list line which is selected when the form is opened (set to 1 by default). The $::listheight property
specifies the height of the droplist. The Combo Box has the $negallowed property which means it can display negative numbers.

Rather than using a default list specified in $defaulttext, you can assign the name of a list variable to the $::listname property to assign
the contents of the list to the droplist part of the combo box; $listcolumn specifies which column of the list variable is used to populate
the droplist part of the combo box.

When the list in a Combo Box is clicked an evClick is generated with the selected list line reported in the pLineNumber parameter.

Content Tips

The Combo box control has the $::contenttip property which is a text string which is displayed in the edit field part of the combo box
when it is empty to help the user understand what content should be entered into the field. For example, for a Last name field you
could enter ‘Enter your last name’ into $::contenttip to prompt the end user for their last name.

Auto correction and capitalization

Combo boxes have the $autocorrect and $autocapitalize properties, which when enabled means that any text entered into the edit
field section of the control is corrected for spelling and capitalization automatically.

Example

The maintenance screen in theWebshop sample app allows the user to enter new products or delete existing ones: specifically, the
data in the Webshop app contains food and drink items, but it could be any type of products. When the user enters a new product,
they can select the product type from a Combo control; this allows the user to select from a list of given product types or enter a new
one.

The $dataname of the combo control is set to iDataRow.product_group, and the $::listname is iGroupList. The evAfter event is enabled
in the $events property of the control. In the $constructmethod of the form, the iDataRow row variable is defined from the T_Products
table class, as follows:

$construct of jsMaintenance form\

sets up form sizes, etc, then…
Do iDataRow.$definefromsqlclass($tables.T_Products)
Do $cinst.$objs.$sendall($ref.$construct())

The last line of code triggers all the field specific $construct methods which in this case includes the Combo box control; the code
defines the iGroupList from the product_group column in the T_Products table class, performs a select on the data, and fetches all
the data back into the iGroupList variable.

213

https://bit.ly/OmnisJSGallery

Figure 147:

Do iGroupList.$definefromsqlclass($tables.T_Products,'product_group')\

Do iGroupList.$selectdistinct()
Do iGroupList.$fetch(kFetchAll)

When the user selects an item in the list or enters a new item into the entry part of the combo box, an evAfter event is triggered and
the $event method behind the combo control is called, as follows:

On evAfter
Do method newItem
Do $cinst.$setcurfield('product_name') ## puts the focus in the product_name field

The newItemmethod is placed behind the Combo box control itself and contains the following code:

Do iGroupList.$search($ref.product_group=iDataRow.product_group, kTrue, kFalse, kFalse,kFalse) ## test iGroupList for group/type entered

If iGroupList.$line=0 ## if not found in the group list
Do iGroupList.$add().product_group.$assign(iDataRow.product_group) ## add a new group to the list

End If

Complex Grid

Group Icon Name Description

Lists Complex Grid Grid which can display all types of data and
formatting

A Complex Grid can display multiple rows and columns of data taken from a list variable specified in the $dataname property of the
control. You can use a $constructmethod behind the grid control itself to build the list data to populate the fields in the complex grid.
To create a complex grid, you can place other controls in the row and header sections of the grid control, including standard entry
fields, droplists, buttons, and check boxes: these controls are duplicated for every row in the grid, displaying each row of data from the
data list. The $dataname of each component you place in the grid must correspond to a column in your list variable supplying the
data to the grid. A complex grid is a container field having its own $objs group containing the objects inside the grid control.

There is an example app called JS Complex Grid in the Samples section in the Hub in the Studio Browser; the same app is available in
the JavaScript Component Gallery.

In addition, there is aWebshop app that uses complex grids in theApplets section in theHub in the Studio Browserwhich is described
later in this section.

Events

You can place event methods behind the embedded controls to react to user input and clicks within individual fields/cells in the grid.
For example, you can have a button in each row of the grid which when clicked triggers an evClick event which runs the $event
method for the button that performs an action based on the row clicked.

The Complex Grid itself can have evClick & evDoubleClick events. When clicking on the background of a complex grid row, or a
control within the grid which does not have a click event enabled, the evClick or evDoubleClick will be fired. Both of these events
receive pLineNumber parameters indicating the line number which was clicked. If no line was clicked (the end user has clicked on
empty space), pLineNumber will be 0.

List Pager

The Complex Grid control has the $pagesize property that allows you to display the lines in the grid as separate pages: see the List
Control section for more details.

214

https://bit.ly/OmnisJSGallery

Figure 148:

Figure 149:

215

Tabbing inside a grid

When tabbing through controls on a form, the Complex grid is treated as a single tab stop (pressing Tab while the grid has focus will
move the focus to the next control on the form). Pressing Enter while the grid has the focus will move the focus inside the grid. Tab
and Shift+Tab can then be used to move between controls in the grid. Pressing Escapewill return focus to the grid.

Scrolling

The complex grid has the properties $vscroll and $hscroll to allow you to scroll a grid dynamically. The $vscroll property takes the row
number in the grid to scroll to. The $hscroll property takes the absolute horizontal pixel position to scroll to in relation to the left edge
of the grid control, that is, the grid will not scroll by a specified amount, rather the grid will scroll to the absolute position in the grid
specified by $hscroll.

Scroll Tips

You canuse the property $vscrolltips to display a scroll tipwhen a complex grid scrolls vertically. If $vscrolltips is kTrue, the default scroll
tip is the contents of column 1 of the list for the first fully displayed row. To override this default scroll tip, implement a client-executed
method for the complex grid object, called $getscrolltip. $getscrolltip accepts a single parameter (the rownumber for which the scroll
tip is required), and returns the scroll tip text.

Scrollable footer

A complex grid can include a scrollable footer section similar to the existing scrolling header section. To enable a scrollable horizontal
footer, you need to set $showhorzfooter to true. The complex grid has the following properties to control the appearance of the footer:

• $horzfooterheight
The height of the grid horizontal footer

• $horzfooterfillcolor
The fill color for the grid horizontal footer

• $horzfooterborder
The border style for the grid horizontal footer

• $horzfooterlinestyle
The line style for the grid horizontal footer

Row divider line style and Field Styles

The $rowdividerlinestyle is assignable at runtime and by $fieldstyle. As $rowdividerlinestyle is a custom field in a $fieldstyle it gets
assigned at runtime, and is treated like any other runtime property change, therefore it is assignable at runtime. Note that $rowdi-
viderlinestyle changes just the border between each row in a Complex grid, unless $rowborder is set to kJSborderPlain, in which case
it also effects the border around the client, i.e. the section of the complex grid which contains the rows.

Extra space

The $extraspace property can be used to add extra space to the line content in the grid. If $extraspace is zero, the height of each row
is the default height of the row content. If $extraspace is greater than zero, the height of each row is the font height + $extraspace.

Dropping data onto a grid

The end user can drag data from a remote form field and drop it onto a cell in the grid. Complex grids have the evCanDrop and evDrop
events, and the $dropmode property to enable drop support. The pDropRow event parameter is available for evCanDrop, evWillDrop
and evDrop events, and reports the row of the complex grid on which the drop is to occur (zero if the control does not belong to a
complex grid).

It is possible to drop data onto a single control in the grid (a cell) in any row in the grid, as long as it has its $dropmode enabled. If not,
the complex grid itself will receive the drop.

216

Exceptions

You can format individual cells in a complex grid by applying “exceptions” to those cells: you can then apply different formatting to
those cells. For example:

Calculate $cinst.$objs.Products.$objs.Product.6.$backcolor as kBlue

or using indirection:

Calculate lNum as 4

Calculate lProp as “$backcolor”
Calculate $cinst.$objs.Products.$objs.Product.[lNum].[lProp] as kBlue

You can attempt to set an exception for anyproperty, although inpractice thismaynot be satisfactory for someproperties. Appearance
properties, and button text for example should however all work as expected.

You can set exceptions in both server and client executed code.

In addition, the method $clearexceptions() can be used to clear exceptions. For example (Products is a complex grid object):

Clear all exceptions for the Product object on all lines where it has exceptions\
Do $cinst.$objs.Products.$objs.Product.$clearexceptions()

Clear all exceptions for the Product object on line 4
$cinst.$objs.Products.$objs.Product.$clearexceptions(4)

Clear all exceptions set in the complex grid
Do $cinst.$objs.Products.$clearexceptions()

Clear all exceptions set on line 4 of the complex grid
Do $cinst.$objs.Products.$clearexceptions(4)

You can execute $clearexceptions() in both server and client executed code.

Existing users should note: Prior to the implementation of exceptions, objects in the row section could lose property values set at
runtime, when updating the grid data. This issue has been resolved as part of the exception implementation.

Complex Grid Restrictions

A complex grid cannot contain another complex grid as a member, in any section. A complex grid cannot contain a subform in the
row section. These restrictions apply to controls that would be direct members of the section, or indirect members that are children
of a paged pane. Omnis enforces this by preventing you from dropping these controls into the relevant section(s).

Note: the $add() method for remote form class objects has not been updated to enforce this restriction, therefore using $add() to
place controls in a section which does not support them could lead to undesirable results.

Example

TheWebshop sample app, available in theHub in the Studio Browser, uses aComplex grid in themain product remote form to display
a list of products. Individual fields for the picture, name, description, price/size of the product are added to the first line of the complex
grid; when the form is opened on the client and the data is loaded into the grid, these fields and are repeated for each row in the data
list (one row per product).

The $dataname of the complex grid is set to iProductList which is built from a table class T_Products which is linked to a schema class
sProducts. A $construct method is placed behind the complex grid that builds the list needed for the complex grid data.

217

Figure 150:

$construct of complex grid control in jsShop form

Do iProductList.$definefromsqlclass($tables.T_Products)
Calculate whereClause as con('WHERE product_group = ',kSq,'Appetizers',kSq)
Do $cfield.$build(whereClause) ## calls $build

$build method also behind complex grid control in jsShop form
Do iProductList.$select(pWhereClause,' ORDER BY product_isfood desc')
Do iProductList.$fetch(kFetchAll)

When the form is opened, the $constructmethod is run and the product list is built from the database, while the data itself is displayed
in the various fields embedded in the complex grid with each product shown on a separate line in the complex grid.

There are three order buttons placed in the row of the complex grid; they are repeated for each product in the list and allow the end
user to order different sizes of product, such as a small, medium, or large drink or pizza. Each of the buttons has a simple method
behind it that passes a number to the process_order class method; the first button sends value 1, the second button value 2, and the
third button value 3.

‘Order now’ button method
On evClick
Do method process_order (1)

See the Data Grid section for the process_order method which updates the iOrderList and the Orders data grid accordingly.

Data Grid Control

Group Icon Name Description

Lists Data Grid Simple grid for text and numerical data
display

TheData Grid is a powerful and versatile control that can display character and numeric data in a grid like structure, much like a table
or spreadsheet format, allowing you to create compact, data-rich UIs for your web and mobile applications.

There is an example app called JS Data Grid in the Samples section in the Hub in the Studio Browser (the same app is available in
the JavaScript Component Gallery), showing how to use Data grids, including how to use custom cell formatting; the following screen
shows the Vintage JS Theme in use.

In addition, theWebshop example under the Applets section in the Studio Browser uses a data grid which is described later in this
section.

Setting up a Data Grid

The content for a data grid is supplied from a list variable specified in the $dataname property. The number of columns in your grid
would normally correspond to the number of columns in your data list, while the number of columns in the grid object itself in set by
$designcols. For each column in the grid (under the Column tab in the PropertyManager) you need to assign $columndatacol tomap
the grid column to a column in your data list: you can use the column name or number in $columndatacol. Setting $columndatacol
to zero for a grid column will hide the column at runtime.

The $hasheader property specifies whether or not the grid has a main header, while $columnheaderheight is the height in pixels of
the column header; if set to 0 (the default) the header height will be the same as $rowheight. The $headertext property specifies the
text for the header, $::boldheader lets you specify a bold header and $columnheadersbold allows you to display the headers in bold.

The $columnnames property lets you specify the heading text for each column in the grid (a comma separated list of names), which
do not have to be the same names as the column names in your data list variable. You can use \n in the text for $columnnames to
create a line break.

The $currentcolumn property is the current grid column for which properties are being displayed under the Column tab in the Prop-
erty Manager. The $movecolumn property allows you to move a column to the specified position in the grid during design mode.

218

https://bit.ly/OmnisJSGallery

Figure 151:

Figure 152:

219

The end user can enter data into the cells of the grid if $enterable is enabled, and as the end user tabs the grid can grow by adding
more lines to accommodatemore data if $extendable is enabled. If $autoedit is true, and a cell is editable, it will automatically go into
edit mode when it is selected (and $hcell or $vcell are set).

The height of the rows in a data grid adjusts to fit the height of the font size specified in $fontsize, unless you specify a fixed height in
pixels in $::rowheight. In addition, the height of the header area is adjusted automatically according to the font, but you can fix the
height in $::headerheight.

Events

Alongwith the standard evClick and evDoubleClick events the Data Grid reports a number of events which you can detect in an event
handling method behind the grid control.

• evClick and evDoubleClick
sent after the data grid has been clicked or double-clicked
pHorzCell - The column number of the new current cell.
pVertCell - The row number of the new current cell.
pDataColumnName - the data list column name (or number) when the event is triggered

• evCellChanged
sent when the current cell has changed, e.g. when navigating between cells with the arrow keys or clicking a cell that isn’t the
current cell.
pHorzCell - The column number of the new current cell.
pVertCell - The row number of the new current cell.
pDataColumnName - the data list column name (or number) when the event is triggered

• evCellValueChanged
sent when the user has changed the value of a cell.
pHorzCell - The column number of the cell in the grid that has changed (not the column of the data list belonging to the data
grid)
pVertCell - The row number of the cell in the grid that has changed.
pDataColumnName - the data list column name (or number) when the event is triggered

• evCellValueChanged
sent when the user has changed the value of a cell.
pHorzCell - The column number of the cell in the grid that has changed (not the column of the data list belonging to the data
grid)
pVertCell - The row number of the cell in the grid that has changed.
pDataColumnName - the data list column name (or number) when the event is triggered pIsNewRow - if true, the cell belongs
to a new row

• evColumnsResized
sent when the user has resized a column.
pColumnWidths - a comma separated list of the new column widths

evCellChanged

When evCellChanged is triggered, pVertCell will be the next line number in the list, but at the point when the event is triggered,
pVertCell will reference a line which does not exist yet, which may cause an issue in the code in your event method. To mitigate this,
you should check pVertCell is valid before executing the other list code.

pDataColumnName

The pDataColumnName event parameter contains the data list column name (or number) when the event is triggered. This is useful
when columns in the data list do not map directly to the columns of the form data grid, that is, if $columndatacol is used to set the
column order. If the list column does not have a name, the parameter contains ‘C1’, ‘C2’, etc, so it can be used notationally. The value
of the cell can be obtained with: iDataList.[pVertCell].[pDataColumnName].

220

Sorting Grid Columns

The data in a data grid is not sorted by default – initially the order of the data in a data grid is the same as set by the data list specified
in $dataname, and depends on how and in what order the data is compiled. However, you can use the $sort() method to sort the data
on a specified column in the data list, for example, you can include $sort in your method that builds the data list. The syntax of the
$sort() method is:

Do list.$sort(calculation | sort field[,bDescending=kFalse]...)

The calculation or sort field can use a colname, $ref.colname or listname.colname to reference the column in the data list to be sorted.
The data is sorted in ascending order by default, but you can pass the bDescending parameter as kTrue to sort the data in descending
order. You can specify up to nine sort fields, including the sort order flag.

The end user can sort the data in a grid by clicking on a column header, when $cansortcolumns is set to kTrue (the default for new
data grids). The grid data is sorted in ascending order, and an arrow icon is displayed in the column header to indicate the sort order;
clicking again on the same column header will reverse the sort order on that column, so after a second click the sort order will be
descending. Clicking on a different column header will sort the grid on that column, and the icon will move to that column.

The $cansortcolumns property enables the ability to sort all columns in the grid, but you can use the $columncansort property (under
the Column tab in the Property Manager) to enable or disable sorting for each column (when $cansortcolumns is kTrue); note you
have to set $currentcolumn to apply properties to specific columns.

Customizing the sort order

If you wish to customize or override the default sort order when the end user clicks the header of a sortable column, you can use the
client method $sortgrid(pColumnNumber,pDescending), which can be added to the control methods for the data grid and must be
client executed. The method has two parameters:

• pColumnNumber
the number of the column in the $dataname list which should be sorted

• pDescending
True if the sort should be in descending order, false for ascending

This method will be called whenever the user clicks on a column header to sort the list, and so can contain any code to implement
your own sort. Themethod should return kTrue to indicate that you have performed a custom sort. Returning kFalse (or nothing), will
trigger the default sort order to be used.

Enter Key Behavior

When $entertodoubleclick is true, the Enter key is interpreted as a double-click on the data grid. In this case, a double-click event is
sent when the focus is on the grid and the Enter key is pressed, allowingmore control from the keyboard for the lists and grid controls.
The property is available for Data grids, as well as Lists, Tree lists, and the Date picker control.

The property is set to kFalse by default (to maintain backwards compatibility), other than for JS Lists, which defaults to kTrue which
interpreted Enter as a double-click in previous versions.

ColumnWidth

The $::columnwidths property allows you to set up the widths of the columns, which is a comma separated list of integer values rep-
resenting each column width in pixels. In order for the data grid to cater for multiple screen sizes, the $columnwidthsarepercentage
property allows you to switch to using a percentage in the $::columnwidths property. If true, the column widths in the data grid
specify a percentage of the width of the control rather than a specific number of pixels. This affects the properties $columnwidth,
$::columnwidths, and $columnminwidth.

The $resizecolumn property allows you to specify the column number of the column that is resized when the width of a data grid
changes: zero means the last column extends if necessary to fill the control width, -1 means no column is resized. The property does
not apply if $columnwidthsarepercentage is kTrue.

221

Footer row

You can add a Footer Row to aDataGridwhichwould allow you to display column totals, for example, or any other data. The $hasfooter
property enables the footer row for the data grid, which is a fixed, non-scrolling row at the bottom of the grid. For numeric columns,
the total for each column is shown in the footer row automatically.

Figure 153:

Footer Row Properties

The $hasfooter property enables the footer row for a Data grid. You can set the properties of the footer row on the Footer tab in the
Property Manager using the following properties:

Property Descriptio

$footerbackalpha The footer background alpha
$footerbackcolor The footer background color
$footerdateformat The footer date format
$footerdateformatcustom The footer custom date format
$footerfontstyle The footer text style
$footerheight The footer height
$footerjst The footer text justification
$footerlabel The default label shown in each footer

cell; there is an option to pass in a
placeholder

$footernumberformat The footer number format
$footertextcolor The footer text color
$footertype Footer type, a kJSDataGridFooterType…

constant: kJSDataGridFooterTypeTotal
(the default),
kJSDataGridFooterTypeMean (average),
kJSDataGridFooterTypeMedian, kJSData-
GridFooterTypeFooterColumnValue,
kJSDataGridFooterTypeCustom,
kJSDataGridFooterTypeNone

$footerzeroshownempty If true, show as empty for zero values

Footer Column Properties & Events

222

The following are properties for a column in the footer row, shown under the Column tab in the Property Manager. You can set
$currentcolumn (a design property) or click on a column in design mode to set the properties for each footer column.

Property Description

$footercolumnbackalpha The footer column background alpha
$footercolumnbackcolor The footer column background color
$footercolumndateformat The footer column date format
$footercolumndateformatcustom The footer column custom data

format
$footercolumnfontstyle The footer column font style
$footercolumnhidden If true, the column is hidden
$footercolumnjst The footer column text justification
$footercolumnlabel The default label shown in the footer

cell
$footercolumnnumberformat The footer column number format
$footercolumntextcolor The footer column text color
$footercolumntype The default is to use setting in

$footertype, otherwise an individual
column can be set to a
kJSDataGridFooterType… constant;
see $footertype above

$footercolumnvalue If the $footercolumntype is set to
kJSDataGridFooterTypeFooterColum-
nValue, it will use the value in
$footercolumnvalue property, with
the $footercolumnlabel prefix, if used.
Otherwise, this property could be read
(on the client) for any footer type

$footercolumnzeroshownempty If true, the footer column is shown as
empty for zero value

If a List Pager is used or a filter is applied to the list, the automatic totals are for only the data that is currently displayed; specifically
for a list pager, the column totals are for the current page only.

Footer Row Methods

When $footertype is set to kJSDataGridFooterTypeCustom, you can use the $updatefooterrow() clientmethod to update the contents
of the footer row. The method is called to notify of the footer data changing/requiring a change for every footer column type except
kJSDataGridFooterTypeNone (as there is no footer data to be displayed). It is also called on initialization, andwhenever any of the data
in the grid changes.

Where applicable, a column’s $footercolumnvalue property will be updated before calling into $updatefooterrow() so that this value
can be read and used elsewhere, i.e. when the footer type is kJSDataGridFooterType(Total/Meann).

The pColumn parameter is the column number in the data grid list variable (assigned to $dataname), ignoring the display order; the
pDataColumnName is the column name in the list data.

If Character data is returned, it will be displayed as-is, and will ignore $footerlabel. If Number data or a Date is returned, it will be
displayed with the $footerlabel and formatted according to $footercolumnnumberformat or $footercolumndateformat.

Events

The evFooterClick event is triggered if the end user clicks a cell in the footer row, passing the column number clicked.

The evFooterUpdated event is triggered when a footer or multiple footers have changed. pUpdatedColumns is a list of column num-
bers that have been updated. The event is triggered after footers have updated so you can receive the value of $footercolumnvalue
if required.

223

Cell Formatting

You can apply your own formatting to individual cells in a Data Grid. For user-defined Data Grids (where $userdefined is set to true)
and where a column has its columnmode set to kJSDataGridModeCustomFormat, you can customize the HTML used to layout or
format an individual cell in the grid.

When the grid is rendered (this occurs on demand, e.g. when scrolling to make new data visible), it calls the object client method:

$formatcell(pListLineNumber, pDesignGridColumnNumber, pDataColumnNumber, pDataColumnName)

which you implement to return html for the formatted cell contents. The parameters pDataColumnNumber and pDataColumnName
allow you to locate the correct data in the underlying list by directly referencing the column in that list, instead of the displayed
datagrid.

The HTML can, within reason, be anything you like: you can also just return a text string. To assist this, there are two new calls you can
make:

• styledtohtml(text)
the styledtohtml(text) function returns the HTML representing the text string containing embedded styles inserted using style()
function. This is a built-in function, under the General tab of the Catalog, whichmust be run in a client-executedmethod in the
JavaScript Client only.

• $addcolorcss(cClassName,iRgbColor,iAlpha)
is a method of the data grid object (as such it can only be executed in client-executed methods). Call this in $init to add your
own background color class to usewith the html returned by kJSDataGridModeCustomFormat.This class takes browser specific
issues with transparency into account.

For example, you can use the following method:

Do $cinst.$objs.datagrid.$addcolorcss("myclass",rgb(255,0,0),128)

in $init, and then do the following in $formatcell:

Calculate columnvalue as iList.[row].[col]
If (columnvalue = "bad")

Quit method con('<div class="myclass" style="padding:0;margin:0;height:16px">',columnvalue,' ','</div>')
End If

Quit method columnvalue

Using transparency in the CSS background allows the selection color to show through the formatted cell.

There is an example app called Data Grid Formatting in the Samples section in the Hub in the Studio Browser to show how you can
use the grid formatting; the same app is available in the JavaScript Component Gallery.

Data Grid Filter

You can add a filter to a data grid by enabling the $hasfilerarea property. When true, the grid has a filter area which can be opened by
clicking on a ‘spyglass’ button in the data grid header; the search filter will be applied to the current column (the Product column in
the screen shown below). The end user can type into the filter entry box to filter the contents displayed in the column. The following
image shows the filter enabled for column 1:

The other properties to set up the filter include:

• $filtercol
The grid column to which the filter will apply; this can be changed at runtime in a client method, see below

• $filterareaheight
The height of the filter area (when $hasfilerarea is enabled); if zero, the height is calculated automatically

224

https://bit.ly/OmnisJSGallery

Figure 154:

Figure 155:

225

• $filterlabel
The text label for the filter entry field

• $filtervalue
The name of an instance variable that contains the value used for filtering

• $multifilters
enables a filter for all the columns in the data grid; see below

The following code is the $event method for a data grid, set to execute on the client:

On evCellChanged
Calculate iHorzCell as pHorzCell
Calculate iVertCell as pVertCell

On evHeaderClick
Calculate $cobj.$filtercol as pHorzCell
assigns the filter to the selected column
Calculate lColNames as $cobj.$columnnames
Calculate lColIndex as pHorzCell-1

Find the display name of the column clicked:
JavaScript:lFilterName = lColNames.split(",")[lColIndex];
Calculate $cobj.$filterlabel as con(lFilterName,": ")

Filter control method

You can implement the $filtergrid control method on a data grid, which will be called whenever the user types text into the filter box
for a single filter enabled grid (if enabled); this control method does not apply when $multifilters is enabled.

The $filtergrid data grid method should be set to execute on the client.

$filtergrid(Column data, Filter String)

The $filtergrid method receives two parameters: ColumnData & FilterString, the data in the filtered column for the row in question
and the current filter string.

You can return true to say that the row should be included, or false to exclude it. If you return null (or nothing), the default handling
will be applied to determine if the row should be shown.

Open filter method

The $openfilter client-executedmethod canbe called from$init to allow you to open the filter area in the gridwhen the form is opened.

• $openfilter([bOpen])
opens or closes the filter area if the grid has one, and returns kTrue if the operation was completed. bOpen: Use kTrue to open
the filter area or kFalse to close it. Defaults to kTrue if unspecified.

Multiple filters

In addition to being able to set a single filter for any column, you can enable a filter for all the columns in the grid by enabling the
$multifilters property (and in this case $filtercol is ignored). When $multifilters is enabled, a default filter is added to each column in
the grid (when the spyglass is clicked).

The filter has a number of operators to allow the end user to select the search type; the list of operators in the filtermenu is determined
by the data type of the column. When a search type is selected, a search field is displayed allowing the end user to add a search string;
for date columns a date picker is also displayed.

The end user can use various keys to navigate the filter menus.

• Tab or Shift Tabwill jump to the next or previous column filters.

226

Figure 156:

• Space or Return on a filter type button will reveal the context menu.

• Up or Down arrow to move up and down the filter menu items.

• Escape closes the filter menu, returning to filter button.

• Space or Return on a filter menu item will select the item.

By default a column will show a full set of filter types based on the column data type. You can override this and only show a subset,
or remove the filter from the column altogether. You can do this using a client method called $multifiltermenu(pCol), which is called
before a popup filter menu is shown for a column. You can assign the filter types for each column using the pCol parameter; the filter
types can be summed for multiple filter types, for example:

If pCol=6
Quit method kJSDataGridFilterContains + kJSDataGridFilterNotContains

Else If pCol=7
Quit method kJSDataGridFilterHidden

End If
Quit method kJSDataGridFilterDefault

If you assign any filter types that are not supported by the column data type, the filter types will be ignored. You can use the following
filter type constants:

Constant Description

kJSDataGridFilterContains Include contains (case insensitive)
kJSDataGridFilterDefault Include all filter types for the column data type
kJSDataGridFilterEmpty Include must be empty
kJSDataGridFilterEquals Include equals (case insensitive)
kJSDataGridFilterHidden Hide the column filter at runtime
kJSDataGridFilterLessThan Include less than
kJSDataGridFilterLessThanEqual Include less than or equal
kJSDataGridFilterMoreThan Include more than
kJSDataGridFilterMoreThanEqual Include more than or equal
kJSDataGridFilterNotContains Include does not contain (case insensitive)
kJSDataGridFilterNotEmpty Include must not be empty
kJSDataGridFilterNotEquals Include does not equal (case insensitive)

Localization

The filtermenu name and filter text signs can be localized (e.g. == for equals) and are stored in theOmnis omnisloc.js. Themenu name
and sign are separated with a “:” colon character and both parts are required.

227

"ctl_dgrd_filter_none": "No Filter:?",
"ctl_dgrd_filter_equals": "Equals:==",
"ctl_dgrd_filter_notequals": "Not Equals:!==",

Dynamic Filters

You can set or read the filters in a Data grid dynamically in your code using the $::filters property. The evFilterChanged event reports
when data grid filters change.

The $::filters property (runtime only) allows you tomanage the current filters for a data grid. When reading the property, the property
returns a list in the same format as pFilters in evFilterUpdated (see below). Setting the property should be done using a list in the
same format, that is, a single column list containing rows of data to change the filter values. The only difference for setting the filter
is that only three columns are required in each row, either colNumber or colName can be supplied. If both are supplied, colName will
take precedence over colNumber in the case that they reference different columns. The columns in the row can be in any order, but
their names must match the format (i.e. colNumber/colName, filterType and value).

TheevFilterUpdated event is fired every time the filter in thedatagrid changes. The event is fired for both types of filter ($multifilter can
be kTrue or kFalse). It receives one parameter, pFilters, which contains a single column list of rows. Each row contains four columns:

• colNumber or colName
The list column number or name.

• filterType
The filter type, a kJSDataGridFilter… constant.

• value
The value for the filter. The data type of this should be determined by the column data type.

When $multifilter is kFalse, pFilters is in the same format, but will only contain one row entry.

The following example filters the data grid by product and price:

Do lFiltersList.$define(lFilterRow)
Filter the column iProduct by values containing "ba"
Do lFilterRow.$define()
Do lFilterRow.$addcols("colName", kCharacter, kSimplechar, 100, "filterType", kInteger, k32bitint,, "value", kCharacter, kSimplechar, 100)
Do lFilterRow.$assigncols("iProduct",kJSDataGridFilterContains,"ba")

Do lFiltersList.$add(lFilterRow)

Filter column 3 by values greater than 10
Do lFilterRow.$define()
Do lFilterRow.$addcols("colNumber", kInteger, k32bitint,, "filterType", kInteger, k32bitint,, "value", kInteger, k32bitint,)
Do lFilterRow.$assigncols(3,kJSDataGridFilterMoreThan,10)
Do lFiltersList.$add(lFilterRow)
Do $cinst.$objs.DataGrid.$::filters.$assign(lFiltersList)

Row Formatting

The $setlineheight property allows you to center text vertically in the rows in the data grid. If true, the grid sets the line height so that
text is vertically centered in each row (the default is kFalse).

Header Formatting

You can create your own formatting for column headers by adding a client-side method called $formatheader which takes two pa-
rameters:

• Parameter 1
the text for the column header

228

• Parameter 2
the design grid column number (1-n)

The return value is HTML to use for the header, for example, for a bold header:

Param 1

For red text:

Param 1

For right justified text (using float so that sort indicators still appear):

<div style="float:right;">Param 1</div>

You can reassign the column name to force a call to recalculate the HTML for the column header, even if the text has not changed.

List Pager

The Data Grid control has the $pagesize property that allows you to display the lines in the grid as separate pages: see the List Pager
section in the List Control for more details.

Figure 157:

Pick List

You can add a dropdown list or “picklist” to one of the columns in your data grid to allow the end user to select a value from a list of
preset values. You must create another list containing the list of preset values and specify its name in the $columnpicklist property
for the column in which you want to add the picklist. The datatype of the column in your main data list variable corresponding to
the picklist column must be an integer, and $columnmode for the grid column itself must be set to kJSDataGridModeDropList. The
integer value stored in this column will correspond to the line number of the selected line in the picklist.

For example, if youwant to list a product in yourmain grid field that has only four possible colors, you could create a sublist containing
those color values and assign this sublist to a column in your grid field corresponding to an integer column in your main data list: this
would allow the end user to choose a color from a preset list of colors.

The $getpicklist() client method allows picklist columns to be specified dynamically. It is called for every row in the main list for the
data grid, allowing you to return a custom list for each row in a Data Grid, if required. It contains three three parameters: pHorzCell,
pVertCell and pDataColumnName to assist with generating the required list. The return should be a single column list, with each row
being an option in the picklist. In the case of multiple column lists returned, it will only use the first column. Note that you must still
specify an instance variable list in $columnpicklist, otherwise the column will not be set up as a picklist type column.

229

Row Styles

The $rowcsscol property allows you to specify CSS styles for a row in a data grid. The $rowcsscol property specifies the columnnumber
in the $dataname list for specifying custom CSS class names to apply to individual rows. Multiple class names can be assigned with
a space separated list.

The CSS rules for classes can be added to user.css: it may be necessary to use !important to override existing styles. For example, in
user.css:

.omnis-datagrid .highlight {
background: red !important;
color: white !important;

}

Horizontal Padding

The $horzpadding and $columnhorzpadding properties allow you to set the horizontal padding for all the cells in the grid, or for
individual user-defined columns. When $userdefined is kFalse for all columns in the grid, the value of $horzpadding is applied to
every cell in the grid, including the grid title, data cells, column header cells, and footer row cells.

When $userdefined is kTrue for a column, the value in $columnhorzpadding is applied to the relevant datas cells, header cells, and
footer cells for that column.

Both properties default to 2 for existing data grids in converted libraries to minimize appearance changes. While for new data grids,
both properties default to 14 to match the horizontal padding for Edit fields.

Grid Line Visibility

The $gridlinesvisible property allows you to select which parts of a data grid will display grid lines; in previous versions you could turn
all lines on or off. When using the Property Manager to change the $gridlinesvisible property, a checklist is displayed allowing you to
check or uncheck the kJSDataGridVisibleGridLines… constants (see below) to specify which individual lines you want to be displayed.

Constants Description

kJSDataGridVisibleGridLinesCellHorz Horizontal cell grid lines
kJSDataGridVisibleGridLinesCellVert Vertical cell grid lines
kJSDataGridVisibleGridLinesHeader Header grid line
kJSDataGridVisibleGridLinesColumnHeaderHorz Horizontal column header grid lines
kJSDataGridVisibleGridLinesColumnHeaderVert Vertical column header grid lines
kJSDataGridVisibleGridLinesFilter Filter grid line
kJSDataGridVisibleGridLinesFooterHorz Horizontal footer grid lines
kJSDataGridVisibleGridLinesFooterVert Vertical footer grid lines

To set this property in your code, you can add the constant values together to get the desired result, for example:

Calculate $cinst.$objs.DataGrid.$gridlinesvisible as kJSDataGridVisibleGridLinesHeader + kJSDataGridVisibleGridLinesColumnHeaderHorz

For existing grids, those with $gridlinesvisible set to kTrue will have all values selected, and those set to kFalse will have no values
selected, which means existing grids should see no change in appearance.

Formatting cells

The $formatcell() client method is fired whenever the selection state of a row in a data grid changes. A new boolean parameter,
pSelected, has been added to allow you to style cell values depending on whether the line is selected or not.

230

Column Data Type Formatting

When you set $columnmode to kJSDataGridModeFormatted, the mode acts like kJSDataGridModeAuto, in that the data grid auto-
matically handles the data based on its type. However, the grid formats the data using the properties $columndateformat, $column-
dateformatcustom, and $columnnumberformat, rather than the $js…format… properties.

You can use an integer column data type to represent a checkbox. To do this set $columnmode to kJSDataGridModeFormatted and
set the $columnnumberformat to “bool”. This will cause integer data to be treated as Boolean, where non-zero means true, and zero
means false. If the end user updates the grid using the check box, 1 will be stored in the list for true, and zero for false.

Highlighting Cells

The properties $hilitefocusedcell and $cellhilitecolor allow you to highlight the cell that has the focus.

• $hilitefocusedcell
If true, the focused cell will be outlined in the color specified by $cellhilitecolor

• $cellhilitecolor
The color of the focused cell’s outline, provided $hilitefocusedcell is kTrue

Grid Scrolling

JavaScript Data Grids have $vscroll and $hscroll properties which allow you to scroll a grid vertically or horizontally at runtime in the
client browser; note these properties are write-only meaning that you cannot return their values at runtime.

The vertical scroll value assigned using $vscroll is the position of the scroll bar according to row number in the control. The horizontal
scroll value assigned using $hscroll is the designed grid column number for a data grid.

Tabbing through cells

The property $tabthroughcells allows you to change the action of the tab key while the focus is on a data grid. If set to kTrue (default
is kFalse), tabbing from a cell which is not being edited selects the next cell, or Shift+tab selects the previous cell. In addition, setting
$hcell or $vcell triggers edit mode if $autoedit=kTrue.

Auto Correction and Capitalization

Datagrids have the $autocorrect and $autocapitalize properties which means that text entered into the cells of a data grid are cor-
rected for spelling and capitalization automatically.

Validating data

The $validate method allows you to validate the data entered into any cell in the grid. If present, the method is called when an edit
is made to a grid cell, with the parameters pRow, pCol, pNewValue being passed to the method. The method returns true to indicate
that the change is valid, depending on the validation code you add to the method, otherwise the value in the cell will revert to the
previous value.

Numeric Data Validation

Data entered in grid columns with the numeric data type will be validated automatically, as it is entered. When the end user tries
to enter invalid data into the grid column field, such as an alphabetic character, the data is rejected, and the field is highlighted
momentarily to indicate an error (the default action is to show a red border).

When leaving the entry field, the value is normalized, that is, integer data is constrained to the valid range or for other numbers it is
rounded to the correct number of decimal places; also, leading zeroes are removed, and so on.

231

Initial Row Values

When a Data grid has $enterable & $extendable enabled, the user can add a new row by entering data into the empty ‘extendable’
row at the bottom, and the remainder of the columns in that row are given default values.

However, if you want to override these defaults, you can now implement a method named $initextendrow on the data grid control.
This method should return a row with column values set to the appropriate defaults you wish to use. The order and the data type of
the columns must match the order and types of the columns of the list defining the Datagrid and specified in $dataname.

Inserting Dates as null values

Data Grid columns have the property $columnallownulldateinput to allow a null value to be added to a row of data when the end user
tabs out of the last line of the grid to create a new line automatically.

If $columnallownulldateinput is true, and the datatype of the column is Date, cells in the column will default to a value of null when
added through the UI. Additionally, if this property is enabled, the end user can change a date to be null by pressing Backspace or
Delete while the cell has focus.

If false (the default), the behaviour is unchanged from previous versions. Note it is not possible for the end user to input null values
into the grid, via the popup date picker, for example.

Using the Date Picker

The Data Grid uses the appropriate Date Picker according to the constant specified in $dateformat or $columndateformat. If this is
set to kJSFormatCustom, then $dateformatcustom or $customdateformatcustom is used as above. If set to kJSFormatNone, then it
will attempt to use the data subtype applied to the dataname of the column to determine which picker to use.

Data Grids have the $datepickermode and $datepickerpopupstyle properties, as well as $columndatepickermode and $column-
datepickerpopupstyle. The latter two work in the same way, but on the given column when $userdefined = true. The following shows
$datepickermode set to kJSDatePickerModeCalendar.

Figure 158:

Entering Dates Manually

The properties $editdatetext and $columnallownulldateinput allow end users to enter a date manually via the keyboard rather than
using the date picker. When set to true, $editdatetext (and $columneditdatetext when $userdefined=kTrue), allows keyboard entry
of a date/time. If a date that cannot be parsed is entered, it will revert to the previously stored date, unless $columnallownulldatein-
put=kTrue, in which case the field data will become null.

232

Note this has no effect on the date picker popup control, so if you don’t want to use the picker you need to apply the following css rule
to hide the picker:

.datetimepopup-button {
visibility: hidden;

}

Fixed Columns

The $frozencolumns property allows you to fix or “freeze” a number of columns to the left of the grid, so they do not scroll when the
other columns in the grid are scrolled horizontally. The property takes a number value from 1 upwards corresponding to the first
column on the left of the grid. For example, you could specify a value of 1 to create row headings that are fixed to the left of the grid.

Column Header Justification

The following properties allow you to justify content in data grid column headers.

• $headerjst
A kJSDataGridJst… constant that sets the alignment of the data grid header

• $columnheadersjst
A kJSDataGridJst… constant that sets the alignment of all the column headers; overrides $columnheaderjst

• $columnheaderjst
A kJSDataGridJst… constant that sets the alignment of all the current column’s header; $columnheadersjst must be set to
kJSDataGridJstDefault

Color Picker

The kJSDataGridModeColorPicker column type displays a color picker in the data grid cell allowing the end user to select a color. The
end user can click into the color palette on the picker to select a color, or the entry field accepts colors in the hex (the default), rgb or
color name formats. You can navigate the color picker from the keyboard without the picker losing the focus.

A numeric color value is returned from the color picker, or a color function can be used to set the color of the column, such as
truergb(kDarkGreen), or rgb(255,0,0).

For example, to set the colors for the first 3 lines in the second column, use the code:

Do iList.$add('Bag',truergb(kDarkGreen),'21/02/12','19.00',kTrue,'')
Do iList.$add('Balls',rgb(255,0,0),'20/02/12','4.55',kFalse,'Delivery next week')
Do iList.$add('Clubs',rgb(0,0,255),'20/12/11','299.99',kTrue,'')

You can specify the text for the OK and Cancel buttons on the color picker using $colorpickeroktext and $colorpickercanceltext.

Youcan localize the strings for the color entry field for thearia-label andaria-describedbyaccessibility properties, “ctl_dgrd_color_input”
and “ctl_dgrd_color_input_desc” respectively.

Number Columns

Data grid columns with type Number have the property $columnzeroshownempty which specifies that values of zero are shown
empty rather than displaying a 0 digit.

Hiding a column

The $columnhidden property allows you to hide the specified column at runtime. The default is false, meaning the column is visible.

233

Figure 159:

Figure 160:

234

Data Grid Example

TheWebshop sample app, available under the Applets section in theHub, uses a data grid to display a list of products that have been
ordered in the main product jsShop remote form. The data grid control is called ‘orderGrid’ and is seen here in design mode:

The $dataname of the data grid is set to iOrderList which is defined from a table class T_qOrders which is linked to a query class
qOrders. When the product form is opened, the $construct method behind the data grid defines the list from the table class.

$construct behind the data grid
Do iOrderList.$definefromsqlclass($tables.T_qOrders)

When the end user clicks the ‘Order Now’ button in the product window, the data for the selected product and size/type is passed to
the process_order method (as value 1, 2, or 3), which inserts the data into the list (after a check to see if the user has already ordered
the same product) and the list is redrawn. The process_order method is as follows:

process_order class method in the jsShop form
contains pButtonNumber parameter (Short Int) to receive the value of the product button clicked
If iProductList.product_price_[pButtonNumber]>0 ## price must be greater zero
Do iOrderList.$search($ref.order_product_id=iProductList.product_id &$ref.order_size=iProductList.product_size_[pButtonNumber],kTrue,kFalse,kFalse,kFalse)
If iOrderList.$line ## found one so increment existing order

Calculate iOrderList.order_amount as iOrderList.order_amount+1
Else ## new one so add to iOrderList

Do iOrderList.$add(#NULL,#D,iProductList.product_id,iProductList.product_name, iProductList.product_size_[pButtonNumber],1,0,iProductList.product_price_[pButtonNumber])
Do iOrderList.$line.$assign(iOrderList.$linecount())

End If
Calculate iOrderList.total_price as iProductList.product_price_[pButtonNumber]*iOrderList.order_amount
Do $cinst.$objs.checkOutBtn.$enabled.$assign(iOrderList.$linecount()>0)
Do $cinst.$objs.orderGrid.$redraw()

Else
Do $cinst.$clientcommand('yesnomessage',row(con('Would you like to order >',iProductList.product_size_1,'< instead?'),'Not available','$orderYes'))

End If

The Apps Gallery on the Omnis website has a further example showing how you can use the Data grid component.

Date Picker Control

Group Icon Name Description

Other Date Picker Date picker with touch selection

The Date Picker Control allows the end user to select a single date, a date range, and/or a time, rather than having to enter a date
or time from the keyboard; in this case, the UI is better and issues with formatting a date or time are avoided. There is a sample app
called JS Date Picker in the Hub in the Studio Browser, and the same app is available in the JavaScript Component Gallery.

You can assign a Date/Time instance variable to the $dataname property to load the date/time selected by the user, or you can assign
a two column instance row variable to contain the date/time and time zone offset of the client in the respective columns (see below
for info on the time zone offset).

You can assign an empty string to a Date variable on the client, in which case it will be treated as an ‘empty’ date. Assigning 0 to a
Date variable on the client sets it to 31 Dec 1900, the same as on the Omnis Server.

235

https://bit.ly/OmnisJSGallery

Date Picker Style

The $datestyle property specifies the style or date/time content of the date picker control, which can be a combination of date & time,
date only, time only, or a calendar view, as specified by a kJSDatePickerStyle… constant:

Constant Description

kJSDatePickerStyleDate a date display only
kJSDatePickerStyleDateTime a date and time are displayed (right below)
kJSDatePickerStyleTime a time display only
kJSDatePickerStyleCalendar a calendar is displayed (left)
kJSDatePickerStyleCustom a custom format, see below

The color of the Date Picker is specified with $datefacecolor while $datefacealpha sets the transparency (value 0-255).

There is an example app in the Samples section in the Hub in the Studio Browser showing how you can use the Date picker to allow
the end user to select a date; in addition, the Holidays example app under the Applets option in the Hub uses the Date picker, which
is described later in this section.

Figure 161:

Mode & Popup Style

In addition to the $datestyle property, you can use the $datepickermode and $datepickerpopupstyle properties to control the mode
and popup style of the date picker (also applies to data grid cells and columns).

• $datepickermode
controls the type of picker to be displayed, one of the following constants:
kJSDatePickerModeAuto: Date picker type is assigned automatically based on $dateformat
kJSDatePickerModeCalendar: calendar type is displayed
kJSDatePickerModePicker: a picker type is displayed

• $datepickerpopupstyle
controls how the popup is displayed, one of the following constants:
kJSDatePickerPopupStyleAuto: Popup style is determined by device type
kJSDatePickerPopupStyleInline: Popup style will always be displayed adjacent to the control
kJSDatePickerPopupStyleModal: Popup style will always be displayed modal

(Note that Internet Explorer does not correctly display the modal type, and so falls back to inline on these clients.)

The inline style picker will position itself underneath the parent control, but from the right so it is closer to the icon which opens it. If
there is not enough space beneath the parent control, the picker will be placed above, where space permits.

236

Calendar Style Picker

The Date Picker control can be switched to display a calendar style date picker, by setting $datestyle to kJSDatePickerStyleCalendar.
There are a number of properties that apply to the control when the date style is set to calendar.

Picker style on mobile devices

When $datestyle is set to kJSDatePickerStyleCalendar desktop browsers will display the calendar as expected. On mobile devices
however, even when $datestyle is set to kJSDatePickerStyleCalendar, a calendar will be replaced with a date picker (same as kJS-
DatePickerStyleDate), since a picker style date selector is the preferred style on mobile devices. This can be overridden by setting the
property $datestyleusepickeronmobile to kFalse.

Start and End dates

The following properties allow you to set the start and end dates (minimum andmaximum):

Property Description

$mindate Only assignable at runtime, this is a Date to
set the start date (minimum selectable limit
on the calendar)

$maxdate Only assignable at runtime, this is a Date to
set the end date (maximum selectable limit
on the calendar)

To allow the same functionality in a popup date picker (in the Data grid or Edit field) you can use the $getdisableddates() method,
which defaults to client-executed, or it can also run on the server if required. This method must return a Row containing up to 4
columns, which should be named the same as the relevant properties which set disabled dates above but without the $, that is,
datesdisabled, daysofweekdisabled, maxdate, mindate. They can be in any order, and not all need to be included. Their data type
should be same as the properties above, apart from datesdisabled, which should be a list of dates (i.e. not just an instance variable
name).

Week Number

You can display the week number in the calendar view of the Date Picker control by enabling the $showweeknumber property and
setting the associated color properties. When set to kTrue, the $showweeknumber property displays the iso week number on the left
side of the calendar style date picker (when $datestyle is set to kJSDatePickerStyleCalendar). The $weeknumbertextcolor property
specifies the text color of the week numbers, and $weeknumbercolor controls the background color of the week number area.

Disabling Dates

The calendar style Date Picker allows you to disable specific dates using the following properties:

Property Description

$datesdisabled an instance variable containing a list
with a single column of type Date. This
is to disable individual dates on the
calendar

237

Property Description

$daysofweekdisabled an integer made up from flags to
specify days of the week to disable
(e.g. you might want to disable
Saturdays and Sundays). This is
presented as a check list in the
Property Manager, but to assign via
code there are new constants to use,
kJSWeekDaySun through to
kJSWeekDaySat. Assign
kJSWeekDayNone (resolves to 0) to set
this property to no disabled days

$disableddaycolor The color used for disabled days. This
defaults to kDefault so that it just
inherits the $daycolor or
$otherdaycolor

$disableddaytextcolor The text color used for disabled days.
This defaults to
kJSThemeColorDisabledText

In addition, disabled days have a strikethrough text appearance (equivalent to the line-through css attribute).

Custom Date Style

The $datestylecustom property can be used in conjunction with setting $datestyle to kJSDatePickerStyleCustom to set the style or
format of the date shown. You can enter a string of characters to represent the columns required as per the Omnis date/time format
strings, for example, “mdy” to specify Month, Day, Year columns in that order.

In addition, you can specify a grouped column by enclosing the date characters in parenthesis, for example, “(wdm)” will specify a
single coumn containing Weekday, Day, Month. Note: this column will always alter the day by one by increasing or decreasing it, so
it only makes sense to use this type of column if it includes a day or weekday. Time elements entered into a grouped column will be
ignored. Repeated characters are ignored and only one group can be used (further groups are ignored). Groups take precedence over
individual columns, therefore “d(wdm)y” will be treated as “(wdm)y”.

Date pickers (other than custom) pick up the locale of the client and display the picker in their standard format. For example, the date
picker will display Day, Month, Year in the UK, and Month, Day, Year in the USA (assuming their location settings are set correctly).

Selecting a Date Range

When specified, the properties $rangeselection and $rangeenddataname allow the end user to select a date range, that is, a start date
and an end date. The first being a boolean to put the calendar into range selectionmode. When true, the end user can select a range
of dates by selecting one date after another. The $rangeenddataname property is the name of an instance variable to store the end
of the data range and should be of type Date. The variable in $dataname will always hold the start date in range selection mode.

A boolean parameter, pInRangeSelection, will be passed as true with evDateClick when the end user has selected the first date, and
false once they have selected the second. If $rangeselection is kFalse, this parameter is not passed, and therefore will return NULL if
tested on evDateClick.

The evDateRangeChange fires every time a date range selection has been completed (and $rangeselection is kTrue). This passes two
parameters: pStartDate and pEndDate. This means you can obtain a date range without using instance variables if you just need to
react to the date range selected. evDateChange does not fire when $rangeselection is kTrue.

The $currdaycolor property applies to inside the current day indicator ring and not the whole cell. This ensures the type of cell is still
understood by the end user. E.g. When $todayscolor is different to $daycolor, the end user can still see that it is today, evenwhen they
have selected it as the current day.

Events

The following events are generated when the end user clicks on a date picker and/or selects a date: you can create an event handling
method on the control allowing you to load the selected date.

238

• evDateChange
Sent to the control when the current date is changed (not fired when $rangeselection is kTrue); see below

• evDateClick
Sent to the control when the user clicks on a date; only applicable to Calendar type date pickers.

• evDateDClick
Sent to the control when the end user double clicks on a date (not fired when $rangeselection is kTrue)

• evDateRangeChange
Sent to the control when a date range has changed (only fired when $rangeselection is kTrue)

• evCalendarViewChanged
Sent to the control when the view changes in the calendar mode of the date picker; see below

Time Zone Offset

You can return the time zone offset of a date value when it is passed back from the client by using a two column row variable in
$dataname; the first column should be defined as a Date Time variable and the second of type Number. If the server passes a new
value to the client, then only the first column is significant and should specify the new date to be sent to the client.

When evDateChange signals that there has been a change on the client then the updated date is passed back to the server in the first
column of the row variable as a UTC/GMT date value and the time zone offset of that value in the client’s current time zone is passed
back in the second column. The time zone offset is the number of minutes from UTC/GMT, e.g. GMT+2 the time zone offset is 120. This
can be used to calculate the date in the time zone of the client.

If time zone offset information is not required, $dataname can be specified as a Date Time instance variable only.

Calendar View Change Event

The evCalendarViewChange event is triggered when the view changes in the calendar mode of the date picker; the parameters will
vary depending on the current view:

• pView
will be one of kJSDatePickerCalendarViewDays, kJSDatePickerCalendarViewMonths, kJSDatePickerCalendarViewYears, kJS-
DatePickerCalendarViewDecades

• pMonth
Integer 1-12 for the current month in view (only populated if pView = kJSDatePickerCalendarViewDays)

• pYear
Integer for current year in view (only populated if pView = kJSDatePickerCalendarViewDays or kJSDatePickerCalendarView-
Months)

• pStartYear
Integer for the first year in view (only populated if pView = kJSDatePickerCalendarViewYears or kJSDatePickerCalen-
darViewDecades)

• pEndYear
Integer for the last year in view (only populated if pView = kJSDatePickerCalendarViewYears or kJSDatePickerCalen-
darViewDecades)

Example

In the Holidays sample app uses the Date picker control set to kJSDatePickerStyleCalendar to allow users to select the dates for the
holiday applications. The jsUserForm in the Holidays app has two buttons to allow the end user to select a “From” date or “To” date to
specify the Begin and End dates for their holiday request. The “From” button has the following code:

On evClick
Calculate iUsingCalendar as kTrue
Calculate iSelectFrom as kTrue ## this is the From button
Do method openCalendar

239

The openCalendar class method moves the calendarPane into view on the main form and has the following code:

Do method enableFields (kFalse) ## enables the calendar pane & disables the name pane
Do $cinst.$objs.calendarPane.$top.$assign(90)
Do $cinst.$objs.calendarPane.$left.$assign(150)
Do $cinst.$objs.calendarPane.$visible.$assign(kTrue)

Figure 162:

If you examine the Holidays app to look at the Date picker note that it is on a page pane field called calendarPane located on the
jsUserForm. The $left property for the calendarPane is set to 990, to hide it from view, therefore you’ll need to select it using the Field
List (right-click the remote form, select Field List and check the calendarPane) and set its $left property to 200 in thePropertyManager
in order to see it.

The $dataname of the Date picker control itself is set to iCalendarDate, an instance variable of type Date Time and subtype ‘D m y’;
when the end user selects a date this variable is set to the selected date automatically.

The Date picker has a simple event method to detect when the end user double-clicks on a date cell; it has the following code:

On evDateDClick
Do method closeCalendar

The closeCalendar classmethod passes the date from iCalendarDate into either the iFromDate or iToDate variable defined in the form;
it has the following code:

If iSelectFrom ## if the From button
Calculate iFromDate as iCalendarDate

Else ## it must be the To button
Calculate iToDate as iCalendarDate

End If
Do $cinst.$objs.calendarPane.$left.$assign(1250)
Do method enableFields (kTrue)

The final two lines of the method move the calendarPane off to the right and enables the fields on the Name pane.

240

Date Picker Localization

The following strings are available in the JS localization string table to allow you to localize strings for the Date Picker. Note that some
of the strings are now arrays of strings to simplify localization (e.g. for months, days of the week, etc).

Date picker specific strings

The following are specific to the date picker control:

"ctrl_date_increase": "Increase"
"ctrl_date_decrease": "Decrease,
"ctrl_date_time_button": "Open time picker"
"ctrl_date_calendar_button": "Open date picker"
"ctrl_date_header": ["Select a Month", "Select a Year", "Select a Decade", "Select a Time"]

Generic strings

The following strings are available for controls that refer to dates, including the date picker:

"month_names": ["January", "February", "March", "April", "May", "June", "July", "August",
"September", "October", "November", "December"]
"month_names_short": ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct",
"Nov", "Dec"]
"day_names": ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday"]
"day_names_short": ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"]
"date_units": ["Day", "Month", "Year", "Decade"]
"time_units": ["Hour", "Minute", "Second", "Millisecond"]

The following example applies Spanish text to the Calendar:

<script type="text/javascript">
jOmnisStrings.es = {

"month_names": ["Enero", "Febrero", "Marzo", "Abril", "Mayo", "Junio", "Julio", "Agosto", "Septiembre", "Octubre", "Noviembre", "Diciembre"],
"month_names_short": ["enero", "feb.", "marzo", "abr.", "mayo", "jun.", "jul.", "agosto", "sept.", "oct.", "nov.", "dic."],
"day_names": ["Domingo", "Lunes", "Martes", "Miércoles", "Jueves", "Viernes", "Sábado"],
"day_names_short": ["DOM", "LUN", "MAR", "MIÉ", "JUE", "VIE", "SÁB"],
"date_units": ["Día", "Mes", "Año", "Década"],
"time_units": ["Horas", "Minutos", "Segundos"],
"ctrl_date_header": ["Selecciona un mes", "Seleccione un año", "Seleccione un década", "Seleccione una hora"]

};
</script>

See the Localization chapter for more information about setting the strings in the jOmnisStrings object.

Device Control

Group Icon Name Description

Other Device Allows access to hardware and services on
a mobile device using the JS wrapper

The Device Control allows you to access features on a mobile device, such as getting the location of the end user’s device using
GPS, retrieving the contacts information from the device, or returning images from either the camera or photo library on the device.
Depending on the type of application you are creating, some or all these features may be useful to enhance the interactivity and
functionality of your app for end users when they run your app on a mobile device, such as a phone or tablet.

TheDevice control itself is invisible and to enable access to the device functionality you need to add the Device Control to your remote
form and assign an action to the $action property of the control at runtime using methods.

241

06localization.html

Figure 163:

Running the Device Control and Compatibility

Important Note: in all but a few specific cases, the actions enabled via the Device Control only work in an application that is running
inside one of the JavaScript Wrappers (or Omnis App Manager) on a mobile device. The exceptions to this are the Email, Call, and
SMS actions which will attempt to work if the app is running in a standard web browser, but it’s not guaranteed the actions will always
work as expected.

Therefore, you will need to compile your app as a standalone mobile app using the JavaScript Wrappers (for iOS or Android), and test
your app in a simulator or directly on a mobile device by running the native app, for the majority of the actions in the Device control
to work. Alternatively, on iOS you can use the Omnis App Manager to test your mobile app and the functions of the Device Control,
prior to compiling it into a standalone app using the iOS wrapper.

There is a Tech note describing how you can use theDevice control and a device’s camera to return the info from a barcode or QR code:
see TNJC0013 “Reading a barcode or QR code in amobile app”; this demonstrates how you use the Device control and theOmnis App
Manager to test your app.

Testing Hardware Features

The Device control supports several hardware functions, some of which may not be available on specific devices or mobile operating
systems. You should test your app thoroughly on the specific devices you wish to support with each of the device functions that you
want end users to access.

For some of the hardware features, Omnis can detect if they are not present on the current mobile device running the app. For exam-
ple, if a device does not have a hardware camera, then the action kJSDeviceActionTakePhoto will report an evPhotoFailed message.

Properties

Note the Device control is invisible, therefore some of the visual properties normally associated with JavaScript components may not
be relevant, such as $alpha; the following properties are available.

Property Description

$action The “action” for the Device control which
specifies which function on the client mobile
device is accessed; this is assigned as a
kJSDevice… constant: see below

$communicationaddress Character value determining the phone
number when the Make Call and Send SMS
device actions are used (for SMS only, can be
a list of phone numbers), or email address
when the Send Email device action is used.
Can only be assigned at runtime.

242

https://www.omnis.net/developers/resources/download/jswrapper.jsp
07Deployment.html#omnis-app-manager
https://www.omnis.net/developers/resources/technotes/tnjc0013.jsp

Property Description

$communicationdata Character data to be sent as the message
body when the Send SMS or Send Email
device actions are used.Can only be assigned
at runtime.

$communicationsubject Character data to be sent as the subject
when the Send Email device action is
used.Can only be assigned at runtime.

$dataname The name of a List instance variable for the
Device control. It will be populated with
contact details when using the Get Contacts
device action.

$deviceimage Contains a Character/Binary instance
variable name used for holding the image
returned from the device. The image will be
in base64 format.

$imageaspect Sets the aspect ratio of the image, a floating
number, indicatingwidth divided by height.
A value of 0 no aspect ratio will be enforced,
a value of 1 enforces a square image

$imagejpeglevel The JPEG quality of images returned (0-100).
100 being max quality, 0 being max
compression.

$imagemegapixel A float value indicating the maximum
Megapixel resolution of images returned. 0
means no limit.

$imagesizemenu If true, a dialog will be opened when using
the device image actions, to allow the user
to pick a size for the image, respecting
$imagemegapixel.

$soundname Name of the sound sample to be played
when the Beep device action is called.

$contact… The $contact… properties determine
whether particular pieces of contact
information are returned when using the
Get Contacts device action, e.g. disabling
$contactphotos can significantly reduce the
time taken to fetch contacts.

Contact properties

There are several properties that are only relevant when the device action is set to kJSDeviceActionGetContacts which allows you to
obtain information from the contacts database on thedevice. By setting these properties you can controlwhat information is returned
from the Contacts data on the device. For example, if $contactname is set to kTrue the contact request will include name info, and so
on.

Device Action Properties

The following list summarizes the actions available, and the constant needed for the $action property:

• kJSDeviceActionBeep – Beep Device
forces the device to play the default beep

• kJSDeviceActionGetBarcode – Get a Barcode or QR code
returns the output from Barcode/QR-code scanning function on the device (if available); the output is usually a string which
can be a URL

• kJSDeviceActionGetContacts – Get contact info
returns contact information from the device; note there are other properties to determine the content or extent of the contact
information returned

243

• kJSDeviceActionGetGps – Get the device location
returns the location data using the GPS function on the device

• kJSDeviceActionGetImage – Get an Image
returns an image from the device’s image gallery

• kJSDeviceActionGetUniqueID – Get Unique ID
returns the unique ID of the device

• kJSDeviceActionMakeCall – Make a Phone Call
forces the device to make a phone call (if available)

• kJSDeviceActionSendEmail | kJSDeviceActionSendSms – Send an Email or SMS
forces the device to send an Email or SMS / text message (if available)

• kJSDeviceActionTakePhoto – Take a Photo
forces the device to take a photo (if a camera is available)

• kJSDeviceActionVibrate – Vibrate the Device
forces the device to vibrate (if available)

The basic method to assign an action to the Device control is as follows:

Do $cinst.$objs.oDevice.$action.$assign(kJSDeviceAction…)
where oDevice is the name of the Device control

Events

Event Description

evBarcodeFailed Sent when no Barcode could be obtained
from the device.ParameterspEventCode -
The event code

evBarcodeReturned Sent to the device control when a Barcode
is ready for
processing.ParameterspDeviceBarcode -
The Barcode datapEventCode - The event
code

evContactsFailed Sent when no contacts could be obtained
from the device.ParameterspEventCode -
The event code

evContactsReturned Sent to the device control when contacts
info is ready for
processing.ParameterspEventCode - The
event code

evGpsReturned Sent to the device control when Location
Data is ready for
processing.ParameterspDeviceGps - The
GPS locationpEventCode - The event code

evImageFailed Sent when the device failed to return an
image.ParameterspEventCode - The event
code

evImageReturned Sent to the device control when an image
is ready for
processing.ParameterspEventCode - The
event code

evPhotoFailed Sent when the device failed to take a
photo.ParameterspEventCode - The event
code

244

Event Description

evPhotoReturned Sent when an image is returned from
camera ready for
processing.ParameterspEventCode - The
event code

evUniqueIDReturned Sent when a unique ID is returned from the
device.ParameterspDeviceUniqueID - The
unique IDpEventCode - The event code

Standard evExecuteContextMenu
evOpenContextMenu

Beep Device Action

To make the device play a given sound sample, you need to assign the constant kJSDeviceActionBeep to the $action property. This
is one-way communication with the device which will result in the device playing a sound sample. To specify which sound to play,
you need to set the $soundname property to the name of the sound sample to be played which must be compiled into the wrapper
application. The wrapper contains a default sound called “notify”.

Example

On evClick
Calculate $cinst.$objs.oDevice.$soundname as “notify”
Do $cinst.$objs.oDevice.$action.$assign(kJSDeviceActionBeep)

Get Barcode Device Action

You can return a Barcode or QR code by assigning the constant kJSDeviceActionGetBarcode to the $action property. If the action is
successful an evBarcodeReturned event is sent to the Device Control and the barcode data is returned in the pDeviceBarcode event
parameter; the barcode data is usually a string containing Alphanumeric characters, such as a product number or name, or in the
case of a QR code it could be a website URL.

Example

event method for “Scan” button
On evClick
Do $cinst.$objs.oDevice.$action.$assign(kJSDeviceActionGetBarcode)

The event method for the Device Control could be:

On evBarcodeReturned
Do iProducts.$search(iProducts.iProdQrCode=pDeviceBarcode,kTrue,kFalse,kFalse,kFalse)
If iProducts.$line=0

Do iProducts.$line.$assign(iProducts.$linecount) ## other
End If
Do iProducts.$loadcols()
Calculate iAmount as 1
If iProdName='Other'

Calculate iProdName as pDeviceBarcode ## show the value of the barcode
End If

There is a Tech note describing how you can return the info from a barcode or QR code using the Device control and the Omnis App
Manager to test the Device control: see TNJC0013 “Reading a barcode or QR code in a mobile app”.

245

https://www.omnis.net/developers/resources/technotes/tnjc0013.jsp

Vibrate Device Action

To make the device vibrate you need to assign the constant kJSDeviceActionVibrate to the $action property. This is one way commu-
nication with the device which will result in the device vibrating for a short period of time.

Example

On evClick
Do $cinst.$objs.oDevice.$action.$assign(kJSDeviceActionVibrate)

Get GPS Device Action

To receive location (GPS) data from the device you need to assign the constant kJSDeviceActionGetGps to the $action property. The
evGpsReturned event is sent when the location data has successfully been returned. The event parameter pDeviceGps will contain
the returned data which is formatted as a string containing longitude and latitude data separated by a colon “:”. If the device fails to
obtain location data or the device does not support location tracking, the returned data will be a longitude and latitude of zero, i.e.
“0.0:0.0”.

Example

On evClick
Do $cinst.$objs.oDevice.$action.$assign(kJSDeviceActionGetGps)

On evGpsReturned
Calculate $cinst.$objs.oMap.$latlong as pDeviceGps

Take Photo / Get Image Device Action

To take a photo with the device (if a camera is present) or to return an image from the device’s gallery the kJSDeviceActionTakePhoto
or kJSDeviceActionGetImage constants need to be assigned to the $action property. The $deviceimage property of the Device com-
ponent needs to be assigned to an Instance Variable of type Binary or Character to hold the incoming image data from the device.
If the device is successful in returning an image, the event evPhotoReturned or evImageReturned will be called to indicate that an
image was returned, whereupon the instance variable specified in $deviceimage will be populated with the base64 encoded image
data. In the event of the device failing to return an image or the user cancels the request, the event evPhotoFailed or evImageFailed
will be sent.

Example

On evClick
Do $cinst.$objs.oDevice.$action.$assign(kJSDeviceActionTakePhoto)

In this case the instance variable iImage is a Binary variable. The $deviceimage property is set to iImage. There is another Binary
variable called ipic which is associated to a picture component. By copying the returned image in iImage into the picture component
variable you can display the image returned from the device.

On evPhotoReturned
Calculate iPic as iImage

In addition to the TakePhoto action, the device control has the client-executed method, $takephoto(iWidth, iHeight) which provides
a shorthand way of taking a photo with specific dimensions.

246

Image Aspect Ratio

The $imageaspect allows you to specify the aspect ratio of a photo; it only affects images taken with the TakePhoto device action, not
the GetImage action. This functionality is only available in the iOS and Android wrappers - version 3.1.0 & later; also note theminimum
Android version is now API21 (5.0, Lollipop).

The $imageaspect property takes a floating number, indicating width divided by height. If set to 0, no aspect ratio will be enforced,
and the standard camera application will be used for taking photos. If greater than zero, a custom camera view within the app will be
used, which shows the preview stream in the specified aspect ratio, and an image of the specified aspect will be returned. A value of
1 will enforce a square image.

The $imageaspect property can be used in conjunction with $imagemegapixel to take an image of specific dimensions, that is:

$imageaspect = targetWidth / targetHeight

$imagemegapixel = (targetWidth * targetHeight) / 1,000,000

Get Contacts Device Action

To obtain information from the contacts database on the device the kJSDeviceActionGetContacts constant must be assigned to the
$actionproperty. To accommodate the contact database the $datanameproperty needs tobe assigned to an InstanceVariable of type
List. The properties starting with $contact… determine which contact fields will be obtained from the device: setting these properties
to true or false will determine if that specific field is returned from the device.

The evContactsReturned event is triggered when the contact database has been returned, and in the case of the device failing to
obtain the contact database the evContactsFailed event is triggered.

Example

On evClick
Do $cinst.$objs.oDevice.$action.$assign(kJSDeviceActionGetContacts)

retrieve info from the Contact list
On evContactsReturned
Set reference lNameRow to iDeviceList.name.1
Calculate iNameRow.FirstName as lNameRow.givenName
Calculate iNameRow.MiddleName as lNameRow.middleName
Calculate iNameRow.Surname as lNameRow.familyName
Calculate iNameRow.Prefix as lNameRow.honorificPrefix
Calculate iNameRow.Suffix as lNameRow.honorificSuffix
Calculate iNameRow.Nickname as iDeviceList.nickName

Contacts data structure

• displayName: The name of this Contact, suitable for display to end-users (String).

• name: A row containing all components of a contact’s name.
formatted: The complete name of the contact (String).
familyName: The contact’s family name (String).
givenName: The contact’s given/first name (String).
middleName: The contact’s middle name (String).
honorificPrefix: The contact’s prefix (example Mr. or Dr.) (String).
honorificSuffix: The contact’s suffix (example Esq.) (String).

• nickname: A casual name to address the contact by (String).

• phoneNumbers: A list of all the contact’s phone numbers.
type: A string that tells you what type of phone number this is (example: ‘home’) (String).
value: The phone number (String).
pref: Set to true if this is the user’s preferred value (Boolean).

247

• emails: A list of all the contact’s email addresses.
type: A string that tells you what type of email this is (example: ‘home’) (String).
value: The email address (String).
pref: Set to true if this is the user’s preferred value (Boolean).

• addresses: A list of all the contact’s addresses.
pref: Set to true if this is the user’s preferred value (Boolean).
type: A string that tells you what type of address this is (example: ‘home’) (String).
formatted: The full address formatted for display (String).
streetAddress: The full street address (String).
locality: The city or locality (String).
region: The state or region (String).
postalCode: The zip code or postal code (String).
country: The country name (String).

• ims: A list of all the contact’s IM addresses.
type: A string that tells you what type of IM this is (example: ‘home’) (String).
value: The IM username (String).
pref: Set to true if this is the user’s preferred value (Boolean).

• organizations: A list of all the contact’s organizations.
pref: Set to true if this is the user’s preferred value (Boolean).
type: A string that tells you what type of organization this is (example: ‘work’) (String).
name: The name of the organization (String).
department: The department the contact works for (String).
title: The contacts title at the organization (String).

• birthday: The birthday of the contact (Character).

• note: A note about the contact (String).

• photos: A list of the contact’s photos. In general, there will be only one row.
type: A string that tells you what type of field this is (example: ‘home’) (String).
value: The photo data, encoded as base64. These are small, thumbnail photos. (String).
pref: Set to true if this is the user’s preferred value (Boolean).

• categories: A list of all the contacts user defined categories.
type: A string that tells you what type of category this is (example: ‘home’) (String).
value: The value of the field (such as a phone number or email address) (String).
pref: Set to true if this is the user’s preferred value (Boolean).

• urls: A list of web pages associated with the contact.
type: A string that tells you what type of web page this is
(example: ‘home’) (String).
value: The website URL (String).
pref: Set to true if this is the user’s preferred value (Boolean).

Make a Call Device Action

Tomake a phone call from the device the kJSDeviceActionMakeCall constant is used. Before assigning this action the phone number
for the call should be specified in the $communicationaddress property.

Example

Do $cinst.$objs.oDevice.$communicationaddress.$assign(“0123456789”)
Do $cinst.$objs.oDevice.$action.$assign(kJSDeviceActionMakeCall)

Send an SMS or Email Device Action

To send an SMS (text message) or Email from the device the kJSDeviceActionSendSMS or kJSDeviceActionSendEmail constant is
used. Before assigning this action the phone number or list of numbers (for the SMS action) or the email address (for Email) should be
specified in the $communicationaddress property. The message body of the SMS or email can be specified in $communicationdata.
The subject of the email can be specified in $communicationsubject.

248

Example

Do $cinst.$objs.oDevice.$communicationaddress.$assign(“0123456789”)
Do $cinst.$objs.oDevice.$communicationdata.$assign(“A message”)
Do $cinst.$objs.oDevice.$action.$assign(kJSDeviceActionSendSMS)

You can send a SMS to multiple recipients by assigning a comma-separated list of phone numbers to $communicationaddress. For
example:

Do cinst.$objs.oDevice.$communicationaddress.$assign("0123456789,0987654321,0192837465")

Getting the Unique ID Action

You can return the unique ID of the device running your standalone app using the kJSDeviceActionGetUniqueID action.

Do $cinst.$objs.oDevice.$action.$assign(kJSDeviceActionGetUniqueID)

The ID is unique to each JS wrapper installation and changes when the app is re-installed.

If successful, the action triggers the evUniqueIDReturned event with pDeviceUniqueID containing the ID. You can use the $event
method of the device control to return the ID:

On evUniqueIDReturned
Calculate iDeviceID as pDeviceUniqueID

Running Device Actions in the Browser

Some of the Device actions (those listed below) may work in your application when running in a standard desktop web browser, that
is, outside a wrapper. However, the results of running any of these actions in a web browser are very unpredictable, mainly due to the
great variation among different web browsers and operating systems, therefore we do not recommend or support apps using these
actions in a web browser. If you do use them however, you should test these actions thoroughly.

Call, SMS, and Email actions

You can use the Call, SMS, and Email actions in an application running in a browser, and not in a wrapper, and the web browser on
the client will attempt to execute the relevant action (this only applies to these actions: all other actions have to be executed inside
the wrapper). For example, if you run the Email action in a web browser it will attempt to initiate an email in the email program on
the client.

Vibrate and Location actions

When run outside the wrapper the Vibrate action is not currently supported on iOS Safari, and hence other iOS browsers, as they all
have to based on Apple’s WebKit.

The Location action only works over HTTPS in recent browsers.

Droplist Control

Group Icon Name Description

Lists Droplist List that drops down when clicked

249

Figure 164:

The Droplist Control displays a dropdown list from which the end user can make a selection; the contents of the list can be supplied
from a default list or a list variable which can be built dynamically. There is an example app in the Samples section in the Hub in the
Studio Browser (called JS Droplist, Combo, Popup), and the same app is available in the JavaScript Component Gallery. The following
screen shows the Vintage JS Theme in use.

You can specify a default list of options in the $defaulttext property, which is a comma-separated list of options; $defaultline is the
default line (set to 1) which is selected when the form is opened (only when $defaulttext is used). Alternatively, you can assign the
name of a list instance variable to $dataname to populate the list; $listcolumn specifies which column of the list variable is used to
display the list. The $::listheight property specifies the height of the droplist.

The $seldataname property allows you to specify the name of an instance variable, which will be populated automatically with the
selected value from the droplist.

Droplist Style

The Droplist and Combo Box controls have the $dropliststyle property to allow you to apply a rounded style to the list part of the
control. The style of the droplist is a kJSDropListStyle… constant:

• kJSDropListStyleDefault
The default droplist style (shown below onWindows)

Figure 165:

• kJSDropListStyleRounded
The $borderradius property is applied to the combined field and list part of the control when it is dropped; if the dropped list is
wider than the field, its width is temporarily increased to match (shown below on macOS)

Horizontal Padding & Extra space

The Droplist and Combo Box controls have the $horzpadding property to allow you to add extra horizontal padding, in pixels, to the
text in the list part of the control. This property has also been added to Combo boxes.

The $extraspace property can be used to add extra space to the line content in the list. If $extraspace is zero, the height of each row is
the default height of the row content. If $extraspace is greater than zero, the height of each row is the font height + $extraspace.

250

https://bit.ly/OmnisJSGallery

Figure 166:

Selected Line

The $selectonopen property allow you to manage whether or not the first line is selected when a droplist is opened. When $se-
lectonopen is true (the default) and no line has been set, the first line in the droplist will be selected when it is opened, and the evClick
event will be sent. The property is set to kTrue for droplists in existing libraries, to maintain behavior as in previous versions, whereby
the first line was selected and evClick sent when no line was set. You can set $selectonopen to false to stop the first line in the droplist
being selected when the form is opened.

Events

When a line in a Droplist is selected an evClick is generated with the selected list line reported in pLineNumber.

Example

The jsUserForm in the Holidays sample app uses a droplist to allow users to select an employee to view their holiday leave requests.
The $dataname of the empList Droplist control is set to iEmployeeList which is built via the $construct method when the form is
opened.

buildEmpList class method in the jsUserForm
Do iEmployeeList.$definefromsqlclass('sEmployee') ## the schema
Do iEmployeeList.$sessionobject.$assign(iSQLObjRef)
Do iEmployeeList.$select()
Do iEmployeeList.$fetch(kFetchAll)
Do iEmployeeList.$cols.$add(iEmpFullName)
Calculate lTotal as iEmployeeList.$linecount
For lNum from 1 to iEmployeeList.$linecount step 1
Calculate iEmpFullName as con(iEmployeeList.[lNum].FirstName,kSp,iEmployeeList.[lNum].LastName)
Do iEmployeeList.[lNum].$assigncols(,,,,,iEmpFullName)

End For
Do iEmployeeList.$line.$assign(1)
Calculate iName as iEmployeeList.iEmpFullName

The droplist control contains a $eventmethodwhich is triggered when the user selects a line in the list; the code in the eventmethod
redraws the holiday list for the selected employee:

On evClick
Do method buildHolidayList
Calculate iName as iEmployeeList.[pLineNumber].iEmpFullName
Do $cinst.$objs.pagePane.$objs.holidayList.$redraw()
Do $cinst.$objs.pagePane.$objs.empName.$redraw()

The buildHolidayList class method builds the list of holiday requests for the selected employee and redraws the form.

251

Entry Field

Group Icon Name Description

Entry Fields Entry Field Standard edit field for data entry or display

The JavaScript Entry Field (or Edit control) is a standard Single Line Entry field which you can use to display data or allow the end user
to enter data into a Remote Form, such as the Name and Address fields on a Contact form. You can add a text label to each Entry field
on the form, to identify its purpose, or you can use the $label property to add a dynamic label. You can add a content tip to each entry
field to help the end user fill out the form. The following screenshot shows entry fields with standard label objects and content tips.

Figure 167:

Many of the example apps under the Samples option in the Hub in the Studio Browser use entry fields, as well as the apps in the
JavaScript Component Gallery, including the JS Input Border and Button Styles example app. You can examine these apps and code
to see how entry fields can be used.

Dataname: $dataname

The Entry field can handle all types of character or numeric data stored in the instance variable specified in $dataname: the type of
data the edit control can handle will depend on the data type of the instance or column variable assigned to the control. To create an
Entry field, you need to drag the Entry field from the Component Store and drop it onto your remote form. You can enter a suitable
name in the $name property in the Property Manager, and then you can assign a variable in the $dataname property, that is, it must
be an instance variable for a remote form edit control. You can enter the name of an existing variable, or you can enter a new variable
name in the $dataname property in the Property Manager, then press Return and the New Variable Name dialog will open allowing
you to define the new instance variable; in this case the instance variable is added to the current remote form class (visible in the
Method Editor under the Instance tab in the Variables pane).

If you use one of the wizards to create a remote form, the edit controls are added to the form and the required variables are assigned
to their $dataname properties automatically.

Single or Multi-line Fields

When the $issingleline property is kTrue (the default), the edit control only allows data entry on a single line, so longer text entries will
scroll the entry field to the right. You can create a Multi-line Entry field by setting $issingleline to kFalse, and resizing the height of the
field downward to allow data to be entered on multiple lines, using standard line-wrap.

Text Properties and Field Styles

You can set the text style or font of an Entry field using the properties under the Text tab in the PropertyManager (when the Advanced
option is enabled). The text or font properties are:

252

https://bit.ly/OmnisJSGallery

Property Description

$font The font for the text inside the entry
field, either a single font name, or more
typically, a list of fonts fromwhich a font
is selected depending on the fonts that
are installed on the client, e.g. Verdana,
Arial, Helvetica, Sans-serif. The fonts will
be different for each platform providing
a native appearance for each platform

$fontsize The font size for the entry field, an
integer, e.g. 10 to represent 10pt font

$fontstyle The font style for the entry field: kPlain
(the default), kBold, kItalic, kUnderline,
kLineThrough, kSemiBold

$textcolor The text color of the text inside the
entry field, either kColorDefault or
another color from the current JS
Theme, or a specific color specified in
the color picker

$align The alignment or justification of the
text inside the entry field: kCenterJst,
kLeftJst (the default), kRightJst

See below for content tips and dynamic text label properties.

As an alternative to controlling the font or text of an Entry field using the text properties, you can use a pre-defined Field Style specified
in the $fieldstyleproperty. The field styles are set up in the #STYLES system table in the library and are available formany control types,
and can contain settings for: $font, $fontsize, $fontstyle, and $textcolor. Setting up field styles for JS Entry fields is the same as for
Window class Entry fields which is described here: Field Styles.

Dynamic Labels

You can add a dynamic or “floating” label to Edit fields (and droplists, or the editable part of combo boxes), rather than using separate
text labels for the fields in a form. The following properties are available to support dynamic labels:

Property Description

$label The label text
$labeliscontenttip If true, the label is shown as the content

tip while the control is not focused and
does not have any text content

$labelfontsize The font size for theminimized label text
$labeltextcolor The label text color. By default, this is the

border color tinted with the text color
$labelhottextcolor The label text color when the control is

focused. By default, this is the same as
the focused border color

upto 35989 $labelposition The position of the label when not
shown as the content tip inside the field,
a constant: kJSLabelPosBorder (the
default), kJSLabelPosAbove,
kJSLabelPosLeft

asof 35990 $labelposition The position of the label when not
shown as the content tip inside the field,
a constant: kJSLabelPosBorder (the
default), kJSLabelPosAbove,
kJSLabelPosLeft, kJSLabelPosInside

253

/developers/resources/onlinedocs/Programming/12winprog.html#field-styles

To enable a dynamic label, you need to add the label text to the $label property for the control. Once you have added text to the $label
property, you can double-click on the label to edit the label text (pressing Return confirms an update). By default, the text label is
inset into the top border of the control ($labelposition = kJSLabelPosBorder), unless $labeliscontenttip is true, but $labelposition can
be changed to above or left of the control.

Figure 168:

If $labeliscontenttip is true, and the field does not have the focus or any content, the text in $label is displayed inside the field like a
content tip (see Lastnamebelow). In this case, when the focus passes to the field, the label will jump fromwithin the field area to above
the field (see Firstname below). You can use this method of adding content tips to fields as an alternative to using the $::contenttip
property.

Figure 169:

By default, $inputborderstyle is set to kJSInputBorderStyleOutlined and the label is displayed above the field inset into the border.
However, you can set $inputborderstyle to kJSInputBorderStyleUnderline, in which case the field is displayed with underline only (the
border is hidden). When the field gets the focus, the label will jump to above the field (see Email field).

Figure 170:

Content Tips

If you are not using the $label and $labeliscontenttip properties, you can use separate label objects and the $::contenttip property to
add descriptive text to entry controls. For example, for a Last name field you could enter ‘Enter your last name’ into $::contenttip to
prompt the end user for their last name. As soon as the end user starts to type something into the field the content tip will disappear.

The $contenttiptextcolor property is the text color used for the content tip text, or the text in $label when displayed as a content
tip, for an edit field, droplist, or the editable part of a combo box. This property applies when using the $::contenttip property or
$labeliscontenttip in conjunction with $label.

Password Fields

When kTrue, the $ispassword property ensures a place-holder character is displayed when the end user enters something in the field
(only applies when $issingleline is kTrue).

Borders

The $effect property lets you set the type of border for the edit control and its value is one of the kJSborder… constants. The kJSbor-
derDefault setting means the control has the default border type as specified by the current client operating system and browser

254

type. For some clients the border may change when the state of the control changes.

The $borderradius property lets you add rounded corners to the edit control. A single value specifies the radius for all four corners, but
you can specify a different value for each corner by specifying four-pixel values separated by – (hyphen), in the order topleft, topright,
bottomright, bottomleft. If bottomleft is omitted, the topright value is used. If bottomright is omitted, the topleft value is used. If
topright is omitted, the topleft value is used.

Horizontal and Vertical Padding

The property $horzpadding allows you to add extra horizontal padding, in pixels, inside the control; when applied this property adds
padding on the left and right of the text within the edit control.

Existing users should note: when a library is converted to Studio 10.2, the $horzpadding property for all JS Entry fields will be set to 4
automatically if they were previously set to 0, which is the default for all new Entry fields; if $horzpadding is set to any other value it is
not changed. After conversion, you can change the value of $horzpadding.

The $vertpadding property allows you to add vertical padding above and below the text inside the control’s border; the property only
applies when $issingleline=kFalse as single line edit controls are vertically centered.

Linked Lists

The $linkedobject property allows you to link a list control to the edit control to create a special type of list called a “Linked List” which
updates itself automatically as the user types into the edit control: see the List Control section for more information.

Events

The Edit Control reports the evBefore and evAfter events, so you can detect when the focus is about to enter or leave a field in the
$event method and process the event accordingly: note evAfter is only reported if the data in the control has changed. You must
enable any of the events for the Entry field in its $events property before any of the events are reported.

In addition, the evKeyPress event is reported allowing you, amongst other things, to create a “Linked List”: see the Linked Lists section.

Soft Keypad Input Type

Many iOS and Android devices have different software keypad layouts which are displayed depending on the type of data required,
that is, the keypad content and layout adapts to the content required. For example, if numeric content is required, a numeric keypad
is displayed. The $inputtype property allows you to specify which keypad is displayed on touch devices depending on what type of
content you wish the end user to enter into the edit control. This property only applies to touch devices and in this case $inputtype-
touchonly is set to kTrue by default, and it only applies if $ispassword is false (if true the default keypad is shown).

• $inputtypetouchonly
When true (the default for touch devices) the specified $inputtype is applied on touch devices, otherwise it is ignored

• $inputtype
The HTML input type used by the edit field. The browser may give this special handling, e.g. by popping up a specific software
keypad. (The property is ignored if $ispassword is enabled.) The input type is specified using a constant:
kJSInputTypeDefault: the standard Qwerty keypad (in most cases)
kJSInputTypeNumber: the standard Qwerty keypad flipped to numbers
kJSInputTypeTelephone: the telephone number keypad
kJSInputTypeEmail: the Qwerty keypad plus the @ and dot keys
kJSInputTypeUrl: the Qwerty keypad plus dot, forward-slash, and ‘.com’ keys
kJSInputTypeDate: shows a date picker; see below

If $negallowed is true, the ‘number’ type is not selected as this does not guarantee the presence of a minus key. You should note that
a touch device’s virtual keyboard is more likely to use a numeric keyboard if $negallowed is false.

255

Input Masks

You can control the format of the data entered into an Entry field by defining an input mask using the $inputmask property. If the
user enters an invalid character, the control will briefly become highlighted and the input will be rejected. For edit fields of character
type, the data variable will contain mask characters. For number/integer fields, the data is the unmasked number value.

The #JSMASKS system table stores the input masks for JS Entry fields for the library, which are also accessible in the $javascriptinput-
masks notation group.

There are a number of differences between the existing Masked entry field on the thick client and input masks for JS Entry fields:

• On the thick client, the user must complete the masked entry field before focus can leave the field. This is not the case with JS
masked edit fields - fields can be left partially filled.

• JS input masks do not support any of the ‘control characters’ which can be used on the thick client.

• The JS edit control does not have a $formatstring property (like the thick client masked entry field).

• The JS edit control has two unique properties: $inputmaskguide and $maskvaluevalid.

• JS input masks can be changed dynamically as the user types using the $processmask client method.

• There is visual feedback when entering invalid characters in a masked JS edit field.

Incompatible input types are prevented from being used with input masks. For example, the kJSInputTypeNumber and kJSInput-
TypeEmail values of $inputtypes are incompatible with input masks. If $inputtype is one of these values, and $inputmask is set, the
input element will use the text type (effectively kJSInputTypeDefault).

$inputmask

The value of $inputmask may contain a combination of fixed and special characters. Note that underscores cannot be used as these
are used as placeholders.

Special character Description

Any digit
@ Any character
a Any letter
A Any uppercase letter
n Alphanumeric
N Alphanumeric, uppercase
“ABC” Any character from list
“A-D” Any character from A to D inclusive
\ (back slash) Escape character (next

character is displayed literally, use to
escape special mask characters,
double quotes or backslash)

$inputmaskguide

The $inputmaskguide boolean property controls whether or not a guide is shown. If true, placeholder and non-placeholder mask
characters are always displayed. If false, placeholder characters are hidden, andmask characters are only shownwhen theuser reaches
them as they type. The property is false by default.

$maskvaluevalid

The $maskvaluevalid property is a boolean, read only, runtime only property. A value of kTrue indicates that the field is completed,
and therefore valid.

256

$processmask

A client method named $processmask can optionally be added to an edit control. This allows the mask to be changed as the user
types. The method is called any time the value in the field changes, and receives a parameter pInput which contains the user input.
Note that the user input parameter could contain anything as the event is sent before mask validation occurs (the mask needs to be
updated before it can validate input). As a general use case, $processmask could be used to create the effect of optional characters.

Date Picker

The constant kJSInputTypeDate can be assigned to the $inputtype property to allow the end user to select a date using the Date
Picker. When $inputtype is set to kJSInputTypeDate, and $inputtypetouchonly is set to false, a date/timepickerwill be used to pick the
value for the Entry field. $datanamemust be set when using kJSInputTypeDate and other input types such as kJSInputTypeNumber.

The format of the date picker should be calculated from $dateformat ($dateformatcustom if $dateformat == kJSFormatCustom). If
$dateformat is kJSFormatNone, then the control attempts to fall back to the dataname subtype.

The $datepickeroptions property allows you to customize display options in a calendar style popup date picker, plus the ability to
display the isoweek number has been added. $datepickeroptions (and $columndatepickeroptions in the datagrid) is an integer type
propertywith the ability to switch on/off the $showheading, $showmonthnav, $showweeknumber properties in the popupdate picker
in Entry fields and Data grids. The constants for $datepickeroptions are: kJSDatePickerOptionsShowHeading, kJSDatePickerOption-
sShowMonthNav, kJSDatePickerOptionsShowWeekNumber, which can be selected in the PropertyManager or added together to set
the options in your code. The kJSDatePickerOptionsShowWeekNumber option shows the isoweek number down the left-hand side
of the calendar layout.

By default, kJSDatePickerOptionsShowHeading and kJSDatePickerOptionsShowMonthNav are set to true and kJSDatePickerOption-
sShowWeekNumber is set to false to maintain behavior in previous versions.

Custom Date Formats

You can specify multiple date formats in the $dateformatcustom property for entry fields in a remote form, which allows end users to
input a date using one of a number of possible formats, rather than being limited to a single date format. The multiple date formats
can be entered into $dateformatcustom separated using “|” (the pipe character), for example:

D/M/y|D m y|d-m-y|D/M/Y|D/m/y|D-M-y|D M y

When parsing data entered by the user, the client uses each format in order, until one successfully matches the user input. The client
uses the first format in the list to format the data for display.

Numeric Data Entry Validation

Entry fields (anddata grids) validate numeric data as it is entered, for JavaScript remote formvariableswith a numeric data type. When
the end user tries to enter invalid data into the field, such as an alphabetic character, the data is rejected, i.e. it cannot be entered into
the field, and the field is highlighted momentarily to indicate an error (the default action is to show a red border).

When leaving the entry field, the value is normalized: so for integer data it is constrained to the valid range or for other numbers it is
rounded to the correct number of decimal places; also, leading zeroes are removed, and so on.

Negative Numbers and Uppercase

The $negallowed property for Entry fields allows for the display of negative number values. If this is kFalse and the end user tries to
enter a negative sign, the sign will be rejected.

When set to kTrue, the $uppercase property forces all character data to be shown in uppercase.

Zero Values

When the $zeroempty property is set to kFalse (the default), a zero character is shown in a numeric type entry field. Otherwise, you
can set $zeroempty to kTrue to ensure a numeric edit field is empty when the variable value is zero. You can have greater control over
the display of numbers using Input masks.

257

Multiline Edit Scrolling

Text wrapping for theMultiline Edit field is prevented if the $horzscroll property is enabled (kTrue). However, if $autoscroll is true, then
text wrapping does occur (since $autoscroll is on by default).

Shortcut Keys

There are a number of shortcut keys defined in the Entry field that allow end users to select text and move the insertion point within
the control (the shortcuts also apply to Window class Entry fields).

The shortcut keys are stored in the Omnis preference $keys which can be edited in the Property Manager (click on the Prefs option
in the top level of the Studio Browser). The shortcut keys for Entry fields are stored in a configuration file called ‘keys.json’ and located
in the Studio folder (this is the same file containing the shortcut keys for the Method Editor). The file is created the first time you edit
the shortcuts in the Property Manager and click OK.

Shortcut key Action

Alt+End End of Text Alternative
Alt+Home Start of Text Alternative
Ctrl+Alt+DownArrow Scroll Down
Ctrl+Alt+LeftArrow Scroll Left
Ctrl+Alt+RightArrow Scroll Right
Ctrl+Alt+UpArrow Scroll Up
Ctrl+DownArrow Paragraph Down
Ctrl+End End of Text
Ctrl+Home Start of Text
Ctrl+LeftArrow Backwards Word
Ctrl+RightArrow Forwards Word
Ctrl+UpArrow Paragraph Up
End End of Line
Home Start of Line
PageDown Page Down
PageUp Page Up

Auto Correction, Capitalization, Completion

You can control the Automatic Correction, Capitalization And Completion of text entered by the end user into an edit control. This
functionality is built into the browser whereby text is ‘corrected’ or updated automatically: note that not all browsers support all of
these functions, so you should check support in individual browsers on different platforms.

You should note that Auto correction, Auto capitalization and Auto completion (the properties $autocorrect, $autocapitalize & $auto-
complete) only work in Omnis when they are enabled on the client Mac computer. Note also that $autocapitalize only applies when
using a virtual keyboard on a device.

Auto Correction

If true, the $autocorrect property specifies that text entered into a JavaScript Entry field is auto-corrected, as the end user types into
the field. Currently this feature is only implemented in Safari and iOS browsers (note some browsers, such as Chrome, will highlight
incorrectly spelled words, but not correct them automatically). This property defaults to kTrue for backwards compatibility.

Auto Capitalization

The $autocapitalize property controls whether or not text typed into an edit field is capitalized, as appropriate, automatically. Possible
values include:

• kJSAutoCapitalizeSentences
Automatically capitalize the first character of new sentences (default and previous behaviour)

• kJSAutoCapitalizeWords
Automatically capitalize the first character of each word

258

• kJSAutoCapitalizeNone
No automatic capitalization

Auto Completion

The $autocomplete property controls whether or not text is completed automatically. If true, the browser will attempt to complete
text based on content previously entered into this type of field (e.g. name type fields will display a list of names based on the first letter
typed): the browser will display a list of suggested text for the end user to select from. There may be many possible values for some
types of field, which will be based on values previously entered into any website for a field with the same ‘autocomplete’ value, e.g.
‘email’.

Content Selection

The $setselectionmethod allows you to select a range of characters within the Entry field; note the method only works on the client.

• $setselection(iFirstSel[,iLastsel]))
Sets the focus on and selection range of the content in an Entry field. If iLastSel is omitted selection will occur to the end of the
edit field. Returns the selected text.

$setselection has two parameters, both Integer, iFirstSel and iLastSel to set position of the characters to be selected within the edit
control. iLastSel selects up to, but not including, the character specified, and if omitted the content in the edit field is selected to the
end. The method returns the content selected.

You can also use $cinst.$setcurfield(vNameOrIdentOrItemref [,bSelect=kFalse]) to put the focus in the specified field, and if bSelect
is kTrue and the client supports it, the contents is selected. This can be used on the client or in a server method; see Remote Form
Methods for more info.

Dictation Text Entry

You can enter text into an edit field using the built-in Dictation feature on macOS, which tries to convert audible speech into mean-
ingful text. To allow dictation to occur the focus must be in the edit field, whichmust itself be editable, i.e. not disabled, and dictation
must be enabled on the client computer. Dictation is available in Single- and Multi-line edit fields, the edit part of Combo boxes, and
edit fields in Complex grids in remote forms (and window classes), that is, wherever text input is required.

Enabling Dictation

Support for Dictation is turned on in Omnis by default, but you can change it in the config.json file. There is a “useDictation” item in a
“macOS” section of the config.json file, which is set to true to enable dictation; note you have to quit Omnis to change the config.json
file, and any change will be effective when you restart Omnis.

"macOS": {
"useDictation": true
}

Using Dictation in Edit fields

To enter dictationmode, place the cursor in the edit field and select the Start Dictation option from the Editmenu onmacOS, or press
the Function (Fn) key twice. This will open the dictation popup (usually in the center of the screen, depending on space) and put the
computer in listening mode. Dictation can be stopped or cancelled by clicking on Done in the popup, or using the Stop Dictation
menu option.

Dictation Levels

There are two levels of dictation provided by macOS: Standard or Enhanced. These can be enabled from System Preferences-
>Keyboard->Dictation, or on older systems System Preferences->Dictation & Speech.

Standard dictation (the default) requires an internet connection and provides speech to text translation using Apple’s servers. On
older systems, the text is not translated until the Done button is pressed on the popup. On newer systems text is translated and

259

02jsremoteforms.html#remote-form-methods
02jsremoteforms.html#remote-form-methods

placed into the field while the end user is speaking. Dictation will end automatically when text is entered from the keyboard or the
field loses the focus.

Enhanced dictation requires the enhanced dictation engine to be downloaded, which is approximately 500MB for each language
pack. This will then provide local machine based translation. Features of enhanced dictation are live feedback and offline support.
With live feedback the text is rewritten while speaking. Enhanced dictation also provides spoken dictation commands such as “Select
All”, “Cut that”, “Move left”, and so on. When enhanced dictation has been started it is possible to change the currently focused edit
field and move the popup to the new field and continue to dictate. It is also possible to type and dictate at the same time.

Tooltips and Carriage Return

Text in tooltips will wrap if it contains a carriage return character or other wrapping characters when the text width of the tip would
exceed a third of the screen width. In previous versions, tooltips only used CR to line wrap when the width of the tip was greater than
half the screen width.

In addition, the CR character is no longer displayed. However, any other control characters (characters less than space, or the character
0x7f) are displayed using the Unicode control character page.

This change also applies to tooltips for window class controls.

File Control

Group Icon Name Description

Media File Control Allows end users to upload or download
files

The File Control allows end users to upload or download files inside a remote form: from Studio 10 the control allows multiple files to
be uploaded. The control itself is invisible and to enable the upload or download functions, you need to assign an action at runtime,
to the $action property. The Upload and Download actions are represented by the constants kJSFileActionUpload and kJSFileAction-
Download.

There is an example app called JS File Upload/Download in the Samples section in the Hub in the Studio Browser showing how you
can upload and download files, and the same app is available in the JavaScript Component Gallery. In addition, the Contacts example
app, under the Applets option in the Hub, uses the file control to upload a contact photo.

When inUploadmode the File control opens a standardUploaddialog to allow the enduser to select a local file or files to upload. There
are various properties to allow you to change the text and errormessages on the Upload dialog, including $choosefilesbuttontext that
allows you to specify the text on the ‘Choose Files’ button. In addition, you can setup the File control to receive files that are dropped
onto the File control in the remote form itself.

When in Downloadmode, the File control can provide a standard hyperlink pointing to the file to be downloaded, or you can assign
a row variable to the $dataname of the control containing the binary data of the file to download, or a list for multiple file downloads.
The download function is supported for mobile devices, and if the browser can interpret the contents of the file it is shown in a new
browser window or tab.

The $maincolor property is the main color used throughout the control (upload area, upload button, progress bars, completion indi-
cators, upload spinner).

Mobile limitations or issues

Support for the Upload or Download function on mobile devices depends very much on the device itself and the mobile operating
system. Therefore, if you intend to include an upload or download function in your app, you should test your app thoroughly on all
devices youwish to support. With this inmind, we are aware of the following limitations or issues regarding differentmobile operating
systems.

Upload does not work on iOS because the input element to select a file does not become enabled since iOS does not support it.
Download works via the hyperlink becausemobile Safari has been implemented to support hyperlinks. However, the other download
mechanism does not work: on iOS for example, the download actually transfers the data to the client, but then the browser does not
carry out any action with the data, so the downloaded file is lost.

260

https://bit.ly/OmnisJSGallery

Figure 171:

261

Uploading Files

To enable the upload function, you need to set up a list to receive the uploaded files and youmust set the $action property to kJSFile-
ActionUpload. In addition to using the File control to allow the end user to select files by clicking an Upload button, you can switch
the control to receive files that are dropped onto the control; see Dropping Files.

Setting up the file list

The $dataname property of the File component needs to be set to a two-column row variable: Column1 should be of type List, and
column2 should be of type Character ($dataname should be set before the upload action is triggered). The value assigned to column2
should be the name of a task variable of Binary type which will receive the binary data when the upload is complete. Column1 will
receive MIME header list information when the upload is complete.

Setting the Upload action

To trigger the upload dialog, you need to assign kJSFileActionUpload to the $action property. This action opens a file upload dialog
which has two formats: one for recent web browsers, and the other for browsers which do not support XMLHttpRequest2, i.e. Internet
Explorer and Opera. When a file has uploaded an evFileUploaded event is generated and the List and Binary task variable assigned
to $dataname are populated. When the dialog closes the control generates evFileUploadDialogClosed.

The $maxfileuploadsize specifies the maximum size in bytes of a file to be uploaded to the server. Zero means no limit. Some clients
(IE and Opera) cannot enforce this limit. See example below for details on how to upload a file.

While the Upload dialog is open, you can close it by assigning kJSFileActionCloseUpload to the $action property (note this does not
generate evFileUploadDialogClosed).

On the upload dialog the file name is displayed above the progress bar, to the left, the percentage is shown above to the right, and
file upload size information shown below as before. File sizes displayed to the user are in shown in the appropriate unit so when 1000
bytes is exceeded it changes to kB, 1000 kB changes to MB and 1000 MB changes to GB.

The $clearsfileselection property clears the last uploaded file. When set to true, the current file selection is cleared automatically after
an upload has completed.

Upload File Type

The $uploadtypes property allows you to filter the file types that can be uploaded. The property accepts a comma-separated list of file
extensions or MIME types, for example, the string ‘.png, .jpg, .jpeg’ would allow PNG or JPG files, or ‘image/*’ to allow any image files.

Uploading Multiple Files

The File control allows multiple files to be selected for uploading by setting $allowmultiple to kTrue. It is not supported by some
browsers, just like $maxfileuploadsize (IE9 and below, Opera).

The properties $maxbatchuploadsize and $maxbatchuploadsizeerrortext work similarly to $maxfileuploadsize to impose a limit of the
total amount of data to be uploaded. This works independently of $maxfileuploadsize so you can impose a limit on single or multiple
file uploads. In addition, $uploadedprogresstextbatch has been added to show the progress of the batch of files, and works similarly
to $uploadprogresstext.

Error messages shown when file sizes are exceeded, for single or batches of files, give the user feedback on what the size limits are
and lists the offending files exceeding the limit.

Multiple file upload dialogs display the same information for each single file, while another progress bar shows progress through the
batch of files, including howmany files have uploaded out of the total.

Using Timer and File controls

Note that if a Timer control is present on the page, timer events will not occur while a file upload dialog is open, or while file download
is in progress.

Localization

All the text and labels in the File control can be translated via the jOmnisStrings object in the JavaScript client. See themain Localiza-
tion section for more info.

262

Upload UI

The $choosefilesbuttontextpos property allows you to position the text label in the Upload UI. It can be assigned a kJSFileUploadLa-
belPos… constant to specify whether the label is shown at the Top, Right, Bottom, or Left of the icon, or it can be set to None to hide
the label (the constants are kJSFileUploadLabelPosTop, kJSFileUploadLabelPosRight, kJSFileUploadLabelPosBottom, kJSFileUpload-
LabelPosLeft and kJSFileUploadLabelPosNone).

The $choosefilesiconid property allows you to specify an icon in the Upload UI; the default is the file_upload icon from the material
iconset set to 48x48 size. If a themed SVG is used, it will take on the same color as $maincolor. Note that if this icon is cleared, there
will be no indeterminate spinner shown while uploading files.

Dropping Files

You can setup the File control to receive files that are dropped onto the File control to upload them. In this case, the input area is
larger, and a generic progress spinner is displayed, which replaces the choose files iconwhile uploading. Thismay be useful if youwish
to opt for a simpler interface by switching off the progress details (see $hideuploadprogress and $hideuploadprogressbatch below).
In addition, you can use the file control as an upload area inline on the form, and files upload automatically instead of the end user
having to click another button once the files have been chosen.

To allow files to be dropped the $showinline propertymust be set to true. If true, $hyperlinktext and $hyperlinkurl will be ignored, and
kJSFileActionUpload assigned to $action (used to open the file dialog) will also be ignored. If $autoupload is true, no Upload button
will be shown, and instead files will be uploaded as soon as they are chosen.

If $hideuploadprogress is true, the upload progress area is hidden. Plus $hideuploadprogressbatch allows you to hide the total batch
upload progress area. The spinner is displayed if both upload progress areas are switched off.

The $uploadprogresstextcolor property is the color for the text in the progress elements.

Downloading Files

URL downloads

In its simplest form, the File control can provide a hyperlink to allow the end user to download a file located on the internet. In this
case, you would set the $visible property of the control set to kTrue, set $hyperlinkurl to the URL of the file, and $hyperlinktext to the
text for the hyperlink. The URL does not have to be a file download URL, it can be any file on the internet and will open in a new
browser window or tab. The File control will display the download as a standard hyperlink on the remote form.

Single File downloads

You can also use the File control to download a file from a binary file or one stored in your database. To enable this functionality, you
need to assign kJSFileActionDownload to the $action property. To download a single file, the $dataname property of the File control
is set to a row variable, with Column1 as the file name, Column2 the media type (e.g. text/plain;charset=utf8), Column3 the name of a
remote task variablewhich should be a binary containing the file data or character containing a file path, and Column4 is an ‘Identifier’
column (Character type) containing a name for the file.

Multiple File downloads

You can specify a list in $dataname, instead of a row, to provide a list of files to be downloaded. The definition of this list is identical
to the row, with each line in the list representing each file to be downloaded. The optional fourth ‘Identifier’ column can contain a
unique name for each file.

You can use the evDownloadSent event in the $event method for the File control to loop through the file list to download each file.
This method is in the JS File example in the Samples section under the Hub.

iFiles is defined in $construct with cols iFileName, iFileLen, iFileBinary
On evDownloadSent
Do iFiles.$next(iFileLineRef,kTrue,kFalse) Returns iFileLineRef
If iFileLineRef

Do method downloadFile
End If

The downloadFile method is:

263

Do iFiles.$loadcols()
Calculate tJSFileBinData as iFileBinary
Do iJSFileRow.$define(iJSFileName,iJSMediaType,iJSVariableName)
Do iJSFileRow.$assigncols(iFileName,'application/octet-stream','tJSFileBinData')
Do $cinst.$objs.JSFormFile.$action.$assign(kJSFileActionDownload) Returns #F

evDownloadSent Event

The evDownloadSent event indicates if the download was successful and identifies the file that was downloaded. The event receives
two parameters:

• pSuccess
Whether or not the download was successsfully sent.

• pIdentifier
The value of the Identifier column (the fourth column, if provided) in the download list/row which was assigned to $dataname
to initiate the download which has now been sent.

The evDownloadSent event will be triggered when the server has sent all of the data for a file to the client. Note that Omnis sends
the data in a single chunk, so the client may still be processing the data at this point. However, at the point that the event is fired, the
server has sent all of the data, and the task variable containing the binary data (or file path) can now be re-used.

Example

A File control is used in the jsContacts form in the Contacts sample app to allow end users to upload a photo of their contacts. The
File control is placed somewhere on the form, its $dataname is set to iFileRow, an instance row variable, and the evFileUploaded and
evFileUploadDialogClosed events are enabled in the $events property of the control. The iFileRow variable is setup in the $construct
method of the form, as follows:

Do iFileRow.$define(MimeList,"Binary Variable")
Calculate iFileRow.C2 as "tData"

MimeList is a local list variable, and tData is a task variable of type Binary – it’s important to note that the second column of iFileRow
is of type Character, and is set to the Name of the binary task variable. Elsewhere on the form is a picture control to display the photo,
its $dataname is iPicture, and a button to allow the end user to select an image file and initiate the upload process. The code for the
button is:

On evClick
Do $cinst.$objs.fileControl.$action.$assign(kJSFileActionUpload)

This assigns the kJSFileActionUpload action to the fileControl object which opens the Browse/Upload dialog. The File control has an
$event method which detects when a file has been uploaded and the upload dialog has been closed:

On evFileUploaded
Calculate iPicture as tData

transfer the pic data to iPicture
On evFileUploadDialogClosed
Do method setPicBtnTitle (kHavePic) ## changes the button text

When an image is selected by the end user and the file is uploaded the image data is loaded into the tData task variable, as defined
in the second column of the iFileRow row variable, which is then transferred to the iPicture variable assigned to the picture field on
the form. The Save button saves the contact record including the image file uploaded by the user.

Floating Action Button

264

Group Icon Name Description

Buttons Floating Action Button A round button that pops up a list of
actions when tapped or hovered over

The Floating Action Button (FAB) component features a round button that pops up a list of actions when tapped or hovered over,
with the first option being a default action. For example, in a form displaying a list of contacts, you could use a FAB to provide options
to add a contact (the default action), with further options to edit, call, or email a contact.

Figure 172:

The FAB is displayed as a circular button containing a ‘+’ icon prompting the end user to tap it or hover over it; the default icon can
be replaced by setting $iconid of the button control. In its expanded state, the actions in the list appear to “float” on top of the other
content in the form.

Defining the data list

To create an expanded list of actions, the $dataname of the FAB can be assigned a list instance variable with the following columns:

Column Type Description

Icon Character The URL of the image, generated by
calling iconurl(iconid); iconid is the
name of an SVG image in an icon set,
such as an icon in the material icon
set

Action ID Integer This should be a unique integer. This
will be the value of pActionId in the
evClick event, e.g. IDs could be 1, 2, 3,
etc.

Label Character The label text (this is used as the
accessible name of the action if
labels are hidden)

There is an example application called JS Floating Action Button in the Samples section of the Hub in the Studio Browser which
displays a FAB in the bottom right corner of a remote form. Each line represents an action with the first line, in this case Create,
representing the main button in its expanded state.

In the FAB example, a list instance variable iList is assigned to $dataname of the control, which has 3 columns: Icon, ActionID, and
Label. The following code is added to $construct of the form, which creates the options shown in the expanded button:

Do iList.$define(lIcon,lActionId,lLabel)
Do iList.$add(iconurl("create"),1,"Create")
Do iList.$add(iconurl("save"),2,"Save")
Do iList.$add(iconurl("content_copy"),3,"Copy")
Do iList.$add(iconurl("print"),4,"Print")
Do iList.$add(iconurl("download"),5,"Download")

265

Figure 173:

Properties

The Floating Action Button has the following properties.

Property Description

$dataname The name of the list instance variable that
defines the expanded actions

$iconid The icon on the main button in its
non-expanded state which replaces the
default plus icon; no icon is shown when
$iconid is empty

$text The optional text on the main button. A
FAB with text will use the full control area.
Without text, it will be circular

$textcolor The color of text and SVG icon on the main
button in its default (non-expanded) state

$textbeforeicon If true, and the control has both text and an
icon, the text is drawn before the icon

$opendirection The direction in which the expanded
actions open, a constant: kFabDirectionUp
(the default) or kFabDirectionDown

$expandedappearance The appearance of the FAB in its expanded
state, a
constant: kFabAppearanceIconOnly icons
only, no labels kFabAppearanceLabels (the
default) displays the labels for all actions in
the list kFabAppearanceHoveredLabels
each label is displayed when the action is
hovered or focused with the keyboard

$labelside The side on which action labels are
displayed, a constant: kFabLabelSideLeft
(the default) or kFabLabelSideRight

$expandedlabelbackground If true, expanded action labels have a
background (default is false)

266

Property Description

$expandedmainbackcolor The background color of the main button
when the FAB is expanded. kColorDefault
means use $backcolor

$expandedmaintextcolor The color of text and SVG icon on the main
button when the FAB is expanded

$actionbackcolor The background color of expanded actions
$actioniconcolor The color of SVG icons on expanded actions
$modalbackcolor The color and alpha of the modal

background when the FAB is expanded;
the color picker includes a slider to set the
alpha value (0-255), or you can use rgba() at
runtime*

$labelbackcolor The label background color used if
$expandedlabelbackground is kTrue

$labeltextcolor The text color of action labels

*In order to allow $modalbackcolor to be set on the client, the rgba() function can now be executed on the client, which allows you to
set the color and alpha value of the property.

The following example FAB has the following properties set (and uses the ice JS theme):
$expandedappearance = kFabAppearanceHoveredLabels
$expandedlabelbackground = kTrue
$labelside = kFabLabelSideRight
$opendirection = kFabDirectionDown

Events

The Floating Action Button reports the evClick event, sent when themain button or an expanded action icon is clicked. The pActionId
parameter contains the value of the clicked action as defined in the second column of the data list. If the main button was clicked in
its default state, the value of pActionId is null.

Gauge Control

Group Icon Name Description

Visualization Gauge Displays numerical values on a circular or
linear scale

The Gauge component provides a way to display numerical values on a circular or linear scale, with options to customize the appear-
ance and behavior. The Gauge control type can be Circular, Horizontal or Vertical.

There is an example application called JS Gauge in the Samples section of the Hub in the Studio Browser demonstrating the types of
gauge available, including the Circular and Vertical gauge types, as shown:

267

A gauge consists of:

• A circular or linear scale with tick marks and labels that can be customized

• A needle ormarker style pointer to indicate the current value

• A range or multiple rangeswith customizable colors, widths and start/end points; the range is a colored band inside or outside
(above or below) of the scale

• A display value showing the current value in a formattable string, so you can display units, for example

The current value shown on the gauge is stored in the $dataname, which is shown if $alwaysshowdisplayvalue is true, otherwise if
false, the value is only shownwhen the end user hovers their pointer over the needle or marker, or the needle or marker is dragged to
change its value. You can format the value by setting $displayvalue using a ‘sprintf’ formatted string. If the $clicktosetvalue property
is true, the end user can change the value by clicking on the gauge, otherwise if false, the value can only be changed by dragging the
pointer.

You can set the Scale and Range for the gauge control, including the start and end values (e.g. 0 to 100), the position of the start and
end values (i.e. the angle in a circular gauge), as well as the colors and settings for the tickmarks on the scale using various properties;
see below for more details about the customizing the Scale and Range.

268

Figure 174:

269

Properties

The following properties are available for the Gauge control (the range properties are shown after this table).

Property Description

$dataname The name of the instance variable that
holds the current value. Must be of
Number or Integer type

$gaugetype The type of gauge (Circular, Horizontal or
Vertical), a kJSGaugeType… constant:
kJSGaugeTypeCircular
kJSGaugeTypeHorizontal
kJSGaugeTypeVertical

$scalevaluestart The start value of the scale
$scalevalueend The end value of the scale
$scaleanglestart The angle of the start of the scale in

degrees where zero is the top. Only applies
when $gaugetype is kJSGaugeTypeCircular

$scaleangleend The angle of the end of the scale in degrees
where zero is the top. Only applies when
$gaugetype is kJSGaugeTypeCircular

$tickintervalmajor The interval between major tick lines. Zero
means the interval is calculated
automatically

$tickintervalminor The interval between minor tick lines. Zero
means the interval is half of the major tick
interval

$ticklineheight The height of major tick lines in pixels,
which must be set to make the tick lines
visible. Minor tick lines are half of this
height

$minstep The minimum step size on the scale,
e.g. set to 5 to allow value to step in
multiples of 5. If this is zero or greater than
or equal to the scale’s range, the major tick
interval is used as the minimum step

$clicktosetvalue If true, the user can change the value by
clicking on the gauge. If false, the value can
only be changed by dragging the pointer

$reversedirection If true, the positive direction is reversed
$displayvalue A formatted string used to display the

current value. sprintf syntax with a single
format tag for the number, e.g. f km/h; use f
and d for a floating and integer number
respectively, or F and D in upper case to
insert a thousand separator

$alwaysshowdisplayvalue If true, the current value is always displayed.
If false, it is only shown when the pointer is
hovered or dragged

$circularpointertype The style of pointer used when $gaugetype
is kJSGaugeTypeCircular, a
kJSGaugePointerType… constant:
kJSGaugePointerTypeDefault
kJSGaugePointerTypeNeedle
kJSGaugePointerTypeMarker

$opposeaxis If true, the position of the axis is opposed,
e.g. scale on circular gauge is shown on the
outside

270

Property Description

$opposeranges If true, the position of the ranges is
opposed

$padding The padding from the scale line to the
edge in pixels. 1 to 4 pixel values separated
by -. Possible values: [all sides],
[vertical]-[horizontal],
[top]-[horizontal]-[bottom],
[top]-[right]-[bottom]-[left]

$markeroffset The offset in pixels of the marker-type
pointer from its default position

$rangeoffset The offset in pixels of the range from the
scale line

$animatechanges If true, the pointer and display value will
animate when the value changes

$hidescaleline If true, the scale line is hidden
$hideticklines If true, the tick lines are hidden
$hidescalelabels If true, the scale labels are hidden
$scalelabelfontsize The font size for the scale labels
$blendrangecolors If true, the range colors are blended

together, to create a color gradient
$pointercolor The color of the pointer
$scalecolor The color of the scale and tick lines
$scalelabelcolor The color of the scale labels
$hidescaleline If true, the scale line is hidden
$hidescalelabels If true, the scale labels are hidden

Events

The evValueChange event is triggered when the value is changed by the user clicking on the gauge area or dragging the pointer
(needle or marker). The pNewValue parameter holds the new value.

Customizing the Scale and Range

The properties under the Range tab in the Property Manager control the range values and appearance.

Property Description

$currentrange The current range; set this to access properties for each range section
$rangecount The number of range sections
$rangecolor The color of the current range
$rangevalueend The end value of the current range
$rangevaluestart The start value of the current range
$rangewidthend The width of the end of the current range
$rangewidthstart The width of the start of the current range

To show how you can customize the scale and range for a gauge control, consider the following example that displays temperature
values in the range 0 to 100.

The following properties have been set:

• On the General tab in the Property Manger, $scalevaluestart and $scalevalueend are set to 1 and 100, respectively.

• On the Appearance tab, $gaugetype is set to kJSGaugeTypeHorizontal, $displayvalue is set to %dC, $padding is set to 100-10
(100 at the top to display the customized range, 10 for each side), $rangeoffset is -2 (which provides a gap between the range
and scale baseline), and $tickintervalmajor is set to 20.

271

Figure 175:

You can customize the range on the Range tab in the Property Manager. The range is not shown by default, so to show a simple
range you can set $rangecount to 1 and $rangevalueend to the same value as $scalevalueend, e.g. 100. However, to specify different
colors and widths on the range, like the above example, you need to set $rangecount to 4 and specify each range in turn by setting
$currentrange (a design property) from 1 to 4. The following property values are set for each range section:

$currentrange 1 2 3 4

$rangecolor (r,g,b) Green (0,202,53) Yellow (206,202,55) Orange (213,131,35) Red (209,1,8)
$rangevaluestart 0 25 50 75
$rangevalueend 25 50 75 100
$rangewidthstart 10 20 30 40
$rangewidthend 20 30 40 50

In the example, the distinct colors for the ranges are blended automatically by setting $blendrangecolors to kTrue, providing a smooth
gradation of colors.

You can experimentwith the display properties to achieve the gauge appearance youwant, including flipping the scale or range using
the $opposeaxis and $opposeranges properties. For example, the circular gauge, shown below left, has $opposeaxis set to kTrue to
display the scale and labels on the outside. For the gauge shown on the right, its scale and tick lines are hidden, the pointer type is
set to marker (a small arrow), $markeroffset is set to the same value as the range width, while $scalevaluestart and $scalevalueend
values are 270 and 90, respectively.

HTML Object

Group Icon Name Description

Media HTML Object Object to display HTML content

272

The HTML Object lets you display an HTML page or fragment in a remote form, such as an HTML link or formatted paragraph. The
$html property contains the HTML content for the control. There is an example app called JS HTML in the Samples section in theHub
in the Studio Browser, and the same app is available in the JavaScript Component Gallery.

The HTML content for the control must start with an element declaration such as <div…> or <style>. The $wraptext property is set to
true by default meaning that the content in the control will wrap (set it to kFalse to stop wrapping): this property sets white-space for
the control to ‘normal’ if true, and ‘no-wrap’ if false.

HTML Preview

The HTML control has a property, $showruntimepreview, which defaults to kTrue, which ensures the HTML is rendered in the remote
form rather than showing the HTML code text. If $showruntimepreview is false, the HTML code text is shown, but it cannot be scrolled
inside the control in the design window.

Custom JavaScript Controls (Deprecated)

Note: This technique using $ctrlname to add custom controls to a remote form is deprecated. You should instead use JSON-defined
controls: see the JSON Components chapter.

You can use a custom JavaScript control on a remote form by embedding it in an HTML Object. To do this, the JavaScript file defining
the custom control must be placed in the html/scripts folder and referenced in the HTML file containing your remote form (this can
be added to the jsctempl.htm file or the specific HTML page containing your remote form). The name of the custom control class (as
defined in its JavaScript file) must then be added to the $ctrlname property of the HTML Object.

If you want your custom control to inherit the HTML control’s specific functionality (such as the use of $html and its placeholders
feature), your custom control must inherit from ctrl_html, rather than ctrl_base (and do not override this.superclass, instead use a
different variable to reference the ctrl_html immediate parent class).

HTML Examples

The example library (in the Samples section in theHub in the Studio Browser) shows how you can use HTML to format text using tages
and styles, and embed the content into a Remote form.

Figure 176:

The same app contains a more complex example showing how you can format HTML for an email. In addition to the HTML example
app, there are also two examples in the Samples section in the Hub (and in the Component Gallery) to display a Twitter button and a
Twitter Timeline that use the HTML component to embed the necessary HTML into a remote form.

The following HTML is used to create the initial Twitter button:

<div>Tweet to @omnisstudio</div>

273

https://bit.ly/OmnisJSGallery
04jsoncomps.html

Figure 177:

Figure 178:

Building an HTML block

You can use the Text: or Sta: command to build up the HTML content. The followingmethod constructs some HTML and assigns it to
$html of an HTML control called HTML.

lHTML is a local var of Character type
Begin statement
===== Styles =====
Sta: <style>
Sta: p {color: #00F; margin: 0 2em; padding: 1em; background-color: #fff; border: #DDD solid 2px;}
Sta: h1, h2 { color: #666; margin-left: 0.5em;}
Sta: img {margin: 5px 0 5px 50px;}
Sta: </style>
===== Content =====
Sta: <div>
Sta: <h1>HTML Control</h1>
Sta: <p>
Sta: You can display HTML in the HTML control.

Sta: This is the Second line of content.

Sta: <i>And you can do italic etc!</i>
Sta: </p>
Sta: <h2>Pictures</h2>
Sta: <p>You can embed pictures.</p>
Sta:
Sta: </div>
End statement
Get statement lHTML
the html form object is called HTML
Calculate $cinst.$objs.HTML.$html as lHTML

You can embed any of the standard HTML tags into the $html property, including links, styles, and tables. The following text could
be added to an HTML control which is placed next to a check box control on a remote form to allow end users to popup a window
containing competition rules that are stored in a static html page:

<p>I have read and agree to the competition rules</p>

274

Events

The HTML Control reports the evBefore and evAfter events, as well as evClick and evDoubleClick.

Style and Attribute Placeholders

You can inherit the effects and font attributes that you set for the HTML object in the Property Manager in design mode by inserting
various placeholders in the $html property. The placeholders take the format %<letter>, for example, insert %f to inherit the font
specified in $font, or %t to inherit the text color set in $textcolor. Most of the placeholders should be inserted into an html element
using the style tag, while others are attributes and can be inserted directly into an HTML element.

Placeholder Type Description Property or desc

b attribute back color and alpha $backcolor and $alpha
f style font $font
z style font size $fontsize
s style font style $fontstyle
j style font align $align
t style text color $textcolor
e attribute effect $effect
p style position coordinates of omnisobject
v style vert scroll $vertscroll must be kTrue
h style horz scroll $horzscroll must be kTrue

For example, you can set $html to <div %e></div> and the text in the control will take on the effect from $effect (or $linestyle or
$bordercolor, as these are effect properties).

To use the font specified in theHTMLobject in a paragraph in yourHTML insert: <div><p style=“%f”>SOMETEXT</p></div>. For example,
the following HTML produces some text rendered in plain or default HTML paragraph style and second paragraph of text that uses
the font setting specified in $font in the HTML object, which in this case is set to “Verdana,Arial,Helvetica,Sans-serif”:

<div><p>PLAIN TEXT</p><p style="%f”>STYLED TEXT</p></div>

HTML object in Paged Panes and Subforms

If the HTML object appears in a Paged Pane or Subform (i.e. inside any container field), you will need to add the “white-space:normal”
parameter to the <div> tag containing your Html to allow the text to wrap correctly inside the object. For example, the following <div>
tag will contain text etc within a 300px width:

<div style="width:300px; white-space:normal">
your HTML
</div>

Hyperlink Control

Group Icon Name Description

Navigation Hyperlink List containing hyperlink style options

The Hyperlink Control allows you to present a list of options to the end user, where each option in the list is displayed as a web-style
hyperlink; each link option corresponds to a line in the underlying list variable used to populate the list. If the whole list does not fit
inside the control, the list will “pop up” when the end user passes themouse over the control. The $extraspace property specifies extra
spacing between links. The Hyperlink control is used in the Studio Browser and is very similar to the JavaScript version of the control.

275

Figure 179:

The options or list contents in the Hyperlink control are based on the contents of a list variable specified in $dataname. The first
column in the list should be the text displayed for each option listed in the control, unless $listcolumn is specified which is the column
of the list variable used to populate the control. Subsequent columns in the list can be used to specify other values.

When the end user clicks on the list an evClick is triggered with the selected line reported in pLineNumber. You can use the value of
pLineNumber in your event method to trigger an action. You can create an empty line by putting ”-“ (hyphen) in the first column.

If $isvertical is kTrue the list pops up vertically, and if $shouldunderline is kTrue the links are underlined. The $selectedtextcolor prop-
erty specifies the color of the text when the mouse is over it.

Example

There is an example library called JS Hyperlink in the Samples section in the Hub in the Studio Browser showing how you can build a
dynamic hierarchical list using the Hyperlink control; the same app is available in the JavaScript Component Gallery.

The following method is the $event() method for the Hyperlink control:

iHyperLinks is a List var defined in the construct of the form as
Do iHyperLinks.$define(iHyperName,iHyperGrp,iHyperCmd)
On evClick
Do iHyperLinks.$line.$assign(pLineNumber)
Do iHyperLinks.$loadcols()

If iHyperGrp=0
Do method getHyperLinks (iHyperCmd)

Else
If iHyperCmd=99
Do method getHyperLinks (0)

Else
Calculate iMsg as con('HyperLink ',iHyperCmd,' of Group ',pick(iHyperGrp,'','A','B','C','D'),' Clicked')

End If
End If

276

https://bit.ly/OmnisJSGallery

Label Object

Group Icon Name Description

Labels Label Object Basic label object

The Label Object lets you add standard text labels to your remote form. The text for the label is entered into the $text property in
the Property Manager, or you can double-click on the text for the label to edit it. Alternatively, you can assign some text to the $text
property in your code.

The font and alignment of the label is setup under the Text tab in the Property Manager. You can use the style() function to style parts
of the text assigned to $text, for example:

Calculate $cinst.$objs.label1.$text as con('Mellow ',style(kEscColor,kYellow),"Yellow")

Styled text is only supported if $textishtml is false. When set to true, the $textishtml property means the text in $text is interpreted as
HTML, so in this case you can use any HTML tags and styling to format the text. For example:

Calculate $cinst.$objs.labelhtml1.$text as 'This is RED'

Labels have the $dataname property which means you can assign the text from a variable. In this case, the value in $dataname
overrides the value in the $text property, and actually sets $text. You can assign a Date variable to $dataname, in which case the label
takes its display format from #FDT, #FD, or #FT depending on whether the variable has a date/time component.

List Control

Group Icon Name Description

Lists List Standard list field for displaying list variable
data

The standard List Control allows you to display a single column list on your remote form allowing end users to select a particular line;
the following screen shows a simple product list using the ‘ice’ JS Theme.

Figure 180:

If the $ischecklist property is kTrue in the standard List control, each list line has a checkbox which allows the end user to select or
de-select the line, which is useful for multi-select lists or checklists.

277

Figure 181:

There are several example apps showing different types of list control in the Samples section in the Hub in the Studio Browser (see JS
List, JS Linked List, JS List Pager), and the same apps are available in the JavaScript Component Gallery.

For lists withmany columns, youmay prefer to use aData Grid Control, or for amore compact single-column list you can use aDroplist
Control. If you want to include an icon next to the text in each list line you can use a Tree List Control by including your data and icon
references at the top-level of the list data without using any child data. For a further alternative to the standard List box, you can use
the Native List to display list data but with a native appearance on each OS.

List data variable

The contents of a standard List is taken from the instance variable (of List type) specified in the $dataname of the control. In this
case, the first column of the list contents is used to populate the list control; you can specify an alternative column for the data in
$listcolumn. You can build the list using an instance variable of List type in the $constructmethod of the remote form so it is available
to all instances; the list can be built from your database or from a number of static values.

The JS List example app in the Hub uses a simple check list ($ischecklist = kTrue) and a standard List control; the check list is built in
the $construct method of the form, as follows:

iCheckList: instance var of List type
Do iCheckList.$define(iCheckListValue) ## defines the list
Do iCheckList.$add('Milk') ## add the values
Do iCheckList.$add('Tea')
Do iCheckList.$add('Coffee')
Do iCheckList.$add('Sugar')
Do iCheckList.$sort(iCheckListValue) ## sorts the list
in addition you can select a line if required
Do iListvar.$line.$assign(1) ## selects the first line

The example app provides a button to merge the selected lines in the check list into the other list. The code behind the button is:

On evClick
Do iList.$merge(iCheckList,kFalse,kTrue,kTrue)
merges the selected lines only

See the ‘Programming Lists’ chapter in theOmnis Programmingmanual for more information about using list variables in your code.

278

https://bit.ly/OmnisJSGallery

Selected Line Color

You can control the color for selected lines by setting $selectedlinecolor; use kColorDefault for the default selected line color for the
client OS, or the current JS theme. The $evenrowcolor property sets the background color of even numbered rows displayed in the
list; kColorDefault means use the same color as the odd numbered rows ($backcolor).

List Events

When the user selects a line the evClick event is reported with the pLineNumber parameter reporting the selected line number. You
can also set the evDoubleClick event for a list control to detect when the end user double clicks on a list line. List events will retuen
the pLineNumber parameter containing the number of the line clicked, and you can use this in your event method behind the list to
trigger an action.

A double-click event is sent to a List control if the Enter or Space key is pressed while the focus is in the List and if evDoubleClick
is enabled on the list. Otherwise, if the control has an evClick event enabled, Enter/Space sends an evClick. If the control does not
have the evClick or evDoubleClick enabled, then Enter triggers the okkeyobject (if there is one), as long as the state of the list has not
changed, i.e. the current line has not changed, and no checkbox has been toggled.

Lists and Client Methods

Searching Lists

You need to prefix the column name with $ref for a search to work in a client method. For example:

Do iList.$search($ref.iCol="ABC")

Smart Lists and the JavaScript Client

The JavaScript Client does not support smart lists in client executed methods, insofar as if you change the list in some way on the
client, it will no longer be a smart list when the updated data is sent from the client back to the server. Smart lists work as expected
in server executed methods.

List Scrolling

Lists have the $vscroll and $hscroll properties which allow you to scroll a list vertically or horizontally at runtime in the client browser;
note these properties are write-only meaning that you cannot return their values at runtime. The vertical or horizontal scroll value
assigned using $vscroll or $hscroll is the row number for a list.

Changing Current Line from the Keyboard

The $keyboardchangesline property determines whether or not the the current line in the list changes when the end user navigates
the list using the keyboard; the property is available in the standard JS List, Native lists, Tree lists, and Data grids, and only takes effect
when $multipleselect is kTrue. This allows multiple rows to be selected while also having the keyboard change the current line. To
enable users to select non-adjacent lines with the keyboard, $keyboardchangesline can be set to kFalse.

When the list only allows a single line to be selected ($multipleselect is kFalse), navigating the list with the keyboard always uses a
focus line and the user has to manually select a current line with the Space or Enter key, at which point evClick is fired.

Linked Lists

You can link a List control to an Entry field to create a “Linked List”, so that when the end user types into the edit field the contents of
the list is updated dynamically. There is an example app called JS Linked List in the Samples section in theHub in the Studio Browser
to show the use of a Linked list; the same app is available in the JavaScript Component Gallery.

The combination of an Entry field with key presses enabled and a List control allow you to create a dynamic list that has the ability to
update in response to what the end user types into the edit box. A Linked List is in effect like a Combo box, but with the extra ability
to update itself as the user types. To enable this feature, edit controls can detect certain key presses and can be linked to a list control,
while for lists themselves there is a property to display selected lines only.

279

https://bit.ly/OmnisJSGallery

Figure 182:

Creating Linked Lists

The Edit Control has the $linkedobject property which is the name of a list control on the current remote form used to display sug-
gestions to the user if the Entry field enables the evKeyPress event. You need to add the code to populate the list in response to
evKeyPress, based on the current value of the instance variable specified for the Entry field.

When the end user types into the Entry field, the linked list will appear automatically. It is not necessary to process any events for the
list control, since the dynamic list behavior is determined automatically by being linked in this way. Therefore, you would expect the
following to happen when end users are using a dynamic linked list:

• Clicking on a line in the open list will set the edit control to the value of the clicked line.

• Pressing up or down arrow when the focus is on the list control will set the value of the edit control to the new current line of
the list.

• Pressing the down or up arrow when the edit control has the focus and when the list is not visible will open the list, set the edit
control value to the selected line in the list, and move focus to the list.

• Typing into the edit control when the list is closed will open the list and keep focus on the edit control.

• All the following will close the list: pressing return when the list has focus; pressing escape, or clicking away from the list or the
edit control.

Optimizing the Linked List

The list property $selectedlinesonly specifies that only the selected lines in a list will be displayed (this only applies when $ischecklist
is false), which in the context of Linked lists allows you to filter the content of a list that is linked to an Entry field. You should optimize
the $event method for the edit control in the following way:

• Make the $event method for the Entry field execute on the client.

• On evKeyPress, if the list of suggestions is empty (or no longer suitable for the data), call a server method to build the list (with
lines selected based on the value of the edit control).

• In subsequent evKeyPress events that can use the pre-built list, perform a list $search to change the selected lines to the ones
which are suitable for the new value of the edit control.

In this way, the list of suggestions is cached on the client, and updates simply by changing the selected lines with a search in your
code.

When $selectedlinesonly is true, the processing involving the usual click events and so on all use the line number of the data in the
list, not the lines displayed in the list.

Note that if you use the $evenrowcolor property when $selectedlinesonly is true, the even row color applies to the numbers obtained
by counting the displayed lines, rather than using the line numbers of the data in the list.

280

Detecting Key Presses

Entry fields have an event called evKeyPress; the Key press detection was added to support Linked Lists, but it could be used by itself
for other purposes. The evKeyPress event has a single event parameter, pKeyList, which is a three column list containing the keys
entered since the last evKeyPress event (or since typing started) with a row for each key in the order the keys were pressed.

Each key in the list is either a data character or one of a limited set of system keys (note that not all keyboard keys are supported, such
as function keys are not supported). Transitions in shift state, ctrl state, and so on, do not result in a key in the list, so if the user types
Shift+a, the character in the list will be A. The supported system keys are:

• Backspace

• Tab

• Escape

• Insert and Delete

• Up, Down, Left, and Right arrow key

• Page Up and Page Down

• Home and End

• Return

The columns in the list are as follows:

• Colum 1: If the key is a system key, column 1 is the keyboard constant value representing the key, such as kEscape. Otherwise
column 1 is #NULL.

• Colum 2: If the key is a data key, column 2 is the character data for the key. Otherwise column 1 is #NULL.

• Colum 3: Is the sum of the following keyboardmodifier constants, representing the state of thesemodifiers at the point the key
was added to the list: kJSModShift, kJSModCtrl, kJSModAltOrOption, kJSModCmd.

In addition, there are somepropertieswhich controlwhen evKeyPress events are generated. The entry field property $keyeventdelay is
theminimum number of milliseconds (0-2000) between evKeyPress events. The first evKeyPress will also be delayed for this duration.
This allows you to throttle keyboard events in the case where they will be executed on the server, and therefore reduce the load on
the server. If true, the $systemkeys property specifies that evKeyPress events include system keys which do not change the value of
the data. If false, only system keys such as backspace are included as they potentially change the data.

While the user is typing, the edit control in the user interface remains enabled (unlike normal event processing where the entire user
interface is usually disabled). The value of the instance variable associated with the edit control reflects the current content of the
entry field when evKeyPress is generated.

The following method is the $event() method for the Edit field linked to a list of names (from the example app in the Hub):

On evKeyPress
Calculate iKeyList as pKeyList
Do iLinkedList.$search(mid(low(iLinkedListCol),1,len(iEditVar))=low(iEditVar))

List Pager

The $pagesize property allows you to display the lines in a list or data grid as separate pages, to improve the user experience when
navigating lists or grids with a large number of lines; the default value is zero which means no list pager is displayed. The $pagesize
property is available for the JS List, Data Grid, Complex Grid, and Native List (when not using grouped lists). There is an example app
showing the List pager for all these list types in the Samples section in the Hub in the Studio Browser.

When assigned an integer value, the $pagesize property forces the contents of the list or grid to be sub-divided into a number of
scrollable pages, and a set of page number buttons (as well as forward and back buttons) are displayed under the list or grid box,
which allows the end user to “page through” each group of lines in the list or grid.

281

Figure 183:

The value assigned to $pagesize specifies the number of list lines displayed in each page, and therefore the total number of lines in
the list, divided by the value of $pagesize determines the number of pages in the list or grid field, as well as the number of buttons
displayed in the pager panel. The $pagerpage property allows you to set the page to be displayed, with the first page as the default.

Note that setting $pagesize does not reduce the amount of data sent to or fetched from the server – the full list data is sent to the
client, and the setting of $pagesize is only used for displaying the list or grid with the pager element.

End users can long press on the Previous or Next arrow buttons on a List pager to jump to the Start or End of the pages displayed in
the list control. The timer for the long press is hard coded to 700ms.

Changing the Pager’s Appearance

The appearance of the pager, such as the color of the buttons, numbers, and arrows, cannot be controlled using standard component
properties. However, if you wish to customize the appearance of the pager, you can do so by overriding the associated CSS classes.
These classes are named ‘omnis-pager<-xxx>’ and are listed in the core.css file. Note that this file is minified, so you may want to use
a prettifier tool to make it more human-legible. Do not edit the classes in core.css, rather you should override the classes by adding
your own version in the user.css file found in the html\css folder in your Omnis development tree.

Map Control

Group Icon Name Description

Other Map Displays a Google map for specified
location(s)

The Map Control allows you to place a Google Map® on your remote form; this provides many of the functions available in a Google
map as provided by the Google Maps API, such as placing your ownmarkers or customizing the markers.

Figure 184:

282

https://codebeautify.org/css-beautify-minify

There is an example app called JS Map in the Samples section in the Hub in the Studio Browser showing the full capability of the Map
control; the same app is available in the JavaScript Component Gallery which you can view online, to see many of its capabilities, but
you will need a Google API key to run the example app in development mode.

The JS Map sample app prompts you to enter a Google Map API key when it is opened. The Map API key you enter is stored in the
“mapsApiKey” entry in “jsclient” section of config.json and is loaded each time the sample app is opened. When you deploy your app
you can add your Map API key to config.json on the Omnis Server.

The Map control has the standard properties to control its appearance including $edgefloat, for example, so you can fit the map to
the current client area or container, as well as $borderradius allowing you to set a border radius.

Activation and API Key

In order to use theMap control, you need to register with Google Cloud Platform to obtain a Map API key, which can be entered in the
$apikey property of the Omnis Map control; the Map control will not work without the API key. Specifically, you need to:

• Create and activate a Google Cloud Platform account (a free trial is available with credits)

• In the console under Credentials, create a new API key; copy this API key and add it to the $apikey property of the Omnis Map
control in your remote form

• Under APIs, navigate to Map APIs and enable the “Maps JavaScript API”. In addition, if you want to use the Geocode function,
you need to enable “Geocoding API” (there are other APIs which you may be able to use).

Important Note: By signing up to Google Maps API via the Google Cloud Platform and using Google Maps in your deployed Omnis
application, you and your end users must agree to the general “Terms of Use” for Google Maps: there is a link to these Terms of use on
the map displayed in the Map control. Omnis Software cannot be held responsible for any third-party products or services and will
not be liable for any damage or loss resulting from your use of the Google Maps content or the products.

Apart from the $apikey property, there is no further configuration needed to display a basic Googlemap in your remote form, however,
to make the map useful you will probably want to display specific locations, add markers on the map, or allow end users to interact
with the map: all of these are possible with the JS Map control and are described below.

Map Location and Zoom Level

The $latlong property allows you to specify the center location of the map as “latitude:longitude”, for example, a value of 40.749305:-
73.985775 will center the map on New York. If you do not set $latlong initially (by setting the property in the Property Manager in
design mode or in the $construct method of the form), the map will open at some unspecified location, usually the default location
setup in Google on the client device.

The $::zoom property lets you set the zoom level of the map: the range is 0 to 21, with zero showing the largest area (the whole world)
and 21 the smallest possible area. The default zoom level is 8which shows a reasonable amount of detail for the current center location
of the map.

Finding the Latitude:Longitude

The Map component supports Google Geocoding which allows you to convert a street address into a geographic coordinate like
latitude and longitude, which you can use to place a marker on a map, or center the map.

To use the Geocoding function, you need to access the Geocoding API which itself requires a separate API Key, in addition to theMaps
API key, which you can obtain from Google.

A Search button has been added to the JS Map example available in the Hub to show how you can convert a street address to a
latitude:longitude coordinate which can be applied to the $latlong map property. Note the example app places the Geocoding API
key in the $userinfo property which is then sent to Google.

Alternatively, you can find the latitude:longitude coordinatemanually. To do this, Right-click somewhere on a standard browser-based
Google map (not the Omnis map control), select the ‘What’s here’ option and the latitude:longitude value of that position is shown
on the popup. You need to replace the comma with a colon to be used as a parameter in Omnis, e.g. 52.223460:1.492379.

283

https://bit.ly/OmnisJSGallery

Map Type and Controls

The $maptype property lets you set the type of map – this can be set to a constant: kJSMapTypeRoad (default), kJSMapTypeSatellite,
kJSMapTypeHybrid, and kJSMapTypeTerrain. The end user can change the map type using the map type control shown on the map,
assuming the $maptypecontrol property is enabled.

The other standardmap controls, including the pan control, scale control, and the street view control are enabled using the properties
$pancontrol, $scalecontrol, and $streetviewcontrol, respectively (these are all enabled by default): note you can only change these
properties at runtime if the map control itself is enabled ($enable = kTrue).

The zoom control can be further controlled by setting the $zoomcontrol property: it can be set to kJSMapZoomOff, kJSMapZoomDe-
fault (the default), kJSMapZoomSmall, and kJSMapZoomLarge. The latter two settings correspond to a simple Plus|Minus button
(Small) or the same button with a vertical slider control (Large) for finer adjustment of the map zoom level.

Map Markers

You can place a marker or set of markers on the map by assigning a row or list containing marker information to the $mapmarkers
property. For each marker you must define the latitude and longitude of the marker location in the first column of the setup list in
the format latitude:longitude (e.g. “40.749305:-73.985775”), and in subsequent columns you can specify themarker title (shown when
you hover over the marker), the tag or title for the popup (shown when you click on the marker), and html content for the popup.
An optional fifth parameter can specify an icon for the marker to replace the default map marker (see below). If the third and fourth
columns are empty for any marker defined in the list, the marker will not popup when clicked. (See the Events section about how to
add markers via user clicks.)

Figure 185:

The following code addsmarkers to amap indicating the Empire State Building and Central Park in New York, it then centers themap
on the Empire State Building, and sets a zoom level of 12 which shows a reasonable level of detail in this case:

create vars map_markers (List), marker_latlong, marker_title,

284

marker_tag, marker_html (Chars)
Do map_markers.$define(marker_latlong,marker_title,marker_tag,marker_html)
Do map_markers.$add("40.749305:-73.985775","Empire State Building","Empire State Building",>"<div id='content'><h3 id='firstHeading'>Empire State Building</h3><div id='bodyContent'><p></p></div></div>")
Do map_markers.$add("40.766225:-73.972514","Central Park","NY Central Park","<div id='content'><h3 id='firstHeading'>Central Park</h3><div id='bodyContent'><p>Central Park Info</p></div></div>")
Do $cinst.$objs.map.$mapmarkers.$assign("map_markers")
Do $cinst.$objs.map.$latlong.$assign("40.749305:-73.985775")
Do $cinst.$objs.map.$::zoom.$assign(12)

Map Marker Icons

The marker list assigned to $mapmarkers can have an optional fifth column which you can use to specify the icon URL for an image
for the map marker. An empty string in this column (or a missing column altogether) means that the marker will use the default
marker icon. You can use an SVG icon for a mapmarker in which case it will scale as the map is scaled.

The value for themarker icon is an icon URL which you set using the iconurl() function. Since themarker image has to be set for each
row in your list you can specify a different image for each marker in the marker list, but if you want the same image for each map
marker you have to set the marker image for every row in your marker list.

When an SVG icon is used, you can add an additional column to the list to specify the color to apply to that SVG icon, which must be
themed using the JS Themer tool. The color should either be a JS Theme constant, such as kJSThemeColorPrimary, or an RGB integer.

Custom Markers

You can assign an alternative marker icon or symbol, including mapmarkers from the Google maps API, by adding a sixth column to
the marker list: in this case the fifth column should be omitted.

The definition for the markers list in the JavaScript Map control can be:

Do iMapMarkers.$define(iMarkerLatLong, iMarkerTitle, iMarkerTag, iMarkerHtml, iMarkerIcon, iMarkerCustom)

where iMarkerCustom is a new string column (column 6) specifying a custom marker. When a marker is defined in the marker list,
and the iMarkerIcon (column 5) is empty, iMarkerCustom can be included with the following attributes, separated with a ‘|’ character
(you only need to specify the attributes required). An example custom string would be:

"path:google.maps.SymbolPath.BACKWARD_CLOSED_ARROW | fillColor: red | fillOpacity:0.8 | scale: 4 | strokeColor:black | strokeWeight: 1"

Or to draw a five-pointed star marker:

"path:M 125,5 155,90 245,90 175,145 200,230 125,180 50,230 75,145 5,90 95,90 z | fillColor: red |
fillOpacity:0.8 | scale: 0.1|strokeColor:black | strokeWeight: 1 | anchor:122,115"

Or to draw a circle marker:

"path:google.maps.SymbolPath.CIRCLE | fillColor: red | fillOpacity:0.8 | scale: 4"

Where the custommarker parameters are defined as:

• path can either be a map symbol, or an SVG notation path, as defined below

• fillColor the color used to fill the marker object, an html css color name or value e.g. #FF0000

• fillOpacity the opacity of the fill color, a value from 0 to 1, e.g. 0.5 is 50% transparent fill

• scale a scaling factor for the object

• strokeColor the color used to outline the object, an html css color name or value e.g. #FF0000

• strokeWeight the thickness of the stroke line

• anchor allows you to set the anchor position or offset the shape. By default, shapes are aligned to the top left of the marker
relative to its lat:long

285

Marker Symbol Name – prefixed google.maps.SymbolPath. Description

CIRCLE A circle

BACKWARD_CLOSED_ARROW A backward-pointing arrow that is closed on
all sides

FORWARD_CLOSED_ARROW A forward-pointing arrow that is closed on all
sides

BACKWARD_OPEN_ARROW A backward-pointing arrow that is open on
one side

FORWARD_OPEN_ARROW A forward-pointing arrow that is open on one
side

For example:

Do iMapMarkers.$define(iMarkerLatLong,iMarkerTitle,iMarkerTag,iMarkerHtml, ,iMarkerCustom)
Do iMapMarkers.$add("52.223460:1.492379","Omnis UK","Omnis UK","","","path:google.maps.SymbolPath.BACKWARD_CLOSED_ARROW|fillColor: red|fillOpacity:0.8| scale: 8|strokeColor:black|strokeWeight: 1")
the JS Map app uses similar code to show the Omnis offices

TheMap example app includes the use of markers and polygons, and is available in the JavaScript Component Gallery. The following
image shows the location of the European Omnis offices using the “Backward-pointing Closed Arrow”.

Figure 186:

Themap control has a property $fitmaptomarkers that can be assigned value 1 at runtime to force themap to zoom in or out to allow
all the mapmarkers to be shown.

286

https://bit.ly/OmnisJSGallery

Polygon Objects

In addition to icons and standardmapmarkers, you can add polygon objects or irregular shapes tomaps in the JavaScriptMap control.
The $mappolys property specifies the data name of a list which contains the definition of each polygon or shape as follows:

Do iPolyMarkers.$define(iPolyLatLong,iPolyStroke,iPolyOpacity,iPolyWeight,iPolyFill,iPolyFillOpacity,iPolyTag)

• iPolyLatLong the latitude:longitude values for each of the the points of the polygon, so a triangle would have 3 points: the
lat:long settings are separated with the ‘|’ character, e.g. 25.774,-80.190|18.466,-66.118|32.321,-64.757|25.774,-80.190

• iPolyStroke the color used to outline the polygon, which is an html css color name or value e.g. #FF0000

• iPolyOpacity the opacity of the stroke color, a value from 0 to 1, e.g. 0.5 is 50% transparent

• iPolyWeight the thickness of the stroke line

• iPolyFill the fill color of the polygon object, an html css color name or value e.g. #FF0000

• iPolyFillOpacity the opacity of the fill color, a value from 0 to 1, e.g. 0.5 is 50% transparent

• iPolyTag the tag name or label for the polygon, which is sent to the evPolygonClicked event method in pPoly

For example, the following code draws the Bermuda Triangle on the map (see the JS Map example app):

Do iPolyMarkers.$add("25.774,-80.190|18.466,-66.118|32.321,-64.757|25.774,-80.190","#FF0000","0.8","3","#FF0000","0.35","Bermuda Triangle”)

The evPolygonClicked event with the parameter pPoly is called when a polygon on the map is clicked, and pPoly will be set to the
polygon tag as defined in the list.

Events

There are various events available in the map control to allow you to detect when and where the map was clicked (evMapClicked,
reports latitude and longitude of the click), when themap is draggedby the enduser (evMapMoved, reports the latitude and longitude
of the new center location), when the map is zoomed using the zoom control (evMapZoomed), or when a map marker is clicked
(evMarkerClicked). None of these events are enabled by default, so you have to enable them in the $events property for the control
using the Property Manager.

The following $event method could be placed behind a map control to detect when the map is clicked, or when a marker is clicked
(assuming amarker has been added), or if themap ismoved or zoomed. The add_markers Boolean variable is linked to a checkbox on
the window to allow the end user to enable or disable the ability to add markers. When the map is clicked, the evMapClicked event
reports the position in pLatlong, and amarker definition is added to themap_markers list. Themessage variable is assigned to a field
on the form to show either the new center of the map, the new zoom level, or which marker has been clicked.

$event method for map control
define vars map_markers (List), marker_latlong, marker_title,
marker_tag, marker_html, message (Chars), add_markers (Bool),
marker_no (Long int = 0)
On evMapClicked
If add_markers ## linked to checkbox on window

Calculate marker_no as marker_no+1
Do map_markers.$define(marker_latlong,marker_title,marker_tag,marker_html)
Do map_markers.$add(pLatlong,con("Marker ",marker_no),con("Marker ",marker_no),con("This is marker ",marker_no))
Do $cinst.$objs.map.$mapmarkers.$assign("map_markers")

End If
Calculate message as con(pick(add_markers,"Map clicked here: ","Marker added here: "),pLatlong)

On evMapMoved
Calculate message as con("Center is now: ",pNewCenter)

On evMapZoomed
Calculate message as con("New zoom level: ",pNewZoom)

On evMarkerClicked
Calculate message as con("Marker clicked: ",pMarker)

287

Native List

Group Icon Name Description

Native Native List List control with platform dependent
appearance

About the Native Controls

The Native group in the Component Store contains components that have a more familiar or “native” appearance when they are
displayed on different mobile platforms, that is, iOS and Android – their appearance is rendered in the JavaScript Client using CSS
customized for each platform. The different appearance for each platform is handled by Omnis automatically, therefore you only
need to setup the component once in design mode. See also: Native Slider and Native Switch.

When running on a supported device, these controls will render andwork in amanner close to a device’s native versions. For example,
a Native Switch control will look like an iOS switch on an iOS device, an Android switch on an Android device, and so on, while using a
single control and set of methods in design mode in your remote form.

JavaScript Remote forms have an Appearance property called $defaultappearance which determines both how a native control is
displayed in the design window, and how it would render on non-supported clients (e.g. Desktop browsers). The property is either
kAppearanceiOS or kAppearanceAndroid (kAppearanceBlackberry is no longer supported).

The $defaultappearance property can also be switched using the ‘Native Components Display As’ contextmenu option of a JavaScript
Remote Form (right-click on the form to open the context menu). You can also cycle through the values using the keyboard shortcut
Ctrl-Shift-N onWindows or Cmd-Shift-N on macOS when the remote form is the top window.

It is recommended that you set $disablesystemfocus property to kTrue for any native controls you have used, to prevent the focus ring
being drawn around a controls when it is selected – otherwise the focus ring may interfere with the native appearance.

Creating a Native List

The Native List control provides a list control that has a native appearance on different platforms, that is, it has a different appearance
on iOS and Android. You can customize the accessories in the list by adding your own HTML content and CSS styling, and therefore
provide a very rich UI in a single list format.

In keeping with this philosophy, the JS Native List exposes many appearance properties to allow you to customize the list how you
wish. If you leave any of the values as kColorDefault, they will revert to the platform-specific default.

The native list has been designed along the same lines as the iTableView component of iOS forms. The list can either be a standard
flat list or a grouped list, using nested lists.

To increase efficiency, the list only draws the displayed rows, along with several more in a buffer zone around them, at any one time.
This provides smooth scrolling, andmeans that the size of the list has very little impact on performance. As a side-effect of this, when
scrolling quickly, you will see that the rows may not be rendered immediately.

There is an example app called JS Native List in the Samples section in theHub in the Studio Browser showing how you can customize
the accessories in a native list; the same app is available in the JavaScript Component Gallery.

Defining the $dataname list

The structure of the List instance variable used for the $dataname of the native List control differs based on how you wish the list to
display.

TheData tab in the PropertyManager allows you to assign columnnumbers for each rowpart, i.e. $text1col allows you to specify which
column in your list contains the the data to display as themain text of the row. If you do not wish to make use of a particular row part,
leave its column set to 0.

You need to define and populate your list in accordance with the column numbers you have set in the Data tab of the Property
Manager. The content of these columns should be as follows:

• text1col: This should be Character data, to display as the main text for the row.

288

https://bit.ly/OmnisJSGallery

Figure 187:

• text2col: This should be Character data, to display as the secondary text for the row.

• imagecol: This should be Character data - a URL to an image to display.
The image will be scaled to fit the size of the row’s image (customized using $imageheight & $imagewidth).
The URL canmake use of Omnis’ support for pixel-density-aware image selection by passing the URL in the format: “<URL to 1x
image>;<Name of 1.5x image>;<Name of 2x image>” (where all 3 images are in the same location). This means that on a Retina
device it will use the 2x image, but on a standard display device it will use the 1x image. As the image is scaled anyway, you could
just always use the 2x image, but this method reduces unnecessary bandwidth usage and processing of larger images

• accessorytypecol: This should be a kJSNativeListAccessoryType… integer value. It determines the type of accessory to display
on the right edge of the row.
Use kJSNativeListAccessoryTypeNone for no accessory

• accessoryvaluecol: Contains the current value of the row’s accessory.
This is currently only used by the Checklist accessory, to represent the checkbox’s state

• accessorycontentcol: This should be Character data, and should describe the content for some accesssory types. The Accessory
types which make use of this are:
Button: For rows with a button accessory, the content should be the text for the button.
Custom: For rows with a custom accessory, this should be HTML to describe the contents of your custom accessory.
CustomWithEvent: see below.

Custom Accessories

You can add your own custom row accessories by setting the accessorycontentcol list column to: kJSNativeListAccessoryTypeCus-
tom, kJSNativeListAccessoryTypeCustomWithEvent or kJSNativeListAccessoryTypeMenu (see below).

kJSNativeListAccessoryTypeCustomWithEvent works in the same way as kJSNativeListAccessoryTypeCustom but will trigger a dif-
ferent click event when you click on the accessory (evClick will be called with pWhat equal to kJSNativeListPartAccessory instead of
kJSNativeListPartRow).

When accessorycontentcol is set to a customaccessory, its value should be theHTML content of your customaccessory, encapsulated
within a single parent element.

You can set your accessory to a particular size (rather than fill the available space in the row) by providingwidth & height values in the
style tag of your top-level HTML element.

If a size is defined in this way, the native list control will attempt to center the accessory. If this does not work, you may also need to
set “position: absolute;” in your style tag. For example:

'<div style="position: absolute; width: 50px; height:25px; background-color: #FF0000;" />'

289

Menu Accessory

The kJSNativeListAccessoryTypeMenu accessory adds a menu button to a native list row. The menu can be defined either with the
$menulistname property, or a method of the native list called $populatemenu.

The $menulistname property can be assigned a list to define the rows in themenu, which will be used for the menu in all rows in the
native list, unless it is overridden by $populatemenu, in which case, menus can be assigned on a per row basis. The $populatemenu
method is called when the user selects a menu button which should return a list. The first parameter is the group ID, the second is
the row ID. This method can be client or server executed.

Menu lists should have the following columns:

• Text (Character): The menu line text

• Enabled (Boolean) [optional]: Whether the line is enabled or disabled

• CommandID (Integer) [optional]: The command ID

• BackColor (Integer) [optional]: The line’s background color. Zero means use the default color

• TextColor (Integer) [optional]: The line’s text color. Zero means use the default color. If lBackColor is a theme constant and
lTextColor is null, the text will use the corresponding theme text color

When the user selects amenu line, evClick is sent with pWhat=kJSNativeListPartMenuLine. The parameters pMenuLineNumber and
pMenuCommandID can be used to identify the line that was clicked.

Menu Icons

You can add icons to menu rows by adding the following columns to the list defining the menu (specified in $menulistname):

• IconURL (Character): the icon URL for the line

• IconColor (Integer): the icon color for themed SVGs. kColorDefault means the icon will use the menu text color

Creating a Grouped list

If you wish your Native List control to display its data as a Grouped list, you need to change the structure of the list assigned to
$dataname. The main list should comprise two columns:

• Column 1: Should be defined as being of type “List”, and each row should contain a list structured as defined above (adhering to
the columns specified in the Datatab of the property inspector). All of the rows defined in this sub-list become part of a single
group.

• Column 2: A Character column, defining the name of the group.

Vertical Scrolling

When you set $vscroll (to an integer), a Native List will scroll to the specified rownumber. For grouped lists, group headers are counted
as rows, so to scroll to the 5th row of the 2nd group, you would set $vscroll to 1 + [no. rows in group 1] + 1 + 5.

Row Display Style

The $rowdisplaystyle property determines how the row is displayed. Its value is a kJSNativeListDisplayXXX constant, allowing you to
change between displaying the two text fields in a vertical or horizontal orientation.

Date and Number Formatting

The $dateformat, $dateformatcustom and $numberformat properties allow you to set the date and number format for a Native list.

290

Reordering Rows

The$reordermodeproperty canbe set to a kJSReorderMode… constant to specifywhether rows in aNative list canbe reordered. When
enabled, a drag icon is added to each row on the left or the right side of the list to allow you to drag individual rows. The constant
values are:

Constant Description

kJSReorderModeNone Reordering is disabled
(draggable regions are
hidden)

kJSReorderModeLeft Reordering is enabled with
draggable regions on the
left side of the list

kJSReorderModeRight Reordering is enabled with
draggable regions on the
right side of the list

When $reorderbetweengroups is set to kTrue (the default), end users are able to drag a row into a different group, otherwise if kFalse,
rows can only be dragged within their own group.

The evReorder event reports the old and the new position (and group, if applicable) of the row that has been reordered:

• evReorder
Sent when the list is reordered, with the parameters:
pFromGroup: The old group of the moved row
pFromRow: The old position of the moved row
pToGroup: The new group of the moved row
pToRow: The new position of the moved row

Advanced Customization

If you wish to change the default appearance of the Native list for a particular platform, or wish to change something which is not
exposed as a property, it is recommended that you extend any relevant CSS styles in your user.css file.

When extending the CSS used by any controls in Omnis, there is the possibility that youmay change how a control appears or behaves
(especially if you alter sizes), so you do so at your own risk.

Native Slider

Group Icon Name Description

Native Native Slider Slider control with platform dependent
appearance

The Native Slider control works, for the most part, in the same way as the standard Slider component but has a more familiar appear-
ance when running on different platforms, that is, it has a different appearance on iOS and Android. There is an example app called
JS Native Slider in the Samples section in the Hub in the Studio Browser, and the same app is available in the JavaScript Component
Gallery. See also Native List for general information about using the Native controls.

Figure 188:

291

https://bit.ly/OmnisJSGallery
https://bit.ly/OmnisJSGallery

The current value of the slider is reported in the property $val according to where the slider is positioned. You can specify the range
for the slider in the $::min and $::max properties. The $usessteps property is a Boolean determining whether or not the slider should
snap to discrete step values specified in $step.

The Slider reports three events: evStartSlider (when the control is starting to track), evEndSlider (when the control has finished track-
ing), and evNewValue (when the value has changed). You can detect these events in the $event method for the component. These
events all pass the current value of the Slider in the pSliderValue parameter. As the user drags the Slider thumb the evNewValue event
is triggered and pSliderValue is sent to the $event method for the Slider.

If youdouse evNewValue, you shouldmark your $eventmethodas client-executedandconsider enabling the$usesstepsproperty and
setting $step to limit the number of events being triggered as the user moves the slider. Alternatively, you could use the evEndSlider
event to report the final value since for most purposes this will be the value selected by the user.

Native Switch

Group Icon Name Description

Native Native Switch Switch control with platform dependent
appearance

The Native Switch control works, for the most part, in the same way as the standard Switch component but has a more familiar
appearance when running on different platforms, that is, it has a different appearance on iOS and Android. There is an example app
called JS Native Switch in the Samples section in the Hub in the Studio Browser, and the same app is available in the JavaScript
Component Gallery. See also Native List for general information about using the Native controls.

Native Switch on Android Native Switch on iOS

The Switch has a $dataname property, to which you can assign a Boolean instance variable. This will be kept up to date with the state
of the switch, as the end user clicks or taps on the control.

The Switch has $justifyhoriz and $justifyvert properties. For some platforms (e.g. iOS) the switch maintains a specific aspect ratio.
These properties determine how the switch is positioned inside the control in these circumstances.

The text displayed on the Native Switch is controlled by two members in the built-in strings object jOmnisStrings in the JavaScript
Client. You can use the members “switch_on” and “switch_off” to replace the default text with your own text, for example, if you wish
to provide different language equivalents to the default text.

Information about how to change or localise these strings can be found in this manual, under “Localizing Built-in Strings”.

If you wish to override the base text, you could use the following code in a separate JavaScript file loaded in your form’s html file after
omjsclnt.js:

jOmnisStrings.base.switch_on = "I";
jOmnisStrings.base.switch_off = "0";

Navigation Bar Control

Group Icon Name Description

Navigation Navigation Bar Navigation bar with page selection

292

https://bit.ly/OmnisJSGallery

Figure 189:

The Navigation Bar control (or Nav Bar) provides a standard navigation bar which end users can use to navigate to different parts of
your application. There is an example app called JS Nav Bar in the Samples section in the Hub in the Studio Browser, and the same
app is available in the JavaScript Component Gallery. ; the following screen shows the example Nav Bar using the ‘sky’ theme.

The Navigation Bar has a main title in the middle of the control, and it can have a left and/or right button which respond(s) to user
clicks; see above, Page 2 is displayed, with ‘back’ and ‘forward’ buttons displayed on the left and right, respectively.

The Nav bar can be linked to a Paged Pane via the $linkedobject property to allow you to display different panes in your form in
response to clicks in the Nav bar. Actions for the Nav bar can be stacked up using the $push property: see the example below.

The Nav Bar has a number of properties for setting the color, fonts and style of the bar and buttons ($button.. properties), together
with the following properties:

Property Description

$disableanimation Disables the animation when moving
between pages. This property can only
be set in design mode (not at runtime
using the notation)

$initiallefticonid If this is not zero, and $initiallefttext is
empty, the first navigation bar item has a
button on the left hand side, displaying
this icon

$initiallefttext If this is not empty, the first navigation
bar item has a button on the left hand
side, displaying this text

$initialrighticonid The icon for the initial navigation bar
button on the right

$initialrighttext The text for the initial navigation bar
button on the right

$initialtitle The initial title displayed on the
navigation bar

$lefthidden If true, the left hand (back) button is
hidden for the current navigation bar
stack item

$linkedobject The name a paged pane on the current
remote form, used in conjunction with
the $push property

293

https://bit.ly/OmnisJSGallery

Property Description

$push At runtime, allows you to assign a 2-6
column row to the paged pane
referenced in $linkedobject: col1 is the
page number of the paged pane col2 is
the title for pushed item col3 is the text
for right button (pass empty for no right
button) col4 is the or icon id for the
image for right button col5 can be
non-zero to hide the left button col6 is
the text for left or ’Back’ button (pass
empty to display the title of the previous
pane by default). The path to the icon
referenced in col4 must be obtained in a
server method using the iconurl(icon-id)
function since icon ids cannot be
resolved on the client

$pop Removes a specified number of items off
the navigation stack: see below

$righticonid If this is not zero, and $righttext is empty,
the current navigation bar item has a
button on the right hand side, displaying
this icon

$righttext If this is not empty, the current
navigation bar item has a button on the
right hand side, displaying this text

$::title The title for the current navigation bar
stack item

Setting $disableanimation to kTrue disables the animation when moving between pages: this property was added to fix a problem
when using the built-in VoiceOver screen reader on an iPad in conjunctionwith a Nav Bar linked to Page Pane: the problem is avoided
by disabling the animation effect on the Nav Bar.

Navigation Stack

You can use the $pop property to “pop” or remove a specified number of items off the navigation stack: it is analogous to clicking on
the left or back button, since it allows you to step back in the navigation stack a specified number of times.

The $pop property can only be assigned at runtime. If you try to popmore items off the stack than exist, it will pop everything except
the first item. If you assign to $pop, note that the evUserChangedPage event of a linked paged pane will not be triggered.

In addition, you can set the text or title for the left (back) button for a navbar. If provided, the 6th col in the row assigned to $push
allows you to specify the left button text. This can be set to an empty string to default to the previous page’s title.

Events

The Nav Bar reports evClickInitialLeftButton when the initial left button has been clicked, and evClickRightButton when the right
button has been clicked.

The events evPushFinished and evPopFinished are triggeredwhen the push or pop animations complete. Both events have one event
parameter which is the associated page number that has been pushed or popped.

The evWillPop event is sent before an item is popped from the navigation bar stack, for example, when the user clicks on a left button.
It has one parameter, pPageNumber, which is the number of the page that will be popped. It is a client-only event. For example, this
event can be used to prevent the pop from occurring by discarding the event with:

Quit event handler (Discard event)

294

Example

The following Navigation Bar has amain title and a button on the right which is used to display some information on the second pane
of a paged pane.

Figure 190:

The Nav Bar is placed across the top of the form and its various properties under the General and Appearance tabs in the Property
Manager are set, as follows:

Property Description

$events set to receive evClickRightButton events
$linkedobject set to pPane, the name of the paged pane
$push can only be assigned at runtime; see below
$initialtitle set to “Main Page”
$initialrighticonid set to 1794, the id of an icon in Omnispic
$initialrighttext set to “Info”

The $event method for the Nav Bar ($name = oNav) traps a user click on the right button, and has the following event code:

On evClickRightButton
Do $cinst.$doPush(2,'Info','','','')

The $doPush method is a class method in the remote form and has the following parameters, variables, and code.

PaneNo (Short Int)
Title, RightBtnText, RightBtnIcon (must be an icon url), NoLeftBtn (all Character)
lRow is local var of type Row
Do lRow.$define('New class','Title','text for right btn','icon url for right btn','no left btn',’text for left btn’)
Do lRow.$assigncols(PaneNo,Title,RightBtnText,RightBtnIcon,NoLeftBtn,LeftBtnText)
Do $cinst.$objs.oNav.$push.$assign(lRow)

The effect of assigning to the $push property is to change the pane number in the paged pane specified in the $linkedobject property
which, in this case, displays some information for the end user on the second pane. Assigning to $push adds a left or ‘Back’ button to
the navbar which the end user can use to go back to the previous pane; the default text for this button is the name of the previous
pane, or you can pass your own text in the 6th column of the row passed to $push.

Navigation Menu Object

Group Icon Name Description

Navigation Navigation Menu Dropdownmenu with hierarchical options

The Navigation Menu Object (or Nav Menu) allows you to build interactive cascading menus within your remote forms, providing a
navigation method similar to that found on many websites. Such menus typically comprise a number of hot text links, which cause
further menus to open below the top level. In addition, eachmenu option can have an image as a background or link. The nav menu
can also operate as a breadcrumb, with a hierarchical set of text links, similar to the folder selection mechanism found in Windows
Explorer.

295

The Nav Menu control has been implemented for both the JavaScript client (remote form class) and the fat client (window class), and
the two controls have almost identical properties, with the same look and feel. Unless otherwise stated, the descriptions here apply
to both the JavaScript Client and fat client types of control.

There is an example app called JS Navigation Menu in the Samples section in the Hub in the Studio Browser, and the same app is
available in the JavaScript Component Gallery.

Figure 191:

Menu List Content

The Navigation Menu control uses a list specified by $dataname to define its content. The list should have seven columns with each
line of the list corresponding to a single entry in the menu. The columns in the list are defined as follows:

Column Type Description

Type Integer The menu entry type, a
kNavMenuType… constant. See
below.

Text Char The text for the menu entry. This
can include styles embedded using
the style() function, and embedded
kCr characters in order to split the
text over multiple lines.

Desc Char Optional text describing the menu
entry. This can include styles
embedded using the style()
function, and embedded kCr
characters in order to split the
description over multiple lines.

Flags Integer Sum of one or more constants that
indicate how the menu entry
behaves. See table below.

Ident Integer A unique integer value that
identifies the menu entry. Note
that the control does not enforce
uniqueness.

Tag Char A unique string value that identifies
the menu entry. Note that the
control does not enforce
uniqueness. In fact, developers
may choose to just use the tag or
just use the ident, or make the
combination of tag and ident
unique.

296

https://bit.ly/OmnisJSGallery

Column Type Description

Info Row A row that contains further
information required for the menu
entry. Not used for all entry types.
E.g. contains the content for a
cascaded menu, see
kNavMenuTypeCascade.

The flags column can be zero, or a sum of one or more of the following flag values and specifies how the menu entry behaves:

Flag Description

kNavMenuFlagHorizontalLayout Only applies to the first line of a menu
(or cascaded menu) list. If not set,
entries are laid out vertically; if set,
entries are laid out horizontally.

kNavMenuFlagEndOfRowOrColumn If set, the menu entry for this line is
the last entry in the current row or
column in the layout for the menu
(row or column depends on whether
layout is horizontal or vertical
respectively)

kNavMenuFlagDisabled If set, the menu entry is disabled. This
means it will not accept clicks, and it
will not hot-track.

kNavMenuFlagBreadcrumb Only applies to line 1 of the
$datanamemenu list. If set, the menu
is a breadcrumb control, and for the
$dataname list,
kNavMenuFlagHorizontalLayout is
turned on and
kNavMenuFlagEndOfRowOrColumn
is ignored.

kNavMenuFlagBreadcrumbSeparator If set and kNavMenuFlagBreadcrumb
is set and applies to line 1, the entry
draws the breadcrumb separator.
Note that the control uses the
description text color
($descriptiontextcolor) as the color of
the separator.

Menu Types

The first column of your data list sets the type of menu control, using one of the following kNavMenuType… constants:

kNavMenuTypeHeading

Used as a heading to group other menu entries. Typically, this would be a disabled entry, but it can accept clicks if desired. The info
column is not used for this type.

kNavMenuTypeEntry

A normal menu entry, typically used to accept a click and generate an event.

kNavMenuTypeImage

Amenu (or cascadedmenu) list can only have a single image entry (others are ignored). You use the info column to provide an image
that will be displayed as a background of the menu, and which will also accept clicks. The control will place the image at the “end” of
themenu, irrespective of where the entry is placed in the list. The info column for an image entry is a row with the following columns.
Note that only the icon column is mandatory.

297

Column Type Description

Icon Character or Integer For the JavaScript Client, the
character URL of the image,
generated by calling iconurl(iconid).
For the fat client, the integer icon id
of the image.

Horizontal offset Integer You can adjust the horizontal
position of the image in the menu by
supplying a value here. Defaults to
zero.

Vertical offset Integer You can adjust the vertical position
of the image in the menu by
supplying a value here. Defaults to
zero.

kNavMenuTypeCascade

An entry representing another menu which cascades from the entry when either the mouse is over the entry, or when the entry is
clicked (this depends on the $openwhenmouseover property described below). Note that the control supports a cascade nesting
depth of 15.

The info column for a cascadedmenu entry is a row with the following columns (note: when you understand how the properties and
events for the control work, you will see that the info row does not always need to be fully specified for a cascaded menu - in many
cases only column 1 is required, and in fact, in some cases, the info row is not required at all for a cascaded menu):

Column Type Description

List List A menu list defining the entries in the cascaded
menu.

Cascade flags Integer Zero, or a sum of kNavMenuCascadeFlag… flags,
see below. Defaults to $defaultcascadeflags.

Open side Integer The side from which the cascaded menu will
open. Either kNavMenuSideLeft, kMenuSideRight,
kMenuSideBottom or kMenuSideTop. Defaults to
$defaultcascadeopenside.

Border edges Integer A sum of kNavMenuSide… constants that specifies
the edges of the cascaded menu that are to have
a border. Defaults to
$defaultcascadeborderedges.

Border color Integer The color of the border of the cascaded menu.
Defaults to $defaultcascadebordercolor. For the
JavaScript Client control, you must set this
column to the result of truergb(color) if the color
you are using is a color constant.

Border width Integer The width of the border of the cascaded menu
(1-16). Defaults to $defaultcascadeborderwidth.

Background color Integer The background color of the cascaded menu.
Defaults to $defaultcascadebackcolor. For the
JavaScript Client control, you must set this
column to the result of truergb(color) if the color
you are using is a color constant.

Background alpha or foreground color Integer For the JavaScript Client, the background alpha
value for the cascaded menu (0-255). Defaults to
$defaultcascadebackalpha. For the fat client, the
foreground color of the cascaded menu. Defaults
to $defaultcascadeforecolor.

298

Column Type Description

Background pattern Integer Only applies to the fat client. The background
pattern of the cascaded menu. One of the
standard pattern constants. Defaults to
$defaultcascadebackpattern.

Cascade Flags

The cascade flags are as follows:

Flag Description

kNavMenuCascadeFlagUseEventToPopulate If set, the control sends evLoadCascade
in order to populate the cascaded menu

kNavMenuCascadeFlagUseEventWhenRequired If set, and kNavMenuCascadeFla-
gUseEventToPopulate is also set, only
send evLoadCascade when data is
required again for some reason,rather
than each time the menu opens

kNavMenuCascadeFlagOpenOnParentEdge If set,the cascaded menu opens on the
relevant edge of the parent menu, rather
than opening on the relevant edge of
the parent entry.

kNavMenuCascadeFlagExpand If set, and kNavMenuCascade-
FlagOpenOnParentEdge is also set, the
cascaded menu expands if necessary to
the width or height of the parent.

kNavMenuCascadeFlagUseDefault If set, use the default cascaded menu
flags for the control
($defaultcascadeflags) and ignore any
other flags. This allows you to use default
cascade flags, and then override other
properties using the info row.

Menu Properties

In addition to the standard control properties, the Nav Menu control has the following properties:

Property Description

$borderedges A sum of kNavMenuSide… constants that
specifies the edges of the control that are to
have a border.

$borderwidth The width of the border of the control (1-16).
$closeboxiconid The icon id of the close box for cascaded

menus (only relevant when
$openwhenmouseover is kFalse, and the
control is not in breadcrumbmode). Note
that when $openwhenmouseover is kFalse,
on a non-touch device, menus still close
automatically when the mouse leaves the
control or its open cascaded menus. If you
do not want a close box, set this to zero. On a
touch device you can close all open cascaded
menus by touching an area away from the
control and its open cascaded menus.

299

Property Description

$defaultcascade… Default properties for cascaded menus (see
the description of the info row for cascaded
menus). These eliminate the need to repeat
this information for every cascaded menu.

$horizontalcascadeiconid The id of the icon used to represent an entry
that cascades to the left or right.

$horizontalspacing Horizontal spacing used when laying out
entries.

$hotcloseboxiconid The icon id of the close box for cascaded
menus, used when $openwhenmouseover is
kFalse, and the mouse is over the close box.

$verticalcascadeiconid The id of the icon used to represent an entry
that cascades to the top or bottom.

$verticalspacing Vertical spacing used when laying out
entries.

$font… properties Used to control the font and colour of entry
text: $font, $fontsize, $fontstyle, $textcolor,
$hotfontstyle, $hottextcolor

$descriptionfont… properties Used to control the font and colour of
description text: $descriptionfont,
$descriptionfontsize, $descriptionfontstyle,
$descriptiontextcolor

$headingfont… properties Used to control the font and colour of
heading text: $headingfont,
$headingfontsize, $headingfontstyle,
$headingtextcolor, $hotheadingfontstyle,
$hotheadingtextcolor

$openwhenmouseover If true, cascaded menus open when the
mouse is over the relevant part of the control.
Otherwise, the user needs to click in order to
open a cascaded menu. On a mobile device,
the value of this property is ignored and
treated as kFalse, because there is no mouse.

Menu Events

When an entry is selected in the Nav Menu an event is triggered, one of the the following events:

Event Description

evLoadCascade The control sends this event when it needs to
populate a cascaded menu
(i.e. kNavMenuCascadeFlagUseEventToPopulate is
set for the menu). The application code processing
this event builds a list for the cascaded menu, and
assigns it to the runtime-only property
$cascadecontents.

evMenuEntryClicked The control sends this event when the user clicks
on a menu entry.

evEmptySpaceClicked The user has clicked in empty space to the right or
bottom of the menu (generated for top-level menu
page only).

evLoadCascade and evMenuEntryClicked have 2 event parameters, pLineIdent and pLineTag, which are the ident and tag of themenu
list line for which the event was generated. These events and their parameters can be trapped in the $event method for the control.

300

Scrolling

If the initial menu (set with the list content in $dataname) is too wide to fit the control, the control uses scroll arrows at the left and
right to allow its content to be scrolled – ideally you should fit your content to the width of the control, so no scroll arrows are required.
The scroll arrows are displayed in this case to support the breadcrumbmode which uses a single row of entries for the initial page.

On a touch device, the scroll arrows are not displayed but you can scroll the control horizontally by touch-dragging. The scroll arrows
are the same ones used for the tab control which are specified in core.css (img.ctrl-arrow-left-dis & img.ctrl-arrow-right-dis) and the
images folder, so you can change their appearance if required. Note that the core.css file isminified, so youmaywant to use a prettifier
tool to make it more human-legible. Do not edit the classes in core.css, rather you should override the classes by adding your own
version in the user.css file found in the html\css folder in your Omnis development tree.

Navigation Menu Example

The following methods define the Nav Menu for a fictional online shop (they are contained in an object class and called via an object
variable in the remote form). An example containing a similar Nav menu is available in the JavaScript Components Gallery on the
Omnis website, and in the Hub.

First the content list for the Nav Menu is defined (with seven columns), then the second-level items are created, in this case the shop
departments, and the top-level for themenu is added. The list built here is added to the list specified in $dataname for the Nav Menu
object in a remote form.

Do method defineMenuList (lDepartmentList)
Do lDepartmentList.$add(kNavMenuTypeCascade, "Books", "", 0, 100, "books")
Do lDepartmentList.$add(kNavMenuTypeCascade, "CDs", "", 0, 101, "cds")
Do lDepartmentList.$add(kNavMenuTypeCascade, "Digital music", "", 0, 102, "digimusic")
Do method defineMenuList (lOmniShop)
Do lOmniShop.$add(kNavMenuTypeCascade, con("Shop by",kCr,"Department"),"",0,1,"", row(lDepartmentList,kNavMenuCascadeFlagOpenOnParentEdge + kNavMenuCascadeFlagExpand,kNavMenuSideBottom, kNavMenuSideTop+kNavMenuSideBottom + kNavMenuSideRight))
Quit method lOmniShop

The defineMenuList method is a generic method to define the list of the menu content:

Do pMenuList.$define(lType,lText,lDescText,lFlags,lIdent,lTag,lInfo)

The $events property for the Nav Menu object has two events specified: evLoadCascade and evMenuEntryClicked. The menu object
itself has the following event method:

On evLoadCascade
Do iNavMenuObject.$shopLoadCascade($cfield,pLineTag)

On evMenuEntryClicked
If not(iNavMenuObject.$handleclick($cfield,pLineTag))

End If

The $shopLoadCascade method builds the content for the cascaded menu:

Do method defineMenuList (lCascadeList)
Switch pTag
Case "books"

Do lCascadeList.$add(kNavMenuTypeHeading,"Books","",kNavMenuFlagDisabled)
Do lCascadeList.$add(kNavMenuTypeEntry,"Best sellers","Top 1000 books",0,200)
Do lCascadeList.$add(kNavMenuTypeEntry,"eBooks","For kindle and tablets",0,201)
Do lCascadeList.$add(kNavMenuTypeImage,"Pre-order","",0,202,"",row(iIcon10001))
this line is shown in the pic below

Case "cds"
Do lCascadeList.$add(kNavMenuTypeHeading,"CDs","",kNavMenuFlagDisabled)
Do lCascadeList.$add(kNavMenuTypeEntry,"CD store","Over 3m CDs",0,300)
Do lCascadeList.$add(kNavMenuTypeImage,"Rock store","",0,301,"",row(iIcon10002))

Case "digimusic"

301

https://codebeautify.org/css-beautify-minify
https://codebeautify.org/css-beautify-minify

Do lCascadeList.$add(kNavMenuTypeHeading,"Digital music","",kNavMenuFlagDisabled)
Do lCascadeList.$add(kNavMenuTypeEntry,"Music store","Over 30m songs",0,400)
Do lCascadeList.$add(kNavMenuTypeEntry,"Your music library","Play online",0,401)
Do lCascadeList.$add(kNavMenuTypeImage,"Pre-order","this new album",0,402,"",row(iIcon10000,-200,-50))

End Switch
Calculate pControl.$cascadecontents as lCascadeList

The menu will look something like this:

Figure 192:

Page Selector

Group Icon Name Description

Navigation Page Selector Allows selection of page pane using touch

The Page Selector (or Page control) links to a Paged pane on a remote form and allows the end user to change the current page in
the linked paged pane by swiping over the Page selector or clicking for non-touch screens. The Page selector also gives the end user
a visual clue as to the current selected pane in the linked page pane object, since the highlighted dot in the control changes to reflect
the current page in the linked paged pane.

There is an example app called JS Page control in the Samples section in theHub in the Studio Browser, and the same app is available
in the JavaScript Component Gallery.

302

https://bit.ly/OmnisJSGallery

Figure 193:

The paged pane linked to the Page selector is specified in the $linkedobject property. In this case, when the page control is clicked or
swiped the linked paged pane control will select the next available pane automatically.

Property Description

$::currentpage the current page number
$linkedobject the name of a paged pane object on the current remote form that links to the iPage control
$::pagecount the number of pages
$pageindicatorcolor the color for the current page indicator
$currentpageindicatorcolor the color for all the pages except the current page indicator

When the page indicator changes in the Page selector an evPageChanged is triggered containing the number of the new page in
pValue.

Paged Pane

Group Icon Name Description

Containers Paged Pane Can contain fields & other objects on
multiple panes

The Paged Pane provides a very convenient method to show a number of fields or controls grouped together on separate panes, or
to break down an entry form intomoremanageable parts whereby each pane contains a small number of fields. The JS Page Control
example app in the Samples section in theHub in the Studio Browser uses the Paged Pane; the same app is available in the JavaScript
Component Gallery.

The $pagecount property specifies the number of panes, and $currentpage specifies the current pane. In design mode, you have to
set $currentpage to the number of the pane you wish to add fields to, or you can right-click the background of the paged pane and
select the number of the pane you want to edit. You can set $effect to select different border effects for the control (a kJSborder…
constant).

You can link a paged pane to a Navigation Bar, Page Selector, or Tab Bar control so when the nav bar, page or tab changes the current
pane of the paged pane changes accordingly. To link a paged pane to one of these controls, set the $linkedobject property of the Nav
bar, Page Selector or Tab bar to the name of the paged pane.

By setting $scrolltochangepage to kTrue the pages are laid out horizontally, and the enduser can change the current page by scrolling
horizontally (for touch devices the end user can change panes by tapping on the current pane).

Events

An evUserChangedPage event is triggered when the pane changes and the new page number reported in pPageNumber.

When a Paged Pane is linked to a Nav bar or Tab bar control, the evUserChangedPage event is triggered when the nav button or tab
is clicked to change the pane.

Rounded Corners

The$borderradius property lets youadd roundedcorners to thePagedpane. The radius canbe specifiedby a single value, so all corners
are the same radius, or up to four hyphen-separated pixel values, in the order topleft, topright, bottomright, bottomleft, e.g. 4-4-0-0
to add rounded corners to just the top of the paged pane. If the bottomleft value is omitted the topright value is used. If bottomright
is omitted the topleft value is used. If topright is omitted the topleft value is used.

303

https://bit.ly/OmnisJSGallery

Note: If a border radius is set, the rounded corners are not drawn in design mode: they are only rendered when the app is run on the
client. The rounded corners are not drawn in design mode to allow the full use of the available space within the page pane control
while designing the form.

Using $dataname

The Page Pane control has a $dataname property which you can use to set the value of $currentpage. When the form is opened or
redrawn the numeric value of $dataname is used to set the current page. If $dataname is empty or returns an invalid page number,
the control uses the page number in $currentpage.

Page Panes in Complex grids

You can use a page pane in a complex grid. You can set the value of $currentpage by assigning a column in the complex grid list to
$dataname of the page pane. Therefore each row in the complex grid could display a different page in the page pane control.

In this case, controls within the page pane control will also get their data from the complex grid control, if their $dataname refers to
a column in the list used to build the complex grid.

Group Boxes

There is no Group box JS component, but you can create one “on the fly” using the $makegroupbox() method to change a Paged
pane into something that simulates the behavior and appearance of a group box.

The method PagePaneName.$makegroupbox(cLabel[,cFont,cFontSize,cTextColor]) converts a Paged pane into a Group box with the
specified label, as well as the optional CSS font, font size, and text color. Themethodmust be executed on the client, and can be called
from $init in the remote form.

Animated Transitions

If enabled, the $animatetransitions property ensures that the transitionbetweenpages is animatedwhen the current page is changed.
The property cannot be changed at runtime (the same as $scrolltochangepage).

If used in conjunction with $scrolltochangepage, when the user stops scrolling, the pane will smoothly animate into position, rather
than jumping instantly.

The animation time is set to 500ms, which should be fine for most purposes, but if you wish to change this, you can use JavaScript to
change the Paged Pane control’s (or its prototype’s) ANIMATION_TIME property.

Page Styling

Page panes have a default CSS classname ‘omnis-pagedpane-page’. This allows you to apply CSS styling or behavior to each page of
the paged pane control.

In addition, a CSS rule (-webkit-overflow-scrolling: touch;) enables momentum scrolling on iOS, i.e. for touch iOS devices, scrolling
slows down before stopping.

Picture Control

Group Icon Name Description

Media Picture Standard field for displaying images

The Picture Control allows you to display an image in your form: you can display an image file in a folder, an image from a database,
or an icon (including an SVG icon), depending on the combination of settings of $dataname, $mediatype and $iconid. If $mediatype
is empty (and $iconid is zero), the $dataname of the Picture control is a URL to the image to be displayed, relative to your html page
containing your remote form (i.e. the JavaScript Client). If $mediatype is specified, then $dataname is the name of a binary instance

304

variable containing the imagedata: in this case, $mediatype canbe set to oneof the standard image types, e.g. image/png, image/jpeg
or image/gif. Alternatively, $iconid can be set to a URL referencing an image file in the ‘html/icons’ folder, overriding the $dataname
and $mediatype properties. For backwards compatibility, the picture control can display an icon in an icon data file (Omnispic) or
#ICONS by setting $iconid to a numeric icon ID.

The $tintcolor property allows you to apply a tint color to themed SVG icons, that is, any SVG icons that have been themed using the
JS Themer tool (available in the Tools>>Add onsmenu). $tintcolor is ignored for all other image formats.

There is an example app called JS Picture in the Samples section in the Hub in the Studio Browser, and the same app is available in
the JavaScript Component Gallery.

Image Alignment and Scaling

The $picturealign property specifieswhere the picturewill be positioned in the control and is a kPAL… constant. The $noscale property
determines whether or not the images displayed in the control are scaled. The $keepaspectratio property determines whether or not
the images displayed in the control keep their aspect ratio when scaled: if true, and $noscale is false, the aspect ratio of pictures is
maintained when they are scaled.

The property $keepaspectratiomode controls how the image in the Picture control is scaled and positioned when $keepaspectratio
is true and $noscale is false. The value of $keepaspectratiomode is a kKAR… constant with the possible values:

• kKARtopLeft
The image is scaled to fit the control and anchored at the top-left corner. This is the default value (and maintains compatibility
with existing libraries)

• kKARcenter
The image is scaled to fit the control and centered, so background may be visible at the top and bottom or the left and right of
the image, depending on the shape of the image control and the orientation of the image

• kKARfill
The image is scaled to fill the control and centered, so no margin (background) is shown. This can result in the image being
cropped at the top and bottom, or the left and right, depending on the shape of the image control and the orientation of the
image

Example

In theWebshop sample app, the product images are shown in a Picture control embedded in the Complex grid control on the main
jsShop remote form. In this case, $mediatype is set to JPG and the $dataname of the control is iProductList.product_picture which
holds the image data for each product.

Pie Chart Control

Group Icon Name Description

Visualization Pie Chart Displays a pie chart based on a list of values

The Pie Chart control allows you to display a simple dataset contained in a list variable as a pie chart. See the description for the Bar
Chart Control for information about defining the list variable structure for pie and bar charts, plus chart events, as well as information
about setting the bar/segment colors for charts, including the use of theme colors and the $colorlist runtime property to set the
segment colors.

Each value in a Pie chart is shown as a segment, and its angle indicates a percentage of the total of all the values in your list, that is,
the angle in degrees is calculated as the proportion of the individual valuewhen compared to the total of all values in the list.

There is an example app JS Pie Chart in the Samples section in the Hub in the Studio Browser showing you how to set up a Pie chart
using a simple list of data, and the same app is available in the JavaScript Component Gallery.

305

https://bit.ly/OmnisJSGallery
https://bit.ly/OmnisJSGallery

Figure 194:

Main and Legend Titles

There are a number of properties in the Pie Chart component to allow you to add a legend title and have some control over the
appearance and positioning of the legend.

Property Description

$maintitle The legend title
$legendnames If true the legend shows the value

names (column 2) and not values (
column 1). The list data structure is
same as bar chart

$legendcolumns The number of columns the legend is
split into

$legendpos Changes the position of the legend: can
be above, below, left or right of the pie, or
use kJSPieLegendOff to hide the legend

$flyout Enables the pie segments to move or “fly
out” when the end user’s pointer hovers
over the segment (kFalse by default)

306

The followingpie chart has $legendnames=kTrue, $legendcolumns= 2and$flyout = kTrue.

Two positioning constants are available for the $legendpos property (which in practice are only appropriate for mobile devices),
whereby as the device is rotated and the screen orientation changes, the legend is repositioned automatically either “before” (left
or above) the pie or “after” (right or below) the pie. The constant values are:

• kJSPieLegendAutoBefore
the legend is placed before the pie chart, either above or to the left of the chart.

• kJSPieLegendAutoAfter
the legend is placed after the pie chart, either below or to the right of the chart.

Popup Menu Control

Group Icon Name Description

Menus Popup Menu Amenu that pops up when clicked

The Popup Menu Control is a menu that pops up when the user clicks on the header of the control, or when $hotwhenmouseover is
true the menu will pop up when the end user’s pointer hovers over the control. The contents of the popup menu can be:

• a list variable specified in $::listname

• a remote menu class specified in the $::menuname property, or

When specifying one of these properties, the other property must be empty; the properties are on the Data tab in the Property
Manager.

There are two example apps that use the Popupmenu in the Samples section in the Hub in the Studio Browser: the first is named JS
Droplist, Combo, Popup and uses a popup built from the list; the second uses a Remote menu to display a popup menu. The same
apps are available in the JavaScript Component Gallery; the following screen shows the ‘red night’ JS Theme in use.

307

https://bit.ly/OmnisJSGallery

Figure 195:

When using a list variable to populate a Popup menu, the data in the column specified in $coltext is used for the menu options. The
$colenabled property is the column name for the menu line enabled state, and $colcommandid is the column name holding the
menu line command id.

You can add an icon to the popupmenu by setting $iconid to the ID of an icon in an icon file or #ICONS. You can place the icon before
or after the menu title by setting $textbeforeicon.

The menu will normally popup when the user clicks on the control, but you can make the menu popup when the end user’s pointer
passes over the control (it is “hot”) by setting $hotwhenmouseover to kTrue.

You can control the position of the popup by setting $menupos to one of the constants: kJSPopMenuPosBottom, kJSPopMenu-
PosRight, or kJSPopMenuPosTop.

When the menu is clicked the evClick event is triggered with the selected line reported in pLinenumber. You can use the following
$event method to trap the line number:

On evClick
If pLineNumber>0 ## a line was selected

Do something
End If

You can use an HTML <select> tag for the user interface by setting $usehtmlselect to kTrue.

Menu Line Height

The $menulineheight remote form property allows you to set the line height for all the menus in a remote form, including Popup
menus and any Context menus for the form, as well as menus belonging to Tab strip and Splitbutton controls.

For pre-Studio 10.2 converted applications, the value of $menulineheight will be zero, meaning the font size will determine the line
height, as previous versions. For new applications, this will be a touch-friendly value to give enough space for each menu option.

Progress Bar Control

Group Icon Name Description

Other Progress Bar Shows progress of server process or
calculation

The Progress Bar Control lets you display a progress bar in your remote form, to indicate the progress of some process in your appli-
cation; this could be a static value, or a value that changes dynamically. There is an example app called JS Progress in the Samples
section in the Hub in the Studio Browser, and the same app is available in the JavaScript Component Gallery.

The current value of the progress bar is reported in the $::value property which is a value between 0 and the value of $max inclusive.
The color of the bar representing the completed amount can be set in $progresscolor, which only applies when the standard HTML5
progress control is not available. The following screen is when $usesystemappearance is kTrue onWindows:

Figure 196:

The $sendcarryon property provides a mechanism to send an evCarryOn event to the progress control. To generate an evCarryOn
event, assign kTrue to $sendcarryon. The event processing code for evCarryOn can assign $sendcarryon to kTrue again, to generate
the next evCarryOn.

You can add a Cancel button to your form to allow the end user to break a long process, but the Cancel button itself must be named
in the $alwaysenabledobject remote form property so it remains enabled during the long process.

308

https://bit.ly/OmnisJSGallery

System Appearance

When set to true (the default), the $usesystemappearance forces the progress control to use the <progress> HTML5 element (if it’s
supported by the browser). If $usesystemappearance is set to false, the progress control uses two <div> elements, and the following
additional properties apply: $secondarycolor sets the color of the stripes of the progress bar, and $progressanimation (true by default)
animates the progress bar. The following progress bar has $usesystemappearance set to false (and using the ‘red night’ JS Theme):

Figure 197:

Example

The following example code (from the example app in the Hub) assumes the progress control has been added to a remote form and
a button is used to initiate some process and send a carryon event to the progress itself; note the ‘lockui’ client command is used to
stop any clicks on the UI once the progress is initiated (except for the Cancel button). The initial values for $::value and $::max of the
progress control are 0 and 100 respectively. The following code could be behind a button:

On evClick
Do $cinst.$clientcommand("lockui",row(kTrue))
Calculate iCancelled as kFalse
Calculate iValue as 1
Do $cinst.$objs.ProgressBar.$sendcarryon.$assign(kTrue)

The evCarryOn event is sent to the progress bar which has the following event method:

On evCarryOn
If not(iCancelled)

Calculate iValue as iValue+5
Do $cinst.$objs.ProgressBar.$::value.$assign(iValue)
If iValue<100
Do $cinst.$objs.ProgressBar.$sendcarryon.$assign(kTrue)

Else
Do $cinst.$clientcommand("lockui",row()) ## unlock ui

End If
End If

Radio Button Group

Group Icon Name Description

Buttons Radio Button Group Displays a group of radio buttons for
exclusive selection

The Radio Button Group control presents a number of mutually exclusive Radio buttons that can be either on or off: selecting one of
the radio buttons deselects all other buttons in that group. The variable you assign to a radio group should be numeric (e.g. Integer).
Its value is within the range $minvalue and $maxvalue inclusive and directly corresponds to which button in the group is selected,
that is, the first button selects the first value in the range, the second button the second value, and so on. The Radio button group has
the following properties:

309

Property Description

$dataname a numeric variable
$::horizontal If true, the radio column order is horizontal
$columncount The number of columns shown for the radio group
$minvalue The minimum value for the radio group
$maxvalue The maximum value for the radio group
$text Comma-separated list of labels assigned to the buttons, or double comma to include a comma in any label text
$radiobuttoncolor The color for the Radio group control

The labels for the buttons are assigned in $text which is a comma-separated list (e.g. All,Female,Male). You can include a comma in the
text for any label by adding a second comma. For example, when $text is set to: Option 1„ extra text,Option 2,Option 3 (and $::horizontal
= kFalse, $colcount = 1), the following radio button group is displayed:

Figure 198:

Events

When a button in the Radio button group is clicked the evClick event is reported with pNewValue containing the value of the selected
button.

The JS Radio and Checkbox example app in the Samples section in theHub in the Studio Browser uses a Radio button group to select
Gender, and the same app is available in the JavaScript Component Gallery; the following screen shows the ‘health’ JS Theme in use.

Figure 199:

Example

TheWebshop app uses a Radio button group control to allow the end user to select a group or category of products to be shown
in the main product list. (To examine this control and its properties and methods, open the webshop library and the jsShop remote
form.) The $minvalue and $maxvalue of the Radio button group are set to 0 and 8, respectively (although the groups are generated
dynamically in the form), and the numeric variable iRadioGroup with an initial value of 1 is assigned to $dataname. When the form is
opened, the $construct() method behind the Radio button group calls a $build method.

radiogroup control is called ‘filter’ containing
$construct method which is run when the form opens

310

https://bit.ly/OmnisJSGallery

Do iGroupList.$definefromsqlclass($tables.T_qGroups)
Do $cfield.$build()

The $build method generates a list of product groups from the database, which is then concatenated into a single comma-separated
list and assigned to the $text property of the Radio button group.

$build method behind the radiogroup
Do iGroupList.$selectdistinct()
Do iGroupList.$fetch(kFetchAll)
For iGroupList.$line from 1 to iGroupList.$linecount() step 1
loop through the list
Calculate text as con(text,mid($prefs.$separators,3,1),iGroupList.product_group)
uses the localized separator (possibly semicolon)

End For
Calculate text as mid(text,2,len(text))
Do $cfield.$minvalue.$assign(1)
Do $cfield.$maxvalue.$assign(iGroupList.$linecount())
$maxvalue of radiogroup is set to the number of groups in list
Do $cfield.$text.$assign(text)

When the form is opened the main product list is built using a method behind the product list itself (also called $build) and the list
initially contains the Appetizers only. A group of radio buttons is created, each item representing a different group or category of food
or drink; the initial value of the Radio button group is set to 1 selecting the first item in the group.

Figure 200:

When the end user clicks on the Radio button group, to select another product type, the click is detected in the $eventmethod in the
radio button group control, the number of the radio button clicked is passed in pNewVal, and the product list is rebuilt based on the
selected product group; note aWhere clause is created based on the selected group and sent to the $build method behind themain
productList control.

$event method for Radiogroup
On evClick
Calculate whereClause as con(

'WHERE product_group =
',kSq,iGroupList.[pNewVal].product_group,kSq)

Do $cinst.$objs.productList.$build(whereClause)

Rich Text Editor

Group Icon Name Description

Entry Fields Rich Text Editor Rich text editor allowing end users to edit
and format text

The Rich Text Editor can be used instead of a regular Edit or Multi-line edit field, which adds the ability for end users to edit the text
using a text editor UI and to apply “rich” formatting such as bold, italic, and simple bullets.

There is an example app called JS Rich Text Editor in the Samples section in the Hub in the Studio Browser, and the same app is
available in the JavaScript Component Gallery.

311

https://bit.ly/OmnisJSGallery

Figure 201:

The Rich text editor control uses the Quill open source text editor which relies on modern browser technologies and, as such, some
oldermobile operating systems (iOS < 6.0 & Android < 4.0)may have compatibility issues. The control is based onQuill 1.0, which allows
Code Blocks with syntax highlighting, Undo/redo shortcut keys, Sub/Superscript, In/Outdent, Block Quotes, Image uploads, content
tips, and so on.

The text data for the control is stored in the instance variable assigned to $dataname: see below for properties to format the data
content. You can allow text editing in the control by setting $showcontrols to kTrue where upon the text content in the field will
become editable: on mobile devices this places the cursor in the field and opens the soft keypad ready for typing. The text editing
controls in the field will appear at the top of the control and will allow the end user to format the text, including bold, italic, underline,
and so on. The text data in the control is HTML markup and can include formatted text such as ordered (numbered) and unordered
lists (bullets). End users can also insert images using the Paste option.

Dynamically Loaded Resources

The control dynamically loads the necessary JavaScript & CSS files when it is used. There are some files in the Studio tree to support
the text editor:

html/scripts/
quill.js
highlight.pack.js

html/css/
quill.snow.css
highlight-theme.css

When deploying to a web server, you must make sure to also copy these files over.

Properties

Together with the standard component properties, the Rich Text Editor Control has the following properties:

Property Description

$dataname The name of an instance variable to store
the HTML formatted text, or a column in
an instance row variable

312

Property Description

$dataformat Controls the format of the document
data stored in $dataname for the control,
a constant:
kJSRichTextDataFormatJSON,
kJSRichTextDataFormatHTML, or
kJSRichTextDataFormatPlain

$showcontrols Set this to kTrue to switch the control to
edit mode and to display text editing
toolbar controls

$plaintextname Specifies the name of a variable that
automatically receives the plain text
equivalent of the data stored in the
variable named in $dataname (just the
plain text without any HTML formatting);
this property is optional

$contenttip Allows you to specify some text to be
displayed in the editor when it has no
content

$removedtoolbaritems A bitmask of kJSRichText… values,
allowing you to specify toolbar items to
hide in your Rich Text Editor instance

Setting Text Properties

You can specify the default value of the font, size and text color shown in the editor’s controls by assigning values to the component’s
text properties, as follows:

• $font
maps directly to the editor’s font droplist and will set the default value accordingly.

• $textcolor
will attempt to set the default text color to one of the colors in the toolbar’s color palette. If there is not an exact match, it will
add the color as another tile in the palette.

• $fontsize
will set the default font size to the closest match. Set to 13 for the ‘Normal’ font size as default.

Data Format

The $dataformat property controls the format of the document data stored in $dataname for the control. It can be one of the following
constants:

• kJSRichTextDataFormatJSON
The document data will be stored in the $dataname as JSON, as a Quill ‘Delta’ object. This is the best option for restoring the
data later, as it preserves all formatting.
When setting the data, you can assign JSON (Delta), HTML or plain text: this should be detected and converted as necessary.

• kJSRichTextDataFormatHTML
The document data will be stored in the $dataname as HTML. This may lose some minor formatting. This format is suitable to
use if you are going to use the data elsewhere in your code, but not for storing the document data and restoring into the Rich
Text Editor.
When setting the data, you can assign HTML only.

• kJSRichTextDataFormatPlain
The document data will be stored in the $dataname as Plain text. This will lose most formatting.
When setting the data, you can assign Plain Text only.

The $dataformat property can be changed in your code to populate the $datanamewith data of the specified format. Note that if you
do this in a server-executed method, the $dataname won’t be updated until the client next contacts the server.

313

Inserting Data

The $appenddata(cData, bNewLine) and $prependdata(cData, bNewLine) methods allow you to insert data in cData at the end (ap-
pend) or beginning (prepend) of the content in $dataname. If you pass bNewLine as kTrue, the data will be added on a separate line.
These methods can only be executed on the client.

The data format of the passed data depends on the value of the $dataformat property. If $dataformat is JSON, the data could be sent
as plain text, HTML or JSON (a Quill Delta object).

The $insertatcursor(cData)method allows you to insert the supplied text data in cData at the position of the caret within the Rich Text
Editor the last time it had focus. The data can be plain text, HTML, or JSON (depending on the setting of $dataformat), and like the
methods $appenddata() and $prependdata(), it must be executed on the client.

Getting Html

The $gethtmlwithstyles() client method returns the HTML from the Rich Text Editor and applies some inline styles to the elements,
which when viewed externally, such as in a web browser, should closely represent the styles written in the Rich Text Editor. Note that
there may be circumstances where the style is not exactly matched due to the limitations of inline vs stylesheet styling.

Code Blocks

The Rich Text Editor allows you to insert Code Blocks. These allow you to insert syntax-highlighted code. The syntax highlighting is
achieved using highlight.js and by default includes highlight support for several popular languages.

Figure 202:

If the language(s) you require is/are not supported out of the box, you can create a ‘Custom Package’ on the highlight.js download
page, and replace the highlight.pack.js in your Omnis tree/web server with the one you download.

Similarly, if you want to change the code block’s appearance, you can take any of the theme css files from your highlight.js download,
rename it highlight-theme.css and replace the supplied file with your own.

Drag and Drop

End users can drag data from a Rich Text Editor and drop it elsewhere in the form, or users can drag data and drop data into the Rich
Text Editor; in the latter case the evDrop event is generated in the control. If some text is selected and dragged out of the Rich Text
Editor, then only the selected text is dropped at the cursor position.

End users can also drag external content and drop it onto the Rich Text Editor, e.g. text or an image from another browser pane or a
different application, but in this special case the evDrop event is not generated in the control.

314

Localizing the Rich Text Editor

There are various strings in the Rich Text Edit control that can be localized in the string table for the remote form containing the
control. You must use the following string table ids to replace the default text for the controls in the text editor.

Tooltips for buttons

rt_backgroundcolor rt_insertorderedlist rt_print
rt_blockquote rt_insertunorderedlist rt_removeformat
rt_bold rt_italic rt_strikethrough
rt_clearformat rt_justifycenter rt_subscript
rt_codeblock rt_justifyfull rt_superscript
rt_decrease_indent rt_justifyleft rt_textalign
rt_image rt_justifyright rt_textcolor
rt_increase_indent rt_link rt_underline
rt_indent rt_outdent rt_video

Text displayed on controls

rt_fontsize rt_fontfamily rt_sansserif
rt_serif rt_monospace

Printing the Text Contents

End users can print the contents of the editor control using a print button on the editor’s toolbar, which when clicked opens a window
for printing. The $printcontents lets you print the contents.

• $printcontents(cTitle)
Opens a new window to print the editor’s current contents. cTitle is the title of the document to print.

You enable the new print button by setting $removedtoolbaritems to kJSRichTextPrint. In addition, the Omnis string table item with
ID: rt_print lets you edit the tooltip of the button.

Scroll Box

Group Icon Name Description

Containers Scroll Box Allows you to group other controls with the
option to display a scroll bar if the content
does not fit

The Scroll Box component allows you to group together other controls on your remote form with the option to display a scroll bar if
the content does not fit the visible area.

To enable the scrolling behavior, scroll boxes have the $autoscroll property. If true, and the client is displayed in a desktop browser,
the client displays scroll bars permanently when the content does not fit the box area (see below left). On mobile devices, the scroll
bar will be shown automatically when the content needs to scroll or as the control is dragged by the end user (see below right).

315

$autoscroll = kTrue on desktop $autoscroll = kTrue on mobile

Scroll boxes are container fields so you can access the fields inside the box in your code using the container notation. A Scroll box can
contain methods including a $event() method to detect events, but not evClick.

A Scroll box can act as a side panel by enabling the $sidepanel property and setting $sidepanelmode (see the section about Side
Panels), or it can contain other controls configured as side panels.

Scroll boxes have the $borderradius property, plus you can set $effect to add a border style, such as kJSborderPlain.

Subform Sets

You can use a Scroll box as the parent of a subform set, by specifying the scroll box name as the parent parameter when creating the
subform set. In addition, you can add a new object to a scroll box using $cinst.$objs.$add with the scroll box name as the parent of
the new control.

Group Box

You can convert a Scroll box into a Group box using the $makegroupbox() method, whichmust be executed on the client, and can be
called from $init for the form.

316

• Scrollbox.$makegroupbox(cLabel[,cFont,cFontSize,cTextColor])
turns a Scroll box into a Group box with the specified cLabel.

You can specify the font, size, and color in the cFont, cFontSize and cTextColor parameters (you can use CSS syntax). (Note the same
method can currently be used to turn a Paged pane into a Group box.)

Alternatively, you can use the new properties $label, $labelfontsize, $labeltextcolor & $font to turn a scroll box into a group box at
runtime, rather than using the $makegroupbox() client-executed method.

Setting the $label property for a Scroll box adds the label inside the border at the top of the control, effectively moving the top edge
of the border down so that the label appears within the bounds of the control.

As with other controls with the $label property, you can double-click on the label text in design mode to edit the text.

Segmented Bar

Group Icon Name Description

Navigation Segmented Bar Navigation control with different buttons or
“segments”

The Segmented Bar control displays a number of buttons or “segments” that you can use for navigation (like a tab bar or toolbar)
within your web or mobile app, or you can use it with only two segments to create a switch. You can assign an icon and text to each
segment, and you can detect which segment has been clicked in the $event method of the control.

The Segmented control provides a series of ‘segments’ or buttons arranged horizontally, each of which can contain an icon and/or text.
You can optionally show the selected segment in a highlighted state, by setting $showselectedsegment to kTrue, which is useful if
you are using the segmented control as a navigation control. You can further show the current segment by the setting the color of
the current segment indicator in the $focusedsegmentindicatorcolor property.

You can use the segmented control as a toolbar, docking it to the top or bottom of its container by setting its $edgefloat property to
one of the kEFposn… values, such as kEFposnMenuBar or kEFposnTopToolBar.

There is an example app called JS Segmented Control in the Samples section in theHub in the Studio Browser, showing how you can
use the Segmented control as a toolbar and switch (the second image below); the same app is available in the JavaScript Component
Gallery. The following images show the ‘professional’ JS Theme in use.

Figure 203:

Figure 204:

317

https://bit.ly/OmnisJSGallery
https://bit.ly/OmnisJSGallery

Properties

The Segmented control has the following properties, together with the standard properties for a JavaScript control.

Property Description

$currentsegment The number (1 - $segmentcount) of the current
segment (this specifies the segment affected by
segment specific properties). This can also be
changed in a design view by clicking on a
segment of the design component. The current
segment will be shown with a red outline while
the component is selected

$hidedisabledsegments Hides any disabled segments
$movesegment Lets you move a segment (in design mode only)
$segmentcount The number of segments (must be at least one)
$segmentenabled If true, the segment is enabled and generates a

click event when the user presses it.
$segmenticonid The icon displayed on the current segment. Set to

0 for no icon
$segmenttext The text displayed on the current segment
$displaystyle A kJSSegmentStyle… controls whether the text is

above or below the icon
$showselectedsegment If true, the currently selected segment will be

shown in a highlighted state. See $selectedcolor &
$selectedtextcolor. If false, the highlighted
appearance will still be shown while segments are
being clicked, to give the user feedback of the
click

$focusedsegmentindicatorcolor Specifies the color of the current segment
indicator

$segmentbordercolor The colour that applies to borders / dividers of
segments

$segmentborderradius Single value border radius that applies to
segments. If $segmentspacing is zero, this applies
to only the outer edges of the outer segments.
Otherwise, it applies to all segments

$segmenteffect Determines whether borders / dividers are applied
to segments, either kBorderNone or kBorderPlain

$segmentenabled Set to kFalse to disable a segment
$segmentspacing The space between the segments in pixels. The

behavior can be affected by $segmentwidth (see
below). If zero, dividers are drawn between
segments. Otherwise, borders are drawn around
the segments

$segmentwidth The width applied to all the segments in pixels. By
default, this is zero, in which case the width of the
segments is determined by the total width of the
control and $segmentspacing. If this value is
small enough, the segments will be centred in the
control

$selectedsegment The number (0 - $segmentcount) of the currently
selected segment. If 0 no segment will be
selected

$selectedcolor The background color of the currently selected
segment, or of the segment currently being
clicked

$selectedtextcolor The text color of the currently selected segment,
or of the segment currently being clicked

318

Property Description

$bordercolor Controls the color of the segment divider lines, as
well as the control’s border

$backcolor Controls the background color of the segments

Segment size and spacing

If $segmentwidth and$segmentspacing are set so that the segments extendbeyond thewidth of the control, the overflowing content
will be scrollable. However, if $segmentwidth is zero (the default), the segments will always fit inside the container.

In the extreme case where $segmentspacing is very high, as long as $segmentwidth is zero, the spacing will be limited to prevent the
segments becoming too small or the content overflowing.

Hiding Disabled Segments

You can set $segmentenabled for a segment to false to disable it. The property $hidedisabledsegments allows you to hide any seg-
ments that have been disabled.

Moving Segments in Design mode

The $movesegment property lets youmove a segment: youneed to set it to a number corresponding to the newposition (the property
works in the same way as the Data Grid’s $movecolumn property).

Events

An evClick event is generated when one of the segments is clicked and the pClickedSegment event parameter returns the number
of the segment clicked.

Slider Control

Group Icon Name Description

Other Slider Slider component for setting values

The Slider Control provides a graphical slider component to set the value of a variable, such as a volume control, or to control the value
of another component in your form. You can change the thumb icon if required. As an alternative, you can use the Native Slider to
control variable numeric values.

There is an example app called JS Slider in the Samples section in the Hub in the Studio Browser, and the same app is available in the
JavaScript Component Gallery.

Figure 205:

Properties

The current value of the slider is reported in the property $val according to where the slider is positioned. You can specify the range
for the slider in the $min and $max properties, while $step is the size of each step the slider takes between the min and max values.

When true, the $reversescale property swaps the $::max and $::min values on the scale of the slider. Therefore, when $::vertical is false
(the default horizontal state), the min and max values on the slider are swapped left to right. When $reversescale and $::vertical are
true, the min value is at the bottom, the max value is at the top.

319

https://bit.ly/OmnisJSGallery

The slider also has these properties:

Property Description

$::vertical If kFalse (the default) the slider is horizontal with $min
and $max values shown left to right. If true, the slider is
vertical

$sliderhorziconid The id of the icon to use for a horizontal slider handle
$sliderverticonid The id of the icon to use for a vertical slider handle
$horzmargin The horizontal margin
$vertmargin The vertical margin

Events

The Slider reports three events: evStartSlider (when the control is starting to track), evEndSlider (when the control has finished track-
ing), and evNewValue (when the value has changed). You can detect these events in the $event method for the component. These
events all pass the current value of the Slider in the pSliderValue parameter. As the user drags the Slider thumb the evNewValue event
is triggered and pSliderValue is sent to the $event method for the Slider.

To use the values of the slider in your remote form you can trap the slider events in the $event method of the slider control (which
must execute on the client), and transfer the current values to instance variables in your form, as follows:

On evStartSlider
Calculate iStartValue as pSliderValue

On evEndSlider
Calculate iEndValue as pSliderValue

On evNewValue
Calculate iNewValue as pSliderValue

Split Button

Group Icon Name Description

Buttons Split Button A button with a droplist of alternative
options

The Split Button control combines a standard button with a dropdown menu, allowing you to provide multiple, alternate actions
grouped together in a single button control. The Split Button is like the Send button in gmail as it provides two options in one control:
a default Send option on the button and a Schedule send option via the menu.

The component is available for JavaScript remote forms as well as window classes, but there are some additional properties for the
JavaScript control (the window version is an external component that must be loaded via the Component Store).

The menu for the control is specified in the $menuname property and must be a Remote Menu class for the JavaScript component,
or a menu class for the Window class control.

The following example Split button has a Print option and a printer icon on the main button part, and it has options for printing to
a Preview, PDF or File specified in a Remote menu class, specified in the $menuname property of the button control. In this case, a
single click on the button would activate the Print to printer option, while clicking on the down arrow provides the other options (the
image uses the ‘professional’ JS Theme).

320

Figure 206:

Properties

The following properties are available for the Split Button.

Property Description

$hotbackcolor The background color of the control when
hovered

$activebackcolor The background color of the control while
pressed; active color is generated
automatically if $activebackcolor is
kColorDefault

$buttonborderradius The radius in pixels of the corners
$borderwidth The width (0-7) of the edges drawn as the

border of the control
$arrowside The position of the dropdown button on

the control
$textbeforeicon If true, and the control has both text and an

icon, the text is drawn before the icon
$vertical If true, the text and icon are arranged

vertically
$menuname The name of the menu class, a Remote

Menu class for the JS control, or a Menu
class for the Window control

$menubackcolor The background color of menu lines (JS
only)

$menuhotbackcolor The background color of menu lines when
hovered (JS only)

$menutextcolor The text color of menu lines (JS only)
$menuhottextcolor The text color of menu lines when hovered

(JS only)
$menudisabledtextcolor The text color of disabled menu lines (JS

only)

Events

An evClick event is triggeredwhen themain button area is pressed. In addition, for the JavaScript client only, the evOpenContextMenu
and evExecuteContextMenu events are generated when the menu is pressed, and in this case, the pControlMenu event parameter is
kTrue (when a Context menu is opened pControlMenu will be kFalse), and the pCommandID parameter contains the command ID of
the selected menu line, e.g. 1002 for line 2.

321

Example

There is an example app called JS Split Button in the Hub in the Studio Browser, and the same app is available in the JavaScript
Component Gallery. The example library contains a JS remote form and remote menu class (plus a window class and menu to show
the thick client split button). The following image shows the JS Split button example using the ‘default’ theme.

Figure 207:

The $event method behind the split button control traps the evClick and evCCC events corresponding to clicks on the button or the
menu part of the control.

On evClick
Do method buttonClicked

On evExecuteContextMenu
Do method menuClicked (pCommandID)

buttonClicked method
Do $cinst.$showmessage('Button Clicked!','Split Button')
menuClicked method
Do $cinst.$showmessage(con('Remote Menu Clicked!//pCommandID=',pMenuLineCommandID),'Split Button')

The pCommandID parameter is passed to the menuClicked method which contains the command ID for the selected menu line
($commandid is a menu line property which stores IDs 1001, 1002, etc for successive menu lines).

Subform Control

Group Icon Name Description

Subforms Subform Allows you to display another remote form
class as a subform in the main form (or you
can create a subform set)

The Subform control allows you to place another remote form class inside the main remote form. The concept of the subform is
similar to embedding an iframe into an HTML page where you can embed another page or form or inside the main page. You could,
for example, create a single “main” form and a number of other remote forms loaded at runtime into a subform control, to create a
powerful and interactive web application with many subforms. For example, the JavaScript Component Gallery app on the Omnis
website is implemented using a main gallery form and each example component is loaded in a separate form using the subform
control.

When you have placed the subform control on your remote form, you specify the initial remote form to appear in the subform in the
$classname property. Alternatively, you can switch subforms at runtime by assigning a new remote form name to $classname to
switch the current form displayed in the subform control, as follows:

oSub is the name of the Subform control on the main Remote form
Calculate $cinst.$objs.oSub.$classname as NewFormName

Note: you can also create a group of subforms dynamically in your code using a Subform Set,which is described in the Subform Sets
section.

There are a few example apps showing how you can use subforms or subform sets in the Samples section of the Hub in the Studio
Browser (called JS Subform, JS Subform Set, JS Subform Set Panels), and the same apps are available in the JavaScript Component
Gallery.

322

https://bit.ly/OmnisJSGallery
02jsremoteforms.html#subform-sets-1
https://bit.ly/OmnisJSGallery
02jsremoteforms.html#subform-sets-1
https://bit.ly/OmnisJSGallery
https://bit.ly/OmnisJSGallery

$construct and Subforms

Opening a remote form containing a subform field or any number of subform objects creates an instance of each form, which belong
to the same task as the parent remote form instance. Omnis calls the $construct() method of the parent form instance first, then the
$construct() methods of all the subform classes in tabbing order are called. The reverse happens on closing the parent form, with the
subforms being destructed before the parent form instance. Note that the $construct() of a subform on a hidden page of a Paged
Pane will not be called until the page is shown.

You can send parameters to the subform’s $construct() method by including a comma-separated list of parameter values in the $pa-
rameters property when you create the subform field. The $parameters property can only be assigned in the remote form editor, and
it has no effect at runtime. If you attempt to set it at runtime in your code, the error “$parameters cannot be assigned at runtime” will
be displayed on the client.

$init and Subforms

When changing subform instances you can send parameters to the new target subform instance. To do this you can assign a comma-
separated list of values to the $userinfo property of a subform and this can be parsed and sent as parameters to the client-executed
$initmethod in the new subform instance. Each token in the comma-separated list will be a separate parameter, and can be a quoted
string (including spaces and commas) or a numeric value. For example, when changing subform:

Calculate $cinst.$objs.subform1.$userinfo as "’Davy Jones’,123,0"
Calculate $cinst.$objs.subform1.$classname as "jsSubform1"

In the $init method in the new subform jsSubform1, three parameters will be populated: p1: “Davy Jones”, p2: 123, p3: 0.

The $loadfinished client-executed method allows you to check when all subforms of a form have been loaded. The method is called
after all the subforms that belong to the parent remote form instance have finished loading and their $init methods have been called.

Multiple Subforms and Caching

The $multipleclasses property tells Omnis to keep a set of remote form instances open for use in the subform object, rather than
constructing a new instance each time the subform class is changed. When you assign a new remote form name to $classname
at runtime, the new remote form is downloaded to the client and displayed in the client’s browser. If the $multipleclasses property
is enabled, the previous remote form is cached and hidden on the client, otherwise the remote form instance is destroyed. If any
previous remote forms have been cached in this way using $multipleclasses, you can switch back to them instantaneously, otherwise
they have to be reloaded each time you assign to $classname of the subform object.

Layout Breakpoints

It is not required that all subforms within the inheritance hierarchy of a set of Remote forms have the same layout breakpoints. In
other words, a subform can have different layout breakpoints to its superclass.

Referencing Subform Instances

A subform control has the $subinst property (object) which is the instance contained within the subform control. You can use this
property to get a reference to the instance in a subform object and therefore change properties within the instance. If the subform
property $multipleclasses is set to kTrue, you must use $subinst(cClassName) to get a reference for the appropriate instance. For
example, where a subform control has a single subform class the following code will return a reference to the form instance in the
subform:

Set reference item to $cinst.$objs.subfrm.$subinst
Do item.$setcolor(kRed)

or when you may have assigned multiple classes to the subform control ($multipleclasses is set to kTrue):

Set reference item to $cinst.$objs.subfrm.$subinst("classname")
Do item.$setcolor(kRed)

Note that the item returned will be null if the instance does not exist.

323

Subform Container Notation

You can use $cinst.$container to obtain the instance containing a subform instance, where in the current context $cinst is a subform.
The $container property returns the object containing the referenced object. This notation will work in server methods (for all clients)
, and client-side methods for the JavaScript Client only. For examples:

Set reference item to $cinst.$container
Do item.$getList() Returns iList
and
Calculate $cinst.$container().iSelected as iList.C1

Subform Promise

You can return a promise from client-side assignments to subform $classname. The promise will be resolved when the form is loaded,
after its $init has run. When assigning the $classname of a subform at runtime you can return a promise, e.g.

Do $cinst.$objs.sf1.$classname.$assign("sub2") Returns lPromise
JavaScript:lPromise.then(() => {
Do $cinst.$objs.sf1.$subinst().$whatever()
JavaScript:});

Rather than rejecting the promises when an error occurs, an error message is passed as the first parameter to the resolve function. If
this is populated, you can treat it as an error.

Events

The evSubformLoaded event is triggered when the form instance in a subform control changes, after the $init method in the form
instance has been called. The event is also triggered if $multipleclasses is true and an existing form is being switched back to.

The evSubformLoaded event receives two parameters:

• pFormName
The name of the Remote Form class which has just loaded.

• pInitialLoad
True if the form instance has just been constructed. It may be false if $multipleclasses is true, and an existing Remote Form is
coming back to the front.

Example

TheHolidays sample app (in the Applets section of theHub in the Studio Browser) uses a subform to display either the User or Admin
form. When themain jsHolidays remote form is loaded, its $construct() method calls a classmethod to setup the initial subform to be
shown which, in this case, is the User form. In addition, there are buttons on the main Holidays form to allow the end user to switch
forms; for example, the code behind the User button is:

$event method for User button on jsHolidays
On evClick
Do method setSubForm (kUserForm)
Calculate iAdminBtnState as kTrue
Calculate iUserBtnState as kFalse
Do $cinst.$objs.adminBtn.$enabled.$assign(kTrue)
Do $cobj.$enabled.$assign(kFalse)

The setSubFormmethod has the following code to switch forms:

If pOption=kAdminForm ## test if Admin or User
Do $cinst.$objs.subForm.$classname.$assign("jsAdminForm")

Else
Do $cinst.$objs.subForm.$classname.$assign("jsUserForm")

End If

324

Switch Control

Group Icon Name Description

Buttons Switch Allows on/off selection; you can specify an
icon for on/off state

The Switch Control is like a check box insofar as it represents an On / Off value (1 or zero), but it can display alternative images for the
On or Off states. When the end user clicks the switch the value of the control’s variable alternates between 1 and zero, so the control
is useful for representing preferences which can be Enabled or Disabled, or items that can be turned On and Off, like a switch.

The variable you specify in the $datanameproperty should be aNumber or Boolean variable. The $switchon and $switchoff properties
let you specify an icon ID for the images to be used when the switch is either On or Off. The properties $justifyhoriz and $justifyvert
allow you to justify the contents in the control horizontally or vertically.

The $switchcolor property specifies the color for the Switch control when it is switched on (set to value 1), assuming no on/off icons
have been set.

Alternatively, you can use the Native Switch component to display on/off values.

Example

There is an example app called JS Switch in the Samples section of the Hub in the Studio Browser, showing the Switch control with a
range of different ON/ OFF images; the same app is available in the JavaScript Component Gallery.

Figure 208:

Tab Bar Control

Group Icon Name Description

Navigation Tab Bar Multiple tabs to control the selection of
page pane

The Tab Bar control (or Tabbar) allows the end user to select a tab which can correspond to a specific option in your application; the
tab control can also be linked to a Paged Pane by setting $linkedobject. The $tabcount property specifies the number of tabs; it can
be set to zero in design mode, and the number of tabs assigned at runtime using the notation. The $currenttab property specifies
which tab is highlighted and its value will change as the end user selects a tab: assigning a new value to this property at runtime will
change the highlighted tab; the following screen shows the Tab control using the ‘health’ JS Theme.

Figure 209:

325

https://bit.ly/OmnisJSGallery

In designmode, you can specify the properties for a particular tab bymaking it the “selected tab” in the $selectedtab property, under
the “Tab” tab in the Property Manager. The text for a tab is specified in the $tabtext property: you can add a line break by inserting
//. The size of the tab (i.e. the width for horizontal tabs) is determined by the width of the text on the tab. However, you can set
$fixedtabsize to kTrue to fix the size of the tabs, and set $maxfixedtabsize to set the tab width or height. You can hide or show a tab
using the $tabvisible property, and you can disable or enable a tab using $tabenabled; for example, you can set these properties for
individual tabs to kFalse in design mode and at runtime set these properties to kTrue to show and enable the tabs.

There are many properties under the Appearance tab in the Property Manager to control the general appearance of the Tab Control
and the tabs themselves. The tabs have angular corners by default, but you can round the corners by setting $tabborderradius. You
can create a vertical aligned set of tabs by setting the $side property: you can orient the tabs on the left or right. The $tabsjst property
determines the position of the tabs within the control. The $currenttabindicatorcolor property specifies the color of the current tab
indicator.

The $tabbackstyle property controls the style or color of the background of the tabs and is a kJSTabsBackStyle… constant: kJSTabs-
BackStyleDefault shows a default appearance for the current platform, kJSTabsBackStyleColor shows a flat background color specified
in $tabbackcolor, and kJSTabsBackStyleImage displays an image specified in $tabbackiconid.

There is an example app called JS Tab bar in the Samples section in the Hub in the Studio Browser showing how you can link a tab
control to a paged pane, as well as using a tab control to display a menu; the same app is available in the JavaScript Component
Gallery.

Tab Icons

You can specify an icon for a tab under the Tab tab in the PropertyManager (shownwhen the Advanced option is enabled); you can set
the $selectedtab property to select a tab in designmode. You can set the position of the icon relative to the text by setting $tablayout.
For example, you can set $tablayout to kJSTabsLayoutIconLeft to add an icon to the left of the tab text, and then set $tabiconsize to
set the width of the space allowed for the icons.

In addition to the icon you can assign to a tab, you can add ‘Icon Badges’ to a tab icon to provide additional information, such as a
number count, a notification, or an alert: see Icon Badges.

Reordering Tabs

In design mode, you can move or re-order the tabs in the control by entering a number into the $movetab property; in effect, the
number of the selected tab will become the number you entered, and the other tabs are shuffled along. This is useful if you have
setup multiple tabs and need to move a tab easily without having to redefine each tab again.

Tab Pane

There is a Tab Pane control in the Containers group in the Component Store that is a compound object containing a Tab Control and
a Paged pane linked together, as described below.

Linking Tabs to Panes

The Tab Control can be linked to a Paged Pane by setting $linkedobject to the name of a Paged Pane control, so when different tabs
are clicked, the pane in the linked Paged Pane is changed automatically. Assigning a new value to the $currenttab tab property of
the Tab control at runtime will also change the current pane in the linked Paged Pane control.

The base edge of the tab control does not normally have a border, and when the tabs are linked to a paged pane the tab control
updates the paged pane border so that there is the appearance of a gap below the current tab. If you want to add a border under the
tabs you need to set $baseedgewidth to 1 or more.

Tab Menus

The Tab Control can also be linked to a Remote Menu class; clicking on a tab will trigger the corresponding line in the menu. To
implement this, the $trackmenus property must be kTrue, and the $tabmenu property set to the name of a remote menu class for
the selected tab (the tab with number $selectedtab). If assigned at runtime, themenu instancemust already be present on the client
(via a $tabmenu or $contextmenu property in the class data when the form was loaded).

You can control the color of the menu lines and text using the $tabmenu… properties under the Appearance and Text tabs in the
Property Manager, or in your code for the control.

326

https://bit.ly/OmnisJSGallery
https://bit.ly/OmnisJSGallery

Events

When the end user clicks on a tab the value of $currenttab will change and an evTabSelected event is triggered, with the new tab
number reported in pTabNumber. This event needs to be enabled in the $events property for the control to be reported.

The $canclickselectedtab property can be enabled so a click on the selected tab generates evTabSelected (provided that evTabSe-
lected is specified in $events). This allows you to detect a click on the currently selected tab (which was not possible in previous
versions).

Example

The Contacts sample app users a Tab control in the main jsContacts remote form to allow the end user to switch from viewing a list
of contacts to a form showing details of individual contacts. In this case, the Tab control is linked to a page pane which displays the
contact list or contact details view. The $linkedobject property of the contactTabStrip control is set to ‘pagePane’ (the name of the
page pane) and the $tabtext for each tab is defined as ‘Contacts’ and ‘Details’ respectively. In addition, the evTabSelected event is
enabled in the $events property of the Tab control. The code for the Tab control $event method is:

$event method for Tab control
On evTabSelected
If pTabNumber=2

Do method loadRecord (iContactList.$line)
Do $cinst.$objs.saveBtn.$enabled.$assign(kTrue)

Else If pTabNumber=1
Calculate iNewContact as kFalse
Do $cinst.$objs.saveBtn.$enabled.$assign(kFalse)

End If

If the Details tab is clicked, the second tab, the second pane in the page pane is displayed and the details for the currently selected
contact are loaded using the loadRecord class method.

Tile Grid

Group Icon Name Description

Lists Tile Grid Displays a scrollable grid of tiles which can
be configured to show images, text and
buttons

The Tile Grid component displays a scrollable grid of tiles which can be configured to show images, text and buttons. The layout of
the grid and the visual attributes for the tiles are specified in a list variable which is assigned to $dataname of the control; each line
in the list provides the definition for a single tile in the grid. At runtime, the tiles are loaded and unloaded dynamically as the grid is
scrolled, to improve the UX and performance.

There is an example application called JS Tile Grid in the Samples section of the Hub in the Studio Browser which displays a number
of tiles using images from the webshop example app, as follows:

Properties

The Tile grid has the following properties.

Property Description

$dataname List instance variable defining the tiles,
see below

327

Property Description

$centertiles If true, and $tilefixedwidth is such that
tiles do not use the full width, tiles will be
centered.

$tilefixedwidth The fixed width of tiles in pixels (default
is 0). Takes priority over $tileminwidth
and $columncount.

$columncount The number of grid columns (default is
2); set to 0 for column count to be set
automatically. Only applied when
$tileminwidth and $tilefixedwidth are
zero

$tileminwidth The minimumwidth of tiles in pixels
(default is 0); applied when
$tilefixedwidth is zero

$tileheight The height of tiles in pixels (default is
140)

$tilegap The gap between tiles in pixels (default is
5)

$tileborderradius The border radius used for tiles (default
is 4)

$titlebarposition The position of the title bar on the tile, a
constant:
kJSTileGridTitleBarPositionBottom (the
default) kJSTileGridTitleBarPositionTop
kJSTileGridTitleBarPositionNone

$titlebarlayout The layout of the title bar and
background image, a constant:
kJSTileGridTitleCoversImage: Title bar
covers the image (the default)
kJSTileGridTitleBesideImage: Title bar is
beside the image kJSTileGridTi-
tleBesideImageAndBackground: Title
bar is beside the image and background

$imagescaling The scaling type for tile images, a
constant: kJSTileGridScalingCover: Size
image to cover the available space,
maintaining its aspect ratio (the default)
kJSTileGridScalingContain: Size image to
fit inside the available space,
maintaining its aspect ratio
kJSTileGridScalingFill: Stretch image to
fill the available space
kJSTileGridScalingNone: Do not resize
image

$titlebarheight The height of the title bar in pixels
(default is 60)

$titlebarcolor The color of the title bar
$buttoncolor The color of tile action buttons
$tilecolor The default tile background color; can be

overridden for individual tiles in the data
list using the BackgroundColor
parameter

$tilehotcolor The default hovered tile background
color; can be overridden for individual
tiles in the data list using the
HotBackgroundColor parameter

asof 35876 $tileshadow Adds a shadow to the tiles in the grid

328

Property Description

asof 35901 $tilegrowonhover enables tiles to grow when the user’s
pointer hovers a tile

asof 35901 $tileimagezoom zooms the image of a hovered tile,
specified as the percentage by which
the image expands

asof 35901 $horzpadding specifies the left and right padding
inside the tiles in the grid

asof 35901 $vertpadding specifies the top and bottom padding
inside the tiles in the grid

$text1align The text alignment for the primary text
field in the tiles

$text1color The color used for the primary text field
in the tiles

$text1font The font used for the primary text field in
the tiles

$text1size The point size used for the primary text
field in the tiles

$text1style The font style used for the primary text
field in the tiles

$text2align The text alignment for the second text
field in the tiles

$text2color The color used for the second text field in
the tiles

$text2font The font used for the second text field in
the tiles

$text2size The point size used for the second text
field in the tiles

$text2style The font style used for the second text
field in the tiles

Configuring the grid layout

The tiles are arranged in the Tile Grid control from left to right across the grid, wrapping onto successive lines according to the total
number of lines in the source list and thereby the number of tiles to be displayed. You can set $columncount to specify a fixed
number of columns across the grid, and in this case, the width of the tiles is adjusted automatically to fit the width of the grid control.
Alternatively, you can set $columncount to zero and use $tileminwidth to specify the minimum width of the tiles (columns), so that
the number of columns is set automatically depending on the overall width of the control, i.e. the number of columns is adjusted
automatically as the control is resized in a responsive form. If both properties are used, $tileminwidth takes priority.

Each tile in the grid can have an action button,which can be clicked by the end user, as well as primary text (e.g. a title) and secondary
text (e.g. a description), which are placed inside a title bar positioned at the bottomor top of the tile. The tile background also responds
to end user clicks.

When the whole tile grid has the focus after being tabbed to it, pressing the Enter key will put the focus on an element within the
grid. From there, clickable elements can be tabbed through and activated with the Enter or Space keys. Pressing Escape will return
the focus to the whole grid.

Setting the current line in the list will set the current tile and scroll the grid to that tile. The current tile is assigned a CSS class “ctrl-tg-
current” to which you can apply custom styling in user.css, if required.

Setting the tile width

The width of the tiles in the grid can be specified by setting the $tilefixedwidth property; if specified, this takes priority over $tilem-
inwidth and $columncount. In this case, the number of tiles (columns) that fit into the width of the control is calculated automatically
from the value of $tilefixedwidth.

Alternatively, when $tilefixedwidth is set to zero, you can use $tileminwidth to set a minimum width for tiles, or when $tileminwidth
and $tilefixedwidth are zero, you can use $columncount to specify the number of columns across the grid and in this case each tile
will stretch to fit the available column width.

329

Figure 210:

330

If $tilefixedwidth, $tileminwidth and $columncount are all zero, all tiles will fit into a single row.

The height of the tiles is set in $tileheight (the default is 140 pixels), while the gap between tiles is set in $tilegap (the default is 5 pixels).

Defining the data list

The list instance variable assigned to $dataname contains tile specific information, with each row in the list representing a single tile.
The order of columns does not matter, and all columns are optional, but they must have the following names:

• ImagePath: The URL of the background image for the tile. If not specified or null, the tile’s background color $tilecolor will be
visible.

• Text1: The primary text or title to display on the title bar. Also used as the “aria-label” accessibility attribute, and the “alt” attribute
of the image.

• Text2: The secondary text or description to display on the title bar.

• ButtonPath: The URL of the image for the action button. If not specified or null, no button will be added. iconurl() can be used
to reference an icon in an icon set, e.g. iconurl(“info”) to show an info icon

• ButtonDescription: A description of the action button. If specified, this is the tooltip text, and “aria-label” accessibility attribute
for the button.

• BackgroundColor: The background color of the tile.

• HotBackgroundColor: The background color of the tile when it is hovered.

For example, the following code from the example app (in the Hub) defines the list and adds a number of tiles:

Do iData.$define(ImagePath, Text1, Text2, ButtonPath, ButtonDescription, BackgroundColor)
Do iData.$add("images/webshop/BuffaloWings.jpg", "Chicken", "Buffalo wings", iconurl("info"), "Info", kJSThemeColorPrimary)
Do iData.$add("images/webshop/Caesar_Salad.jpg", "Salad", "Caesar salad", iconurl("info"), "Info", kJSThemeColorPrimary)
Do iData.$add("images/webshop/Cheesecake.jpg", "Cake", "Cheesecake", iconurl("info"), "Info", kJSThemeColorPrimary)
etc

In addition to using bitmap images (JPG or PNG), you can add an an SVG image from an icon set to the background of a tile. In this
case, you can use the iconurl() function to reference the SVG image.

Events

The tile grid has two events: evButtonClick is sent when the action button for a tile is clicked, while evTileClick is sent when a tile is
clicked anywhere except on the action button. The tile displays a ripple effect when it is clicked. For both events, the pClickedTile
event parameter returns the index of the tile that was clicked, starting at 1 for the first tile in the grid.

Timer Control

Group Icon Name Description

Other Timer Timer object triggers an event at a
specified interval

The Timer Control is an invisible component that triggers an evTimer event after a specified time while $running is set to kTrue. You
can specify a $timervalue, which is interpreted as an interval in seconds or milliseconds according to $useseconds, which should be
set to kTrue for seconds or kFalse for milliseconds (the default).

There is an example app called JS Timer in the Samples section in theHub in the Studio Browser, and the same app is available in the
JavaScript Component Gallery.

331

https://bit.ly/OmnisJSGallery

Example

In theWebshop sample app (available under the Applets section in the Hub), it would be possible to use a Timer control to rebuild
the Orders list periodically; in this case, you could use the Timer object to run a method at a given interval to rebuild the Orders list in
the jsShopOwner remote form. In reality, the Orders list is rebuilt every time a new order is placed, but a Timer object could be used
to regulate the rebuilding of the Orders list.

To implement a Timer in theWebshop app, you would need to enable the evTimer event in the $events property of the Timer control.
The $useseconds property is set to kTrue and $timervalue is set to 2 (to give an interval of 2 seconds). The $construct() method of the
Orders list (a data grid) includes a line of code to start the timer:

$construct method for Orders list/data grid
Do iOrderList.$definefromsqlclass($tables.T_qOrders)
Do $cinst.$objs.timer.$running.$assign(kTrue) ## possible using a timer object
Do $cfield.$build()

The $build() method behind the Orders list builds the list when the form is opened, but when used with the Timer object it can be
used to rebuild the list as well. The $event method for the Timer object is run every 2 seconds, and has the following code:

On evTimer
Do $cinst.$objs.dataGrid.$build()

Timer Worker Object

The timer component contains a Worker Object. This has the advantage over the other timer objects in that it can be used with
remote tasks in the multi-threaded server. It has the following properties:

• $timervalue and $useseconds
These work as for the current timer objects

• $repeat
If true, then after calling $starttimer() the timer will fire until $stoptimer() is called or the object is deleted;otherwise the timer
will fire at most once for each call to $starttimer().A change to $repeat is ignored until the timer is started again

The timer component supports themethods $starttimer() and $stoptimer(). Just like $repeat, changes to $useseconds or $timervalue
do not take effect if the timer is already running.

When the timer fires (or the timer is cancelled), Omnis calls the $completed or $cancelledmethod in the object, just like other worker
objects. This occurs in the context of the task that owns the object, and interrupts any code running for that task (after a complete
method command has executed).

Toolbar Control

Group Icon Name Description

Navigation Toolbar Toolbar with custom buttons (icons and
text), auto overflow and optional sidemenu

The Toolbar control allows you to add a series of buttons and an optional menu at the top or side of a remote form that the end user
can click on or tap to perform an action. Each toolbar button can be assigned an icon and text, as well as a different action. When a
button is clicked, the item number is reported to the event handling method allowing you to run the appropriate code.

The toolbar is displayed horizontally, by default, but can also be displayed vertically. You can use $edgefloat properties to ‘stick’ the
toolbar to the top or side of the remote form. If items do not fit on the toolbar, they are added to an overflow menu automatically
(shown by three vertical dots on the right or bottom of the toolbar), or items can be forced to appear on the overflowmenu.

332

A toolbar can have a “side menu”, displayed at the beginning (left or top) of the toolbar, by setting $sidemenu to true and adding a
list variable name to $dataname containing the menu items. Items in the side menu can have a ‘selected’ state as well as a ‘focused’
state. Selecting a line in the side menu sets the current line in the list. The selected line will remain highlighted until another line is
selected. When the side menu is opened, the selected line will get the focus.

To set the properties of each button or item, such as the text or icon, you can click on the button and set its properties under the Item
tab in the Property Manager (shown when the Advanced option is enabled), or you can set the $currentitem property to select an
item in design mode.

In addition to the icon you can assign to a toolbar button, you can add ‘Icon Badges’ to toolbar button icons to provide additional
information, such as a number count, a notification, or an alert: see Icon Badges.

Example

There is an example app called JS Toolbar in the Samples section in the Hub in the Studio Browser showing a Toolbar with overflow
and a side menu; the same app is available in the JavaScript Component Gallery.

The example Toolbar has four items or buttons defined, each with an icon and text, themain title ‘Toolbar’ on the left, and an overflow
menu on the right.

Figure 211:

Items can be forced to always appear in the overflow, regardless of the width of themain toolbar, shown on the right of the toolbar by
the three vertical dots, and shown dropped here:

Figure 212:

As the browser window is resized, or the remote form (the app) is displayed on amobile device, themain toolbar width will shrink, and
the button items are added to the overflow menu automatically, as shown (note the icons are not displayed when the item is in the
overflowmenu):

Figure 213:

The following image shows the same Toolbar with the side menu added and in the dropped state:

333

https://bit.ly/OmnisJSGallery

Figure 214:

The following image shows the same Toolbar using the ‘lemonade’ JS Theme; the material icons used in the toolbar are themed so
will change color depending on the theme:

Figure 215:

Properties

The customproperties for the Toolbar control are described below. The ‘Item’ tab in the PropertyManager (shownwhen the Advanced
option is enabled) contains item specific properties that apply to the $currentitem.

Property Description

$itemcount The number of toolbar items/buttons
$currentitem Item specific properties are assigned to the current

item
$moveitem Allows you to move an item in design mode; the

current itemmoves to the position specified by the
number entered

$itemiconid The icon for the current item (item specific property);
note $showitemicons needs to be enabled to display
icons

$itemtext The text for current item (item specific property); note
$showitemtext needs to be enabled to display text

$itemoverflow Force the item to be appear in the overflowmenu
(item specific property)

$itemenabled If kTrue (the default) the item is enabled (item specific
property); if kFalse the item is greyed and cannot be
selected with the pointer or keyboard; applies to items
whether they are on the toolbar itself or the overflow
menu

$sidemenu Add a side menu to the toolbar. The $datanamemust
be a list containing the menu data

$dataname Name of a list variable containing the menu data, to
display a menu when $sidemenu is set to true

334

Property Description

$verticaltoolbar If kTrue, the toolbar is in a vertical orientation
$menudirection A kJSToolbarMenuDirection… constant which sets the

direction the menu should open. Different values are
available depending on the $verticaltoolbar property:
Down or Up for horizontal toolbars, Right or Left for
vertical toolbars

$toolbartitle The optional title to display on the toolbar; leave this
blank for no title

$titlefontsize The font size applied to the toolbar title
$itemwidth The width of items on the toolbar; without a value

items have a variable width and are forced to fit the
length of the toolbar

$displaystyle A kJSToolbarStyle… constant determining the position
of the icon text relative to the icon: either Above,
Below, Left of, or Right of the icon

$showitemicons If true, any item with an $itemiconid will display an
icon on the toolbar

$showitemtext If true, any item with $itemtext will display text on the
toolbar; when true, $showtooltips is disabled

$showtooltips Show tooltips on toolbar items; $showitemtext must
be set to false

$showdividers If true, dividers will be shown between toolbar items
$showselecteditem If true, the item will have its background color set to

$selectedcolor and its text colour set to
$selecteditem The number of the selected item
$clippopuptocontainer If kTrue (the default), the Side menu and Overflow

menu are clipped to the toolbar’s container. If false,
they can extend outside its bounds

Clicking on a toolbar item will make that item selected, and $selecteditem is set to the selected item number. If $showselecteditem
is true, the item will have its background color set to $selectedcolor and its text color set to $selectedtextcolor.

The following properties control the color of toolbar items.

Property Description

$dividercolor The color of the dividers between items if $showdividers is true
$iconcolor The color of standard icons such as the hamburger icon
$sidemenucolor The background color of the side menu
$overflowcolor The background color of the overflowmenu
$toolbaractivecolor The color of toolbar items when clicked
$toolbarhovercolor Hover color for toolbar items
$sidemenuhovercolor Hover color for side menu items
$overflowhovercolor Hover color for overflow items
$selectedcolor The background color of the selected item
$selectedtextcolor The text color of the selected item
$selectedlinecolor The color used for the background of the selected line in the side menu
$toolbarhovertextcolor Text color of toolbar items when hovered
$sidemenutextcolor Text color of side menu items
$sidemenuhovertextcolor Text color of side menu items when hovered
$overflowtextcolor Text color of overflowmenu items
$overflowhovertextcolor Text color of overflowmenu items when hovered

Disabling Items

The $itemenabled property allows you to disable specific items. When $itemenabled is set to kFalse for an item it is greyed and cannot
be selected with the pointer or keyboard. This property applies to items whether they are on the toolbar itself or the overflowmenu.

335

Defining the Side Menu list

To enable the side menu, you need to set $sidemenu to kTrue and specify a list variable name in $dataname containing the contents
of the menu. The $dataname can generate either a grouped or an ungrouped menu.

Ungrouped list columns with each row representing an item:

• Text (Character): The text of the menu item.

• IconPath (Character): A URL of an image to display. The image will be scaled to fit. You can use the iconurl() function to return
a URL for an icon in an icon set, e.g. iconurl(‘apps+32x32’) will return the relative URL for the apps icon at 32x32 pixels

Grouped list columns with each row representing a group:

• SubList (List): A list with columns matching the ungrouped list above. Contains data for the group.

• GroupName (Character): The text displayed on the group header.

• Fixed (Boolean): Optional column. If true, the group is always expanded. False by default.

• Collapsed (Boolean): Optional column. If true, the group is collapsed by default. False by default.

Events

The Toolbar reports two events: evClick reports the toolbar item that was clicked, with pClickedItem returning the item number; and
evNavigationClick reports true if an itemon the sidemenuwas clicked, with the group number reported in pClickedMenuGroup (zero
if the data is ungrouped) and the item number in pClickedMenuItem. You can write event handling code in the $event for the toolbar
to trap these events and branch according to the value of pClickedItem or pClickedMenuItem.

Trans Button Control

Group Icon Name Description

Buttons Trans Button Interactive button with alternate hover
image

The Trans Button control (or TransButton) is like a standard button, but it can display a different icon and/or background color when
the end user’s pointer hovers over the control, or when the button is tapped on touch devices. In all other respects the Trans button
is like a standard push button control, insofar as it generates a single evClick event when the button is clicked which can be used as
confirmation or to initiate an action in your code using the $event method. Note the evClick event must be enabled in the $events
property for the control for it to be reported.

There is an example app called JS Trans Button in the Samples section in the Hub in the Studio Browser showing how you can use
the Trans button, and the same app is available in the JavaScript Component Gallery.

The following image shows the JS Trans button example app using the ‘soft’ theme; thematerial icons used in the buttons are themed
so will change color depending on the theme:

Hover Action

The Trans button has several properties prefixed “$hot” that relate to the appearance of the button for the hover action. You can specify
two icons for the Trans button: one to represent the “off” state which is specified in $iconid, and the other to represent the “over” state
which is specified in $hoticonid: if no $hoticonid is specified the icon in $iconid is used which will not provide a hover effect. You can
also specify a different background color for the hover action in $hotbackcolor, and an alternative border color in $hotbordercolor.

336

https://bit.ly/OmnisJSGallery

Figure 216:

Icons

The icons used in $iconid and $hoticonid can be from an icon set, or #ICONS, or an icon datafile. You can use the standard icon sizes
(16x16, 32x32, 48x48 and their 2x equivalents for hi-def support), but you can also use non-standard sized images as well, but in this
case, they can only be sourced from an icon set (and the size should be specified in the file name according to the usual naming).
The Trans button will not draw or position icons from standalone pages in #ICONS or icon datafiles (e.g. omnispic.df1) correctly in the
client, since the client cannot determine the icon size from its URL.

You can set $vertical to true to center the button’s content vertically: $align also affects the placement of the icon when $vertical is
true. The $horzpadding property allows you to set the left and right padding.

HTML Button Text

You can specify a label for the button using the $text property which is a single line of plain text. When set to kTrue the $textishtml
property specifies that the text in $text is treated as HTML, and therefore any HTML, including character and color attributes, can be
used to style the text. For example, you can insert a line break by setting $textishtml to kTrue, and using
 in $text for the button
wherever a line break is required.

The HTML needs to be valid for it to be rendered in the form, including when used as the contents of a <p> element; so for example,
you cannot use a <p> element inside another <p> element.

Tree List Control

Group Icon Name Description

Lists Tree List List for displaying hierarchical data or list of
options

The Tree List Control (or Tree Control) provides a graphical way of displaying a list of items in a hierarchical format. Each node can
have a check box or its own icon. The $dataname property for a tree list is the name of a list variable containing the content (data) and
structure of tree list. The list can contain the entire data for a tree list when the form is opened, or the content can be built as nodes
are expanded when a tree list is in “dynamic” mode.

There are two example apps in the Samples section in the Hub in the Studio Browser showing how you can create a Tree list with
check boxes (left) and aDynamic tree structure (right); the sameapps are available in the JavaScript ComponentGallery. The following
images show the ‘vintage’ JS Theme in use.

Properties

Tree lists have the following properties:

Property Description

$checkbox If true, and $multipleselect is also
true, the tree control has check
boxes that can be used to select
nodes

$currentnodeident The current node ident for
Dynamic tree lists only: see below

$datamode Controls how the list content is
used to structure the tree list, a
constant: kJSTreeFlatList,
kJSTreeFlatListWithTags,
kJSTreeFlatListOld,
kJSTreeFlatListOldWithTags

337

https://bit.ly/OmnisJSGallery

Property Description

$evenrowcolor Specifies the color to be used for
every even row in the list of nodes.
The kColorDefault setting means
use the same color as odd
numbered rows ($backcolor).

$extraspace Adds extra space in between the
lines in the list; it is the number of
pixels added to the normal font
height of a row in the list, or zero for
no extra space

$iconurlprefix All icons used in the tree (as a result
of $showicons being true) must
come from a single icon directory;
the default is _icons/omnispic/

$lineborder If true, a row border is added
between each node

$linebordercolor Specifies the color of the line when
$lineborder is true; it uses the value
of $bordercolor when set to
kColorDefault

$multipleselect If kTrue allows the end user to
select more than one line; should
be enabled for tree lists with
$checkbox enabled

$nodeaction Performs an action on the tree
node, only for Dynamic mode: see
below

$nodedata List for tree node when building
dynamically: see below

$showicons If true, the tree control shows node
icons from location in
$iconurlprefix

$showlines If true, the tree control displays
dotted lines connecting nodes

$twostate If true, and the tree control has
checkboxes (see $checkbox),
selection of each node is
independent

Tree List Format

The format ormode of the data is set in the $datamode property which controls how the list content is used to structure the contents
of the tree list. There are several different data modes to format a tree list, as well as the Dynamic mode, represented by the following
constants:

• kJSTreeFlatList
ThefirstNcolumns represent anode in a treeof depthN. The last 5 columnsarenodeproperties: iconid,ident(int),expanded(bool),textcolor(zero
means $textcolor),tooltip

• kJSTreeFlatListWithTags
ThefirstNcolumns represent anode in a treeof depthN. The last 7 columnsarenodeproperties: iconid,ident(int),expanded(bool),textcolor(zero
means $textcolor), tooltip, tag(char), enterable(bool)

• kJSTreeFlatListOld
A list with the same structure as the plug-in client tree kTreeDataFlatList

• kJSTreeFlatListOldWithTags
A list compatible with the plug-in client kTreeDataFlatListWithTags

338

Figure 217:

• kJSTreeDynamicLoad
the tree list content can be built dynamically; see below

Tree Events

When the user selects a node the evClick event is reported, while a double-click reports an evDoubleClick. In both cases, the id and
tag of the selected node is reported in the pNodeIdent and pNodeTag parameters. Note you cannot get click or double-click events
for nodes which are enterable, as the click puts them into edit mode.

For enterable nodes, the evRenamed event is reported if the end user has renamed the node. evRenamed has node ident, node tag,
old name and new name as event parameters.

The evExpandNode event is fired after the user has expanded a node, every time that node is expanded (unlike evLoadNode which is
only triggered if the node has no children). This applies to both dynamic and non-dynamic tree lists; see below for dynamic tree lists.

You cannot use $nodedata to load data into the tree list with evExpandNode, it is just a notification and includes the parameters
pNodeIdent and pNodeTag. If evLoadNode and evExpandNode are both active, evLoadNode will be fired first, as evExpandNode is
fired after the node is expanded.

Scrolling in long lists

Tree lists scroll to view the current line in the list, and any parents opened as necessary, whenever the current line changes or the
$currentnodeident property is set. In a non-multiple select tree lists, setting either the current line in the list or the $currentnodeident
will select the line and scroll to it. This applies to flat list trees only.

In multiple select tree lists, setting the current line will scroll to that line but will not select it. Setting $currentnodeident notationally
will set both the current line and select the node. Tree lists without checkboxes will clear any current selection, but tree lists with
checkboxes will not. This behavior mimics the user behaviour of clicking a node.

In multiple select tree lists, the $currentnodeident and the current line in the list can reference different nodes; however, in single
select tree lists, they will always reference the same nodes.

Dynamic Tree Lists

The content inside a Tree List Control canbebuilt dynamically as the enduser expands a node. In previous versions, the entire contents
of the tree list had to be built and sent to the client, including the contents for all unexpanded nodes, which for large lists created quite

339

an overhead. Building the tree list data and displaying content in a tree list can be optimized with the ability to build node contents
as required, by setting the tree list data mode to “dynamic”; note there is an example app in the Samples section in the Hub in the
Studio Browser and in the JS Component online gallery.

Creating Dynamic Trees

To use a Tree Control in dynamic mode you need to set its $datamode property to kJSTreeDynamicLoad. Note that dynamic mode
can only be used for ‘single-select’ trees, and attempting to assign kJSTreeDynamicLoad to $datamode will fail if $multipleselect or
$checkbox for the tree control is kTrue.

A dynamic tree still requires a list to be identified by $dataname, but the list need only contain the initial content of the tree, that is,
the content for the root or parent nodes. After the list content is changed, the tree reloads its content from the list.

Dynamic trees also use lists to set the content of expanded nodes and to add nodes programmatically to the tree. The lists all have
the same structure: each list represents an ordered set of nodes with the same parent (or no parent in the case of the $dataname list),
and the columns are as follows:

• Column 1: Text. The text displayed for the node.

• Column 2: Icon. Only used when $showicons is set to kTrue. This is a line number in the list identified by $nodeiconlist, or zero
if the node does not have an icon. $nodeiconlist is described below.

• Column 3: Ident. A unique positive integer that identifies the node. Cannot be the same as the ident of any other node in the
tree. The tree control throws an exception (resulting in amessage box displayed on the client) if you try to use a duplicate ident.

• Column 4: Tag. A string associated with the node. Any value that is useful to the developer. Need not be unique.

• Column 5: Tooltip. The tooltip string for the node, displayed when the user hovers the mouse over the node. Leave empty for
no tooltip, although on some browsers nodes may inherit their tooltip from their parent node if the tooltip is empty.

• Column 6: Text color. The text color for the node (an integer RGB value). Zero means use the $textcolor of the tree.

• Column 7: Flags. Integer flags. A sum of zero or more of the following constants:

• kJSTreeFlagEnterable. The node text can be edited (this works with the existing evRenamed event).

• kJSTreeFlagHasChildren. The node has children.

• kJSTreeFlagExpanded. The node will be immediately expanded. If you set this flag you must supply the child nodes using a
node list supplied as the children column.

• kJSTreeFlagDiscardOnCollapse. If set, when the user collapses the node, the tree deletes the node contents. This means that
the next time the user expands the node, the tree will generate an evLoadNode event; evLoadNode is described later in this
document.

• Column 8: Children. If the kJSTreeFlagHasChildren is present, you can pre-populate the node content by using a nested list to
specify the children. If you do not supply any children using this list, then you can supply them later by using the evLoadNode
event (see below). The content of this column is ignored if the kJSTreeFlagHasChildren is not present. You can nest children
lists arbitrarily deep (within reason).

$nodeiconlist allows you to specify the icons to be used with the tree. These must be available when the tree is updated from the
dataname list. $nodeiconlistmust be the nameof an instance variable list with at least one columnwhichmust be a character column
containing icon URLs. You can populate each URL in the node icon list using the iconurl() function, for example:

Do iNodeIcons.$define(iNodeIcon)
Do iNodeIcons.$add(iconurl(1710))
Do iNodeIcons.$add(iconurl(1711))
Do iNodeIcons.$add(iconurl(1712))

340

Populating Expanded Nodes

Dynamic trees have the event evLoadNodewhich allows you to populate the tree on demand, by only populating node content when
a node is expanded. When using the kJSTreeDynamicLoad mode for $datamode, evLoadNode is generated so that you can set the
content of the node by setting the $nodedata property which is the name of a list containing the expanded node content. For other
settings of $datamode, evLoadNode is generated when the user expands a tree node.

The evLoadNode event has two parameters, pNodeIdent and pNodeTag, corresponding to the node that is being expanded. In the
event processing for evLoadNode, you can set the $nodedata property to a node list representing the content of the node (with the
above column format); if the event processing fails to set this property, the tree control sets the node content to empty.

The list assigned to $nodedata can specify nested children if desired.

$nodedata is a runtime-only property that can only be set.

Manipulating Tree Nodes

Dynamic tree lists support ‘node actions’ to allow you to manipulate the nodes in a Tree List programmatically. For example, you can
expand or collapse a node, and you can add, delete or rename nodes. You execute a node action by assigning a row variable to the
$nodeaction property of the tree; this is a runtime-only property that can only be set. The supported actions are as follows:

Node Action Description

kJSTreeActionExpand row(kJSTreeActionExpand, ident). Expands the node with the specified ident if it is
not already expanded

kJSTreeActionCollapse row(kJSTreeActionCollapse, ident). Collapses the node with the specified ident if it is
not already collapsed

kJSTreeActionRename row(kJSTreeActionRename, ident, newname). Renames the node with the specified
ident to the new name

kJSTreeActionDelete row(kJSTreeActionDelete, ident). Deletes the node with the specified ident (also
recursively deletes node children). If the current node is deleted, an evClick event will
be generated to inform the application of the new current node

kJSTreeActionAdd row(kJSTreeActionAdd, ident, position, nodelist). Adds the nodes in the nodelist to
the tree, where ident specifies the parent node of the nodes in nodelist; to add a new
root nodes specify ident as zero. The position parameter can be one of: -1 to add the
new nodes before any existing children of the node specified by ident 0 to add the
new nodes after any existing children of the node specified by ident a child node
ident. New nodes are added after the child node with this ident. If no such node
exists, the new nodes are added after any existing children

kJSTreeActionUpdateIcon row(kJSTreeActionUpdateIcon, ident, newicon) updates the icon of a node. Extra
parameter is the line number in the list identified by $nodeiconlist, or zero for no
icon

kJSTreeActionMove row(kJSTreeActionMove, ident, position) moves the node to a new position, where
ident specifies the new parent node; to move to the root, specify ident as zero. The
position parameter can be one of: -1 to move before any existing children of the node
specified by ident 0 to move after any existing children of the node specified by ident
a child node ident. The node is moved after the child node with this ident. If no such
node exists, the node is moved after any existing children.

kJSTreeActionCollapseAndDiscard row(kJSTreeActionCollapseAndDiscard, ident) collapses the node and discards all
child nodes

kJSTreeActionReload row(kJSTreeActionReload, ident). Reloads the node, generating an evLoadNode
event

Collapsing a Node

The tree control generates evCollapseNode when the user collapses a node. This applies to all trees, not just dynamic trees.

The Current Node

The property $currentnodeident applies to dynamic trees; in previous versions the current (selected) node was represented by a list
line. When the end user clicks on a node, the value of $currentnodeident changes, and the control generates evClick. In addition,
the developer can assign $currentnodeident (and read its value in client-executed methods). $currentnodeident is a runtime-only
property.

341

Video Player

Group Icon Name Description

Media Video Player Plays a YouTube or other hosted video

The Video Player control allows you to play a video within your remote form. The video can be hosted on YouTube or you can play
a video via the HTML5 video support in the browser. There is an example app called JS Video in the Samples section in the Hub in
the Studio Browser showing how you can embed a YouTube video in your remote form; the same app is available in the JavaScript
Component Gallery.

The JS Video control has the following properties:

Property Description

$dataname If $youtube=kFalse, this is a 2
columned list containing the location
and type of the videos to be played:
Column 1 is the URL of the video file;
Column 2 is the media types If
$youtube=kTrue, this is a list
containing the IDs of the YouTube
videos to be played; only Column 1 of
the list is used and contains the ID of
the YouTube video.

$showcontrols If true, the control displays video
controls such as the Play and Pause
buttons

$youtube If true, the control will play a movie
from youtube.com; column 1 of the
$dataname list is the YouTube video
id. If false, the control will use HTML5
video to play video files from URLs.

$startposition The time (in seconds) at which the
video should start when played.

$currentposition (Runtime only) The current time (in
seconds) of the current position in the
video. Assign to this to ‘seek’ to a
particular time.

$duration (Runtime only) The duration of the
current video (in seconds). Read-only
(in a client-exec method).

$poster A URL to an image to display before
the first frame of the video is ready.
HTML5 video only ($youtube=kFalse).

$playing Whether the video is currently
playing. Assign to this in order to play
or pause the video. Note that many
mobile devices prevent the playing of
videos if not in direct response to a
user action.

$volume The volume level of the video player
(0-100). Assigning 0 will mute the
player.

$playbackrate The video’s playback speed, with 1.0
being default speed. Youtube will
round down to the closest supported
rate of the particular video.

342

https://bit.ly/OmnisJSGallery

Property Description

$requestcaptions If true, closed captions will be turned
on (when available, attempting to use
the client’s language) for Youtube
videos. Note that even if disabled,
captions may be enabled through the
video controls, or through the user’s
account settings in Youtube (if they
are signed in).

Properties relating to the current video player ($currentposition, $duration, $volume) will return -1 if queried before a video is ‘ready’
(see evVideoReady).

YouTube

If you set the $youtube property to kTrue, the $dataname for the video control should be a list containing YouTube ids: the data in the
first columnof the first row in the list is used to reference the video on YouTube. Note the YouTube id is not the full URL on youtube.com,
but just the id on the end of the URL, e.g. ‘Ff-qlTlSkc0’.

Playlists

If the list assigned to a Youtube video control ($youtube = ktrue) has more than one line, a YouTube playlist will be created, using the
video IDs supplied in each line of the list. The videos in the playlist will be played successively.

If $showcontrols is true, the playlist can be accessed via the video controls in the UI. You could notationally skip to the next video by
skipping to the end of the current video. For example, using the client-executed method:

Calculate $cinst.$objs.youtubeVideo.$currentposition as $cinst.$objs.youtubeVideo.$duration

HTML5

If you set $youtube to kFalse, the $dataname should be a 2 column list. The first column should contain URLs to the video files, located
somewhere on the internet or the Omnis App Server, and the second column should state the media type. For example:

Do iList.$define('VideoURL','VideoType')
Do iList.$add('videos/myVideo.mp4','video/mp4')
Do iList.$add('videos/myVideo.ogv','video/ogg')
Do iList.$add('videos/myVideo.webm','video/webm')

Not all browsers are able to play all video file types, so you should provide the video in multiple formats and populate the list with the
URL to each file and type. When the client connects, the browser will play the first video file it is able to play from the list.

Events

The JS Video control has the following events:

• evVideoReady
Sent when the video is ready to be played, and can be interacted with.

• evVideoEnded
Sent when the video has finished playing (i.e. it has played to the end).

Both events receive a pVideoURL parameter, describing the currently playing video. For HTML5 videos ($youtube = kFalse), this will be
a URL to the video file. For Youtube videos ($youtube = kTrue), this will be the Youtube video ID. These should correspond to a value
in the list assigned to the control’s $dataname.

343

External Components

iCalendar

The iCalendar external component (or Calendar Control) allows you to load and manage calendar events: it is a non-visual External
Component that you can use in your Remote Forms (or window classes). iCalendar allows you to read, write andmodify objects based
on the standard iCalendar format, which is supported by many third-party calendar products.

The iCalendar model is based on four object types:

• Component: A group containing Properties which represent, for example, an event. Components can contain other Compo-
nents (sub-components).

• Property: Used to communicate information about a Component, such as a description or a location.

• Value: Properties have a value associated with them. For example, a DTSTART Property will have a date or datetime value.

• Parameter: Amodifier for a Property. Properties may have more than one Parameter (or none).

There are two types of objects in the Omnis iCalendar external component:

• Document: Represents the entire Document and its children.

• Component: Used to access and manipulate iCalendar Components and their associated Properties and Parameters.

Creating a Calendar Object

To access the iCalendar object and itsmethods, you need to create an instance variable in your remote form (or window class), choose
Object as its Type, under Subtypedropdown the Select object dialog, open the ‘iCalendarObjects’ group and select ‘Document’ object.

Working with iCalendar files

iCalendar Documents can be initialized with character data, or built up with the Omnis iCalendar methods.

To load an iCalendar file into a Document object, use FileOps to read in the character data. Then use $initwithdata() to initialise the
document.

Do FileOps.$getfilename(lPath,"Select ics file","*.ics")
Do lFileOps.$openfile(lPath,kTrue)
Do lFileOps.$readcharacter(kUniTypeUTF8,iCalText)
Do lFileOps.$closefile()
Do lDoc.$initwithdata(iCalText)

To output the character data, use $getdata() on the Document or a single Component. To save the data into a file, use FileOps.

Calculate lDocText as iNewDoc.$getdata()
Do FileOps.$putfilename(lPath,,"*.ics")
Do lFileOps.$createfile(lPath)
Do lFileOps.$openfile(lPath)
Do lFileOps.$writecharacter(kUniTypeUTF8,lDocText)
Do lFileOps.$closefile()

Updating sub-components

The functions $getcomponent() and $getsubcomponent() return a copy of a Component. Therefore, modifying the returned Com-
ponent will not affect the parent (the Component or Document that the method was called on). In order to update the parent,
Component copy will need to be saved back to the parent with $replacerootcomponent() or $replacesubcomponent().

344

Custom Properties

As well as the standard Property types, custom Properties can be added to Components. These must be prefixed with “X-”, e.g. “X-
PROPERTY”. By default, the data type of a customProperty is character. When adding aProperty to a Componentwith $addproperty(),
the optional iDataType Parameter can be used to override the default data type. Doing so will set the “VALUE” Parameter to the data
type associated with the constant. The data type cannot be changed after it has been created.

Custom Parameters

Like custom Properties, custom Parameters can be applied to Properties. Similarly, they must also have “X-” as a prefix.

Error Properties

When a Document is initialised with $initwithdata(), the character data is parsed. If there are any syntactic or semantic errors in the
data, such as a misspelt Property name or a Property without a value, an X-LIC- error Property will be inserted. For example, the
following error is caused by misspelling the ATTENDEE Property:

X-LIC-ERROR;X-LIC-ERRORTYPE=PROPERTY-PARSE-ERROR:Parse error in property name: ATENDEE

Special Values

These values contain multiple parts and are therefore represented as rows. The static $createrow() helper method can be used to
build these rows, which can be used to create a new Property or update a value.

Recur

The “RECUR” value type in the iCalendar model denotes a recurring event. It is commonly used with the “RRULE” Property. Its value
may contain several parts, separated by semicolons. The parts contain key value pairs separated by the equals sign. The example
shows a Recurrence Rule property.

RRULE:FREQ=MONTHLY;BYMONTHDAY=1;UNTIL=19980901T210000Z

AComponent’s $propertylist will store an RRULE Property as a rows containing columns relating to each keyword. To create an RRULE
Property with $addproperty(), the vValue parameter can take either a character or row argument. To create a recurrence type row, use
$createrow(kICalendarRowTypeRecur).

Duration

The “DURATION” value type is represented in a component’s $propertylist as a row. The columns are: IS_NEGATIVE, DAYS, WEEKS,
HOURS, MINUTES and SECONDS. To add a Property with a duration type, a row containing these column names can be used. The
column values are all Integers, with the exception of IS_NEGATIVE, which is a Boolean. Alternatively, a string can passed. For example,
P15DT5H0M20S denotes a duration of 15 days, 5 hours, and 20 seconds. See the RFC 5545 iCalendar specification for details on this
format (https://tools.ietf.org/html/rfc5545#section-3.3.6).

Period

“PERIOD” value types have two parts: The first is the start time (date time). The second can either be the end of the period (date time),
or a duration. Period is the default value type of the Free/Busy Property. In the $propertylist, period values are displayed as a row
containing a START date time and either a DURATION or an END date time.

19970101T180000Z/19970102T070000Z date time “/” date time (Explicit)

19970101T180000Z/PT5H30M date time “/” duration (Start)

Geo

“GEO” Properties hold geographic coordinates, represented as two floats separated by a semicolon. The values are latitude and longi-
tude respectively, e.g. 37.386013;-122.082932.

In the $propertylist of a Component, they are displayed as a row containing a LAT and a LONG column with float values.

Static Methods

$createcomponent()

OmnisICalendar.$createcomponent(iType)

Creates a new iCalendar Component object using one of the kICalendarComponent… constants. Returns an iCalendar component
object.

345

https://tools.ietf.org/html/rfc5545#section-3.3.6

• iType: A kICalendarComponent… constant to specify the Component type.

$createrow()

OmnisICalendar.$createrow(iType)

Returns a row which can be used to add or update certain Properties. iType can be one of the kICalendarRowType… constants.

• iType: A kICalendarRowType… constant to specify the type of row.

Document Object Methods

$initwithdata()

$initwithdata(cData)

Initializes the object with the Character contents of an iCalendar file. Returns true if successful.

• cData: The character data containing the contents of an iCalendar file.

$getdata()

$getdata() - no parameters

Returns character data representing the Document that can be saved as an iCalendar file.

$getcomponent()

$getcomponent(iComponentId)

Returns a copy of the root Component object with the specified ID.

• iComponentId: The ID of the root Component to find.

$addrootcomponent()

$addrootcomponent(oComponent)

Adds a Component to the root of the Document. Returns the ID of the new Component.

• oComponent: The Component to be added to the root.

$deleterootcomponent()

$deleterootcomponent(iComponentId)

Removes the Component with the specified ID from the root. Returns true if the Component was deleted.

• iComponentId: The ID of the Component to delete.

$replacerootcomponent()

$replacerootcomponent(iComponentId, oComponent)

Replaces the Component at the specified ID with oComponent. Returns true if successful.

• iComponentId: The ID of the Component to replace.

• oComponent: The new Component.

Document Object Properties

$componentlist

A list of root-level Component info for the Document. The columns for this list are: ID, Type and TypeName.

346

Component Object Methods

$getdata()

$getdata() - no parameters

Returns character data representing the Component and its children, that can be saved as an iCalendar file.

$isvalidcalendar()

$isvalidcalendar() - no parameters

Returns true if the VCALENDAR Component meets the RFC 5546 iCalendar specification standards.

$getsubcomponent()

$getsubcomponent(iComponentId)

Returns a copy of the sub-component object with the specified ID.

• iComponentId: The ID of the sub-component to find.

$addsubcomponent()

$addsubcomponent(oComponent)

Adds a sub-component to the Component. Returns the ID of the new Component.

• oComponent: The sub-component to be added to the Component.

$deletesubcomponent()

$deletesubcomponent(iComponentId)

Removes the sub-component with the specified ID from the component. Returns true if the sub-component was deleted.

• iComponentId: The ID of the Component to delete.

$replacesubcomponent()

$replacesubcomponent(iComponentId, oComponent)

Replaces the Component at the specified ID with oComponent. Returns true if successful.

• iComponentId: The ID of the Component to replace.

• oComponent: The new Component.

$addproperty()

$addproperty(cName, vValue, [wParameters, iDataType])

Adds a new Property to the Component. Returns the Property ID.

• cName: The name of the Property. Must be a valid Property type.

• vValue: The value to assign to the Property. The type can be Character, Integer, Date Time, Float, Boolean or Row.

• wParameters: A row of Parameters to add to the Property.

• iDataType: A kICalendarDataType… constant. Sets the ‘VALUE’ Parameter which overrides the default data type for the Property.
Can be used to specify the type of a custom Property.

$deleteproperty()

$deleteproperty(iPropertyId)

Delete the Property with the specified ID. Returns true if the Property was deleted.

347

• iPropertyId: The ID of the Property to delete.

$setparameter()

$setparameter(iPropertyId, cName, cValue)

Sets the Parameter of the Property. If there is an existing Parameter with the same name, it will be overwritten. Returns true if
successful.

• iPropertyId: The ID of the Property associated with the Parameter.

• cName: The name of the Parameter to set.

• cValue: The value to set the Parameter to.

$updateproperty()

$updateproperty(iPropertyId, vValue, [wParameters])

Updates the Property with the specified ID. Providing Parameters will overwrite any existing ones. Returns true if successful.

• iPropertyId: The ID of the Property to update.

• vValue: The new value to assign to the Property. The type can be Character, Integer, Date Time, Float, Boolean or Row.

• wParameters: A row of Parameters to add to the Property.

$deleteparameter()

$deleteparameter(iPropertyId, cName)

Removes the Parameter with the name cParamName from the Property. Returns true if the Parameter was deleted.

• iPropertyId: The ID of the Property associated with the Parameter.

• cName: The name of the Parameter to delete.

Component Object Properties

$componentlist

A list of sub-component info for the Component. The columns for this list are: ID, Type and TypeName.

$propertylist

A list of iCalendar Properties held by this Component. The columns for this list are: ID, PropertyName and PropertyValue. The Prop-
ertyValue column contains a row for each Property. Each row has a “_VALUE” column containing the Property value (the type of this
depends on the Property), and columns for any Parameters that the Property has.

$typename

The type name of the Component.

$typenumber

The type number of the Component.

348

Chapter 4—JSON Components

You can define your own remote form controls using JSON and JavaScript, and use them on JavaScript Remote forms in your web
andmobile applications. Using the same technique, you canwrap ready-made JavaScript components, available from any third-party,
opening up endless possibilities for new controls to use in your web and mobile apps.

Thismethod of creating JavaScript components provides an alternative to creating external components using C++ and our JavaScript
SDK, which is the currentmethod used for creating JavaScript external components. It alsomeans you only need to understand JSON
and JavaScript, together with our JavaScript interfaces on the client, in order to create and use JSON defined JavaScript controls,
either in your own web or mobile apps, or to provide to the wider Omnis community. There are a number of JSON components on
our GitHub site: https://github.com/OmnisStudio, for example, Omnis-Signature (for signing documents) and Omnis-FiveStars (star
rating component).

Having created a JSON defined component using the JSON Control Editor, the component will appear in the Component Store in the
JSON Components group. You can drag the component onto your JavaScript remote form and set its properties using the Property
Manager.

The design mode rendering of the JSON controls on a remote form is very basic, and does not reflect the actual control as it might
appear on a remote form at runtime, although this is not a problem for some controls that do not require a visual interface.

JSON Control Editor

A JSON control is defined in a JSON file, called a JSON Control Definition (JCD) file, which you can create or edit using any text or JSON
editor – if you are very familiar with JSON you may like to create the JCD using an editor. Alternatively, you can create the new JSON
controls (create a JCD file) using a tool available under the Tools>>Add Ons menu, called the JSON Control Editor.

Figure 218:

The JSON Control Editor contains a template control that has all the necessary properties to create a basic JSON control. The editor
allows you to set the properties for the control under each tab. To create a component, you edit the properties, click on Save, click on
Build to build the control, and then click on Reload to load the component into the Component Store (the Build and Reload options
will also prompt you to save if changes have been made). The New button removes any changes you have made to the default
template and allows you to start again. In order to setup the properties and methods for your control you will need to refer to the
JSON definitions later in this section.

Control Name

The name of the control must be unique, so you will need to change the Control Name in the editor (or just accept the default name
if you are testing the editor). The default control name is prefixed with ‘net.omnis’ to show the preferred naming convention, but you

349

/developers/resources/onlinedocs/JavaScriptSDK/01overview.html#javascript-component-sdk
/developers/resources/onlinedocs/JavaScriptSDK/01overview.html#javascript-component-sdk
https://github.com/OmnisStudio

should change this to your own company name, e.g. com.mycompany.mycontrol1, or use any appropriate naming convention. If you
do use a dot in the control name, Omnis converts it to underscore, since dots cause an issue with the Omnis notation.

Control Properties

The following tabs are available to set the properties of the control:

• Flags
allows you to set whether or not events are enabled, whether or not the control has a transparent background, whether or not
drag events are enabled, and so on

• Standard properties
an array of standard properties supported by the control, in addition to the basic properties such as name

• Properties
an object defining the control-specific properties of the control; the name of eachmember of the properties object is the name
of the control property, without the leading $, e.g. id, type, etc.

• Multivalue properties
allows you to set up a control to have multiple values for certain properties

• Constants
an object defining the constants for the control, e.g. value, desc, etc.

• Events
defines the events that the control generates (in addition to those specified by the flags member) and including the standard
events such as evClick; the name includes the “ev” prefix

• Methods
specifies the client-executed methods that the control provides; the method name includes the “$” prefix

• Html
specifies how the initial HTML sent to the client for the control is generated

The ‘Options’ item on the editor toolbar allows you to set custom JavaScript variable prefix for properties.

The Save option places the JSON control file in html/controls folder. The Build option places the JavaScript file for your control in the
html/scripts folder in your development tree. It also prompts you to include a reference to the JavaScript file for the control in the
jsctempl.htm file, which will ensure that the control is available for testing any remote forms that contain the new control. The Build
option adds update markers and lets you update the JavaScript file if the markers already exist.

When you have built a JSON control you need to restart Omnis for it to load. After restarting Omnis, the control will appear under the
JSON Components tab in the Component Store ready to use in your remote forms. When you deploy your app, you need to place the
JSON and JavaScript files in the corresponding folders in your Web Server tree, and check that they are referenced in the html page
containing your remote form.

You could open the ‘control.json’ file created in the JSON Control Editor when you build the control from the template: this file will
show you the typical structure of the JSON file required to define a new component.

Using Ready-made JS Components

When using ready-made JS components, that you have obtained from a third-party, you need to add the .js file(s) to the html/scripts
folder in the Omnis tree, and any other CSS and image files required for the control need to be put in the appropriate folder(s). Youwill
also need to add any properties, methods, and events in your JS control to the JSON definition file via the JSON Control Editor. There
is a tech note on the Omnis website that describes the process of using a ready-made JS component in Omnis:

• TNJC0009: Adding Ready-made JavaScript components to Omnis

You will also need to refer to the JavaScript Control Reference in the JavaScript Component SDK docs which you can find here.

• TNJC0015: You may like to read this Tech note about using a JSON Component to add Signature Capture to a Remote form

350

https://www.omnis.net/developers/resources/technotes/tnjc0009.jsp
/developers/resources/onlinedocs/JavaScriptSDK/01overview.html#javascript-component-sdk
https://www.omnis.net/developers/resources/technotes/tnjc0015.jsp

JSON Control Definition

This section describes the different properties that can be defined in the JCD file for the control and edited under the separate tabs
in the JSON Control Editor (or when editing separate members using a text editor).

There is a new folder in the Omnis tree, html/controls, which contains a sub-folder for each JSON control you have defined. The names
of these sub-folders are not critical, but it makes sense to use the same name as the control name.

The JSON Control Editor will create html/controls folder when you build your first control, otherwise if you are building your own
controls you will need to create this folder (note this is not to be confused with the ‘htmlcontrols’ folder that contains controls that
can be loaded in the oBrowser object).

There is a new external component named ‘jsControls’ in the jscomp folder, which handles all JSON defined controls. It loads and
validates the controls at startup. All controlswhichpass validation are loaded into thenewJSONComponentsgroup in theComponent
Store. If a control fails validation, jsControls opens the trace log, and adds a message to indicate there is a problem with the control.
The exact problem can be found in a file called control_errors.txt in the control’s folder.

Each control must have a unique name. This is defined in control.json (see below), and you should use a convention similar to Java
except that Omnis uses underscore rather than a dot, e.g. net_omnis_control1 could be the name of a control (using dots causes issues
in the Omnis notation).

JSON Control Object

Each JSON control folder must contain a file named control.json containing a JSON object defining the control; the JSON filemust
be called control.json. The members of this object are defined in the following sections.

The control folder should also contain an image file which is used for the control icon in the Component Store, and when rendering
the control on the remote form design window. This can be an SVG file (with the .svg extension) which can be themed. Alternatively,
you can use PNG files (with the .png extension), but in this case, you need to provide all possible sizes including 16x16, 16x16_2x, 48x48
and 48x48_2x.

name

The namemember is mandatory, and it specifies the name of the control; it becomes the external component control name. It is also
used to create the JavaScript control class name, as ctrl_<name>. For example:

"name": "net_omnis_control1"

In this case the JavaScript control class would be ctrl_net_omnis_control1.

flags

The flags member is mandatory. It is an object that allows certain features of the control to be configured. Each member of flags is
optional, and defaults to false if it is omitted. Valid members are:

• beforeafterevents and beforeevents (are mutually exclusive)
indicate if the control supports either evAfter andevBefore, or just evBefore respectively. If both areomitted, the control supports
neither event (see also the events member)

• backcolorandalpha
indicates if the control has backcolor and backalpha properties.

• noenabled
indicates if the control does not have the enabled property.

• transparentbackground
indicates that the control has a transparent background, and does not have backcolor and backalpha properties. Must not be
used with backcolorandalpha set to true.

• hasdefaultborder
indicates if $effect for the control can have the value kJSborderDefault.

351

• hasdisplayformat
indicates if the control has date and number format properties.

• hasdragevents
indicates if the control has drag events (see also the events member).

• uselegacycolors
a Boolean, it is automatically set to True when loading existing JSON controls so the existing colors are used. The flag defaults
to False for all new controls which means they can use theme colors

For example:

"flags": {
"beforeafterevents": true,
"backcolorandalpha": true,
"noenabled": true,
"hasdefaultborder": false,
"hasdisplayformat": true,
"hasdragevents": true

},

standardproperties

The standardproperties member is optional. It is an array of standard properties supported by the control; inclusion in the standard-
properties member means the control will have the property. These are over and above the basic properties that apply to all controls
e.g. active, name, etc.

Valid members of the standardproperties array are: “dataname”, “effect”, “bordercolor”, “borderradius”, “linestyle”, “font”, “textcolor”,
“align”, “fontstyle”, “fontsize”, “horzscroll”, “vertscroll”, “autoscroll”, “dragmode”.

For example:

"standardproperties": [
"dataname",
"effect",
"bordercolor",
"borderradius",
"linestyle",

],

properties

The properties member is mandatory. It is an object defining the control-specific properties of the control. Each member of the
properties object is itself an object that contains members that describe the property. The name of each member of the properties
object is the name of the control property, without the leading $. Valid members of each property object are:

• id
The identifier of the property. A positive integer. This is mandatory, and it is a critical field in that Omnis stores this value in the
copy of the object saved in the class, in order to identify the property. This means youmust not change id values after you start
to use the control on a remote form. id must be unique for all properties for the control. When jsControls loads the control, it
will validate property id uniqueness. It usually makes sense to start numbering your properties at 1.

• desc
The description of the property. A character string. This ismandatory, and is used by the IDE, for example, as the property tooltip
in the Property Manager. Double quote and backslash characters are escaped when saving desc items

• tab
An optional member. A character string that identifies the Property Manager tab to be used for the property. Defaults to the
Custom tab if omitted. Otherwise, it must have one of the following values: custom, general, data, appearance, action, prefs,
text, pane, sections, java or column.

352

• type
A mandatory member. A character string that identifies the type of the property. This can be one of the basic types (number,
integer, character, boolean or list) or a specific type (color, dataname, font, icon, pattern, fontstyle, linestyle, multiline, set, or
remotemenu).

• runtimeonly
An optionalmember. A booleanwhich is true to indicate that the property is a runtime only property. Defaults to false if omitted.

• findandreplace
An optional member. A boolean which is true to indicate that the property is searched by find and replace. Defaults to false if
omitted.

• extconstant or intconstant
Optional members. A boolean which is true to indicate that the property is constrained to a range of constants defined by this
control (extconstant), or by the Omnis core (intconstant). They are shown in the Property Manager. They can be used for both
integer type properties, and set type properties; in the latter case, the first member of the range must be a constant that has
the value zero, and represents the empty set. You must define either extconstant or intconstant, so they cannot both be set to
true.

• constrangestart and constrangeend
Thesemembersmust be present if either extconstant or intconstant is true. In the case of intconstant, they are integer constant
idents that specify the range of constants - you can see the idents for core constants in the $constants group in the notation
inspector. In the case of extconstant, these are the names of constants defined by this control; the members of the range are
the constants starting with constrangestart, and ending with constrangeend, in the order they occur in control.json. Note that
whenusedwith a set, the constant values need to correspond to the bitmask used to represent the set. If intconstant is selected,
a constant name such as kPlain entered into constrangestart or constrangeend is converted to its ident value.

• min andmax
These members are optional, and only apply when the type is integer. They specify minimum and maximum values for the
property.

• initial
This member is optional. It can be used to specify an initial value for the property. For number types, it can be a floating point
number. For character types, it is a character string: double quote and backslash characters are escaped when saving. For
integer types, it is an integer. For boolean types it is a Boolean: values of ‘true’ or ‘kTrue’ are overridden with 1. The initial value
is used, for example, when dragging a new copy of the control out of the Component Store (provided that a copy of the control
is not already stored in the Component Store).

• editreadonly
An optional member. A boolean which is true to indicate that the property is a read-only property. Defaults to false if omitted.

For example:

"properties": {
"headercolor": {

"id": 1,
"desc": "The header color of the control",
"type": "color",
"tab": “appearance”,
"initial": 255

},
"headericon": {

"id": 2,
"desc": "The header icon of the control",
"popuptype": "icon",
"tab": "appearance"

},
"rangeofexternalconstants": {

"id": 3,
"desc": "Range of external constants",
"type": "integer",
"extconstant": true,

353

"constrangestart": "kNetOmnisControl1Range1",
"constrangeend": "kNetOmnisControl1Range3",

}
}

multivalueproperties

The multivalueproperties member is optional. It allows you to set up a control to have multiple values for certain properties. It is an
object with members as follows:

• itemlistproperty
This is mandatory. When a control supports properties with multiple values, the properties are stored in a list. Each row of the
list contains the set of properties for a particular tab or column. We call the tab or column (or something else) an item. This
property must have type list, and it is automatically hidden from the property manager.

• itemcountproperty
This ismandatory. It is the nameof an integer property defined by the propertiesmember, that can be set to specify the number
of items in the item list. You can specify a max value for this property in order to restrict the number of items, otherwise it is
restricted to no more than 256 items.

• currentitemproperty
This is mandatory. It is the name of an integer property defined by the properties member, that identifies the current item
displayed in the property manager, and to which property changes apply to multi-value properties.

• moveitemproperty
This ismandatory. It is the name of an integer property defined by the propertiesmember, that can be used tomove the current
item to a new position in the item list.

• properties
This is mandatory. It is an object that specifies the properties that have multiple values, and where they are stored in the list.
Each member must be the name of a property in the main properties object; the value of each member is the list column in
the item list where the property value is stored. It is important not to change the column number once you have started using
the control.

For example:

"multivalueproperties": {
"currentitemproperty": "curitem",
"itemlistproperty": "itemlist",
"moveitemproperty": "move",
"itemcountproperty": "itemcount",
"properties": {

"mvprop1": 1,
"mvprop2": 2
}

}
}

constants

The constants member is mandatory. It is an object defining the constants for the control. Each member of the constants object is
itself an object that contains members that describe the constant. The name of eachmember of the constants object is the name of
the constant. Valid members of each constant object are:

• value
The value of the constant. An integer. This is a mandatory member.

• desc
The description of the constant. A character string. This is mandatory, and is used by the IDE for example as the tooltip in the
catalog.

354

• group
The catalog group to which the constant belongs. This is optional. By default, all constants defined for the control belong to the
group “RF:jsControls-<control name>”. You can use thismember to replace the control namewith something else. All constants
occurring after the constant with the group specified belong to this group, until a new group is specified (if any).

For example:

"constants": {
"kNetOmnisControlHeaderColor": {

"value": 123,
"desc": "The description of this constant"

},
"kNetOmnisControl1Range1": {

"value": 3,
"desc": "Range constant 1”,

“group": “Ranges"
},
"kNetOmnisControl1Range2": {

"value": 5,
"desc": "Range constant 2"

}
}

events

The events member is optional. It specifies the events that the control generates (in addition to those specified by the flags member,
i.e. before, after, and drag events). Each member of the events object identifies an event. The name of each member is the name of
the event, including the “ev” prefix. Certain standard events can be specified: evClick, evDoubleClick, evTabSelected, evCellChanges,
evHeaderClick and evHeadedListDisplayOrderChanged. Valid members of each event object are:

• id
Must not be specified for standard events. Otherwise, this is mandatory, and is the positive integer id of the event. This id must
match the event id you use in the JavaScript implementation of the control, and must be unique within the context of this
control.

• desc
Must not be specified for standard events. Otherwise, this is mandatory, and is a text string describing the event.

• parameters
The event parameters of the event. This is an array. Each array member is an object with members as follows:
name
This member is mandatory. The parameter name. Do not include the p character prefix - Omnis will add this. Note that if you
use re-use an event parameter name, then the remaining members of this object are ignored, and overridden by the original
definition of the parameter - the first control (or Omnis core) using a name sets the type and description of that parameter.
type
This member is mandatory. The data type of the parameter. integer, character, boolean or list.
desc
This member is mandatory. A text string describing the parameter.

For example:

"events": {
"evNetOmnisControlOpened": {

"id": 1,
"desc": "The event sent when the control opens",
"parameters": [

{
"name": "name",
"type": "character",

355

"desc": "The name event parameter"
},
{

"name": "name2",
"type": "integer",
"desc": "The second event parameter"

}
]

},
"evClick": {

"parameters": [
{

"name": "zname1",
"type": "character",
"desc": "The zname1 event parameter"

},
{

"name": "zname2",
"type": "integer",
"desc": "The zname2 event parameter"

},
{

"name": "horzcell",
"type": "character",
"desc": "the horz cell event parameter"

}
]

}

methods

The methods member is optional. It specifies the client-executed methods that the control provides. Each member of the methods
object identifies a method. The name of each member is the name of the method, including the “$” prefix. Valid members of each
method object are:

• id
This is mandatory, and is the positive integer id of the method. It must be unique within the context of this control. It is used
internally by the Omnis core.

• desc
This is mandatory, and is a text string describing the method.

• type
This is mandatory. The return type of the method. integer, boolean, character or list.

• parameters
This member is optional. It is an array describing the parameters of themethod. Eachmember of the array is an object with the
following members:
name
This is mandatory. The name of the parameter. Omnis will insert a data type character at the start of this name.
desc
This is mandatory. A text string describing the parameter.
type
This is mandatory. The data type of the parameter. integer, boolean, character or list.
altered
Optional. A boolean, default false. If true, the parameter is marked as one that will be altered.
optional
Optional. A boolean, default false. If true, the parameter is marked as optional.

For example:

356

"methods": {
"$mymethod1": {

"id": 1,
"desc": "This is my method",
"type": "integer",
"parameters": [

{
"name": "p1",
"type": "character",
"altered": true,
"desc": "The parameter p1"

},
{

"name": "p2",
"type": "integer",
"desc": "The parameter p2",
"optional":true

}
]

}
}

html

The html member is mandatory. It specifies how the initial HTML sent to the client for the control is generated. It is an object with
members as follows:

• template
Mandatory. A character string that is a template for the inner div of the control. For example: <div %o %s data-props=‘%p’ data-
mvprops=‘%m’></div>:
jsControls replaces %o with the JavaScript client attributes for the client element, which includes the id attribute of the client
element: this element must be specified.
jsControls replaces%swith the style attribute for the div, based on the normal Omnis processing and the properties the control
supports.
jsControls replaces %p with the control properties that are not multi-value. %p is replaced with a JSON string, representing an
object, where eachmember of the object is named by the property name, with value of the property value. The valuemay have
been mapped by Omnis to what the client will require, for certain property types such as color and icon. The client JavaScript
can use this string to create an object containing its property settings.
jsControls replaces%mwith themulti-value control properties. %mshouldbeomitted if the control doesnotuse suchproperties.
%m is replaced with a JSON string, similar to %p, except that it is an array of objects, with an array entry for each multi-value
item.

• extrastyles
Optional. A string of length up to 255 characters of extra style attributes to include in the style attribute replacing %s in the
template, e.g. “margin:2px”.

• padding
Optional. An integer used to set padding (in pixels) in the style attribute replacing %s.

• relativeposition
Optional. Boolean, default false. If true, the style attribute replacing %s includes position relative rather than absolute.

• nowrap
Optional. Boolean, default false. If true, the style attribute replacing %s includes white-space nowrap.

For example:

"html": {
"template": "<div %o %s data-props='%p' data-mvprops='%m'></div>",
"extrastyles":"margin:1px;"

}

357

The resulting inner div for the control looks like this:

<div style='position:absolute; top:0px; left:0px; height:106px; width:88px; font- family:'Times New Roman',Georgia,Serif; font-size:12pt;font-weight:bold; font- style:italic;text-align:right;color:#00FFFF; overflow-x:auto; overflow-y:auto;margin:1px;'data-backgroundcolor='#555555; rgba(85,85,85,1.0000)' data-dragmode='1' data- effect='1' data-linestyle='1' data-bordercolor='16711935' data-props='{"headercolor":"#FF0000","headericon":"icons/datafile/omnispic/001663n16.png? 46", "rangeofinternalconstants":14, "rangeofexternalconstants":5, "headerpattern": 1, "headerfontstyle":4, "headerlinestyle":7, "headermultiline":"Lots of text entered like this\rwith multiple\rlines\r", "headerset": 13, "headerremotemenu":"NewRemoteMenu", "headerfont":"Courier New,Monospace"}' data- mvprops='[{"mvprop1":1,"mvprop2":false,"mvprop3":""}, {"mvprop1": 2,"mvprop2":true, "mvprop3":"NewRemoteMenu"}, {"mvprop1": 2,"mvprop2":true,"mvprop3":"aaaa"}]'></div>

Note that it is important to use single quotes around the attributes in the template, since JSON includes double quotes. jsControls
escapes any single quotes in the JSON it inserts into the place-holders as \u0027.

customtabname

The customtabnamemember is optional. If specified, it is the name of the customproperties tab for the control shown in the Property
Manager.

JavaScript

When you have created a JSON control and added it to your Omnis tree, you can add the supporting JavaScript file to the remote
form template in the HTML folder (the JSON Control Editor will do this automatically). To do this, you can add:

<script type="text/javascript" src="scripts/ctl_net_omnis_mycontrol.js"></script>

to the scripts section of the jsctempl.htm file (in the html folder) so the control is always included in the test HTML page for your
remote form; it also needs to be included in the HTML page serving your deployed web or mobile app.

Chapter 5—Ultra-thin Omnis

In addition to accessing the Omnis App Server via the JavaScript Client, Omnis Studio lets you interact with a Remote Task in your
Omnis application using standard HTML forms. This approach is often referred to as “Ultra-thin Omnis” since the client’s browser uses
standard GET and POST methods without any other client access layers.

In the Ultra-thin Omnis environment, the HTML form sends parameters and data directly to the Omnis App Server via the Omnis web
server plug-in located in the cgi-bin or scripts folder. When the ‘Submit’ button in your HTML form is pressed, the Omnis web server
plug-in is executed and passed all the form’s parameters. The Omnis web server plug-in sends the request to the Omnis App Server,
which creates an instance of the specified Remote Task Class and calls its $construct method.

HTML Forms and Remote Tasks

The parameters required in the GET request in your HTML form contain the necessary criteria for interacting with the Omnis Remote
Task in the Omnis library running on the Omnis App Server. Your HTML contains the location of the web server plug-in, the port
number, the remote task name, the Omnis library name, as well as the specification for the fields in the form. For example, the
following constructs a form with the GET method:

<form method="GET" action="/cgi-bin/omnisapi.dll">
<input type="hidden" name="OmnisServer" value="PortNumber">
<input type="hidden" name="OmnisClass" value="RemoteTaskName">
<input type="hidden" name="OmnisLibrary" value="LibraryName">
<p><input type="password" name="pPassword" size="20"></p>
<p><input type="text" name="pQuery" size="80"></p>
<p><input type="submit" value="Submit" name="B1">
<input type="reset" value="Reset" name="B2"></p>

</form>

The form has the special parameters:

358

• OmnisServer
specifies the port number or service name of the Omnis App Server, that is, the value specified in the $serverport preference (in
the range 1-65535) in the Omnis App Server.

• OmnisClass
the name of the remote task class to which this form is to connect (not a remote form as is the case with JavaScript Client based
applications).

3. OmnisLibrary
the internal name of the library containing the remote task class on the Omnis App Server; the default is the library file name
minus the .lbs extension

The following example HTML source code implements a feedback form. The Omnis specific parameters are marked in bold; the
remainder of the source specifies the form fields and text labels in the form, including a standard Submit button.

<form method="GET" action="/cgi-bin/omnisapi.dll">
<input type="hidden" name="OmnisClass" value="tFeedback"> ;; the remote task name
<input type="hidden" name="OmnisLibrary" value="FeedbackApp"> ;; the library name
<input type="hidden" name="OmnisServer" value="5912"> ;; the port number
<table border="0" cellspacing="0" cellpadding="0" width="760">

<tr>
<td width="788" valign="top"><div align="right">
<p>Developer Name:</p></div></td>

<td width="564" height="25">
<input type="text" name="Name" size="27"></td>

</tr>
<tr>
<td width="788"><div align="right">
<p>Serial No:</p></div></td>

<td width="564" height="25">
<input type="text" name="Serial" size="27"></td>

</tr>
<tr>
<td width="788" valign="top">
<div align="right">
<p>Platform:</td>

<td width="564" height="23"><table border="0" cellspacing="0" cellpadding="0" width="520">
<tr>

<td width="135">
<input type="checkbox" name="Macintosh" value="YES"> Macintosh</td>
<td width="385">
<input type="checkbox" name="Windows" value="YES">Windows</td>

</tr>
</table>

</td>
</tr>
<tr>
<td width="788" valign="top">

<div align="right"><p>Client:</td>
<td width="564" height="23">

<table border="0" cellspacing="0" cellpadding="0" width="601">
<tr>
<td width="136" height="13"> <input type="checkbox" name="ActiveX" value="YES"> ActiveX </td>
<td width="135" height="13"><input type="checkbox" name="Netscape" value="YES">Netscape </td>
<td width="330" height="13"> <input type="checkbox" name="RAWHTML" value="YES">RawHTML</td>

</tr>
</table>

</td>
</tr>
<tr>

359

<td width="788" valign="top"> <div align="right"> <p>Comments:</td>
<td width="564" height="249" valign="top"> <textarea rows="11" name="Comments"

cols="57"></textarea></td>
</tr>
</table>
<div align="center"><center><p>
<input type="submit" value="Send Comments" name="B1"></p> </center></div>

</form>

In the above example, the HTML form uses the “GET” method. You can also use the “POST” method. The main difference lies in how
the data is transmitted to the server, and this is reflected in cases where the URL generated by the form is displayed in the location
bar of the user’s browser. A “GET” method is equivalent to requesting the URL

/cgi-bin/omnisapi.dll?OmnisClass=…&OmnisLibrary=…&…

whereas a “POST” method is equivalent to posting to the URL

/cgi-bin/omnisapi.dll

and sending content which specifies the parameters. If the URL is being displayed in the location bar, youmight choose to use “POST”
in order to hide the parameters from the user.

Secure Sockets

You can use secure sockets (HTTPS) if you have installed an SSL certificate on your web server. Omnis will use a secure connection to
connect the client to the web server if you prefix the location of your HTML forms with “https://”. In addition, remote tasks have the
$issecure property that lets you turn securemode on and off dynamically, by assigning to the property for the current task at runtime.

Using Task Methods to Process Requests

Omnis passes a single parameter to the $construct() method of a remote task instance created by a request from an HTML form. This
parameter called pParams is a row variable, and it has a column for each parameter in the HTML form.

The code contained in the $construct() method of your remote task could literally do anything you like and depends on the function-
ality of your application. Having passed in the row variable to your $construct() method you can use any type of Omnis programming
to process the information submitted by the user and pass back whatever content or data you wish. Typically and withmost complex
web applications your library will contain many different methods that can be called from your remote tasks, most of which could
be located in object classes to allow reuse of your code. See the Omnis Programmingmanual for information about programming
Omnis methods and using object classes.

The column names in the row variable are the same as the form parameter names, and the values are either the values of the param-
eters in the form (e.g. hidden fields may have default values), or the values entered by the user. You can use the columns values in the
pParams row variable (i.e. values in the form parameters) as input to what you do in $construct().

The following $construct()method is contained in a remote task that handles Studio evaluation download form requests. Themethod
contains a parameter variable called pParams of Row type that receives the values from the form. The row variable contains a col-
umn for each field in the form, including the fields Email, Country, Platform, and so on, that are referenced using the syntax pPa-
rams.Colname. Themethod also contains several calls tomethods in object classes within the library handling the download requests.
After registering the customer, the method sends the customer an email and redirects their browser to the appropriate download
page.

$construct() for processing download requests
If len(pParams.Code)
Do iObj.$getMagazine(pParams.Code,lMagazineRow) Returns lCodeFound

get magazine data (esp. name and serial number)
Else
Calculate lCodeFound as kTrue

default to true for straight downloads
End If
If not(lCodeFound) ;; invalid magazine code
Do inherited
If not(len(pParams.Folder)>0)

360

Do method createFolderName Returns lFolder
; identify the folder name for this user

Else
Calculate lFolder as pParams.Folder

End If
Do iHTMLObj.$setFolder(lFolder)
set the folder name for this instance of the html page
Do iHTMLObj.$setUrl(iUrl)
Do iHTMLObj.$createRegisterError(pParams,lFolder)

Else
Do iObj.$getDownloadCustID(pParams.Email,lCustID)
see if this is an existing download customer
Do lAdminObj.$getDistID(pParams.Country) Returns lDistID
If not(lCustID)

Do iSequence.$getNext('ECS_DownloadCustomers') Returns lNextSeq
get the next sequence number
Do iObj.$createDownloadCustRecord(lNextSeq,pParams,lDistID)
Calculate lCustID as lNextSeq

Else
Do iObj.$getDownloadCustData(lCustID,lCustRow)
get their data
Calculate lCustRow.DistID as lDistID
if the user has changed country their DistID may
also have changed, so update it anyway
Do iObj.$updateDownloadCustData(pParams,lCustRow)
update their account data

End If
Do iObj.$getPlatformID(pParams.Platform,lPlatformID)
get the platform
Do iSequence.$getNext('ECS_Downloads') Returns lNextSeq
get the next sequence number
Do iObj.$createDownloadRecord(lNextSeq,lCustID,lPlatformID,,,,pParams.Code, pParams.ProductID,pParams.HowDidYouHear)
If len(pParams.Code)
if they have entered a magazine code, they need an
email with a serial number
send user email with the appropriate serial number
Do iEmailObj.$sendEmail(2,lCustID,lMagazineRow.SerialNumber,,kTrue)
4th parm is blank, 5th parm for using downloadcustomer table
Calculate lUrl as 'http://www.omnis.net'

Else
Do iEmailObj.$sendEmail(1,lCustID,,,kTrue)
3rd & 4th parm are blank; 5th parm is for using
downloadcustomer table
Switch pParams.Platform
Case 'Win95'

Calculate lUrl as iWin95download
Break to end of switch

Case 'WinNT'
Calculate lUrl as iWinNTdownload
Break to end of switch

Case 'Ppc'
Calculate lUrl as iPpcdownload
Break to end of switch

Case 'Linux'
Calculate lUrl as iLinuxdownload
Break to end of switch

Case 'OSX'
Calculate lUrl as iMacosxdownload
Break to end of switch

Default

361

Calculate lUrl as iWin95download
Break to end of switch

End Switch
End If
End If
If not(lCodeFound)
Do $itasks.DOWNLOAD.$getUnsecuredUrl(lServerUrl)
get the server path
Calculate lUrl as con(lServerUrl,sys(9),'downloadhtml',sys(9),lFolder,sys(9),iUrl,'.htm')

End If

Quit method lUrl ;; return the path to the approp download

The final command in the $construct() method is the Quit method <url> which returns an URL to the client’s browser. See the next
section for further details.

Returning Content to the Client

After completing its processing, $construct() returns its results as the return value of the method, using the Quit method command.
There are three possible types of return from such a remote task instance: <url>, <data>, and <error>.

Quit method <url>

$construct() can generate a file (typically HTML), and any files it references, and then return the URL of that file. For example, it can
use the HTML report destination, and print a report to HTML.

You return the <url> in one of two forms.

• If you prefix it with http:// or https://, the user’s browser will be redirected to the specified URL. For example,

Quit method "http://www.myhost.com/myfile.html"

• If you do not prefix the URL as above, the user’s browser will be redirected to the URL http://<web server address><url>. For
example, if your web server is www.myhost.com

Quit method "/omnishtml/00000001/myfile.html"

will result in the browser being redirected to

http://www.myhost.com/omnishtml/00000001/myfile.html

If you do generate dynamic HTML files, perhaps by printing reports to HTML, you can use the oDirClean object to periodically check
for expired files, and delete them. The HTML report task wizard contains an example of how to do this. You should also note that if
you are generating new output for each request, you need to use a different file name or folder for each request. The oDirClean object
provides a mechanism which allows this.

Quit method <data>

$construct() can generate content directly in memory, and return that content to the user. The content can be of any content type
supported by a browser, typically HTML, or perhaps a JPEG image. You build the content in either an Omnis character or binary
variable. The content must start with the text “content-type:” to differentiates the data from a <url> or <error> (the other possible
returns from $construct). The syntax of the data in the variable is:

• HTTPheaders startingwith “content-type:” and separatedby carriage return-linefeedpairs. Theremust also be a content-length
header.

• An empty line terminated by a carriage return-linefeed pair.

362

• The content, for example HTML or JPEG data, the length of which must match that specified by the content-length header.

For example:

Begin text block
Text: Content-type: text/html (Carriage return,Linefeed)
Text: Content-len 12 (Carriage return,Linefeed)
Text: (Carriage return,Linefeed)
Text: Some con
End text block
Get text block iReturn

Quit method iReturn

returns the 12 character string “Some content” to the browser.

If you want to return binary content, you can build up the HTTP headers in a character variable, and then use the bytecon() function to
combine the character variable and the binary content, storing the result in a binary variable. You can return the result as the return
value of Quit method.

In addition to the content type and length headers, you can specify other HTTP headers if you wish. However, note that Omnis will
automatically generate Expires: and Pragma: no-cache headers, so you should not generate these.

The following extract of code is an HTML based storefront that presents with many different HTML forms for logging in, choosing
products, and so on, and heavily uses remote tasks to process user requests and compose HTML on-the-fly to display in the client’s
browser.

$create_rtOrder1 method for composing the store login screen
do some preparation...
Begin text block
Text: <html> (Platform newline)
Text: (Platform newline)
Text: <head> (Platform newline)
Text: <title>Omnis Store - Login</title> (Platform newline)
Do method getCSSHeader
Do method getJSHelpHeader
Do method getHeader (kTrue) ;; kTrue - wide table
Text: <td width="262" >Login to the Omnis Store</td> (Platform newline)
Text: <td width="220"></td> (Platform newline)
Text: </tr> (Platform newline)
Text: <tr> (Platform newline)
Text: <td width="500" colspan="3"> (Platform newline)
Text: The Omnis Store lets you purchase the Omnis Studio rapid application (Platform newline)
Text: development environment. Ordering is easy, just follow the step by step process.</td> (Platform newline)
Text: </tr> (Platform newline)
Text: <tr> (Platform newline)
Text: <td width="500" colspan="3"> </td> (Platform newline)
Text: </tr> (Platform newline)
Text: <tr> (Platform newline)
Text: <td width="500" colspan="3"><table border="0" width="100%" cellspacing="0" cellpadding="0"> (Platform newline)
Text: <tr> (Platform newline)
Text: <td width="500" colspan="3"><form method="Get" action="[iOmnisDll]"> (Platform newline)
Text: <input type="hidden" nam="OmnisLibrary" value="[iLibName]"> (Platform newline)
Text: <input type="hidden" nam="OmnisClass" value="rtNewCustomer"> (Platform newline)
Text: <input type="hidden" nam="OmnisServer" value="[iServerPort]"> (Platform newline)
Text: <input type="hidden" nam="IEBrowser" value="[pParams.IEBrowser]"> (Platform newline)
store browser type
Text: <input type="hidden" nam="Folder" value="[pParams.Folder]"> (Platform newline)
Text: <input type="hidden" nam="BasketID" value="[pParams.BasketID]"> (Platform newline)
store basket id if there is one
Text: <input type="hidden" nam="AcctsCountry" value="[pParams.AcctsCountry]"> (Platform newline)

363

so we know the accounts country
Text: <input type="hidden" nam="InitialCountry" value="[pParams.InitialCountry]"> (Platform newline)
so we know the initla country
Text: <input type="hidden" nam="SessionID" value="[pParams.SessionID]"> (Platform newline)
so we know the session
Text: <table border="0" width="100%" cellspacing="0" cellpadding="0" bordercolor="#FFFFFF"> (Platform newline)
Text: <tr><td width="50%"> (Platform newline)
Text: New Customers
 (Platform newline)
Text: Click here to create a new account:
 (Platform newline)
Text: <input type=image src="../../images/buttons/newaccount/new1.gif" width="135" border="0" height="39" nam="NewAccount" (Platform newline)
Text: onmouseout="MM_swapImgRestore()" onmouseover="MM_swapImage('NewAccount','','../../images/buttons/newaccount/new2.gif',1)"> (Platform newline)
Text: </td></tr></table> (Platform newline)
Text: </form> (Platform newline)
etc etc etc...

The above code gives you some idea of how you can use the Text: command to build up complete HTML files and pass them back to
the client. Note you can use Omnis variables enclosed in square brackets to fill in parameter values for form objects, such as:

<input type="hidden" name="OmnisServer" value="[iServerPort]">

Quit method <error>

$construct() can return an error to the browser. To do this, you use Quit method ‘nnn The Error message’, where nnn is a three digit
error code followed by a single space before the error text.

Turning off the pragma:nocache header

The “x-omnis-ctrl:” control header can be returned at the start of the content to allow you to turn off the pragma:nocache header.

When returning content, it can either start with “content-type:” or “x-omnis-ctrl:”. If x-omnis-ctrl: is present, it must be at the start
of the content, to have any effect. To prevent the Omnis web server plug-in from generating the pragma:nocache header, start the
content with:

x-omnis-ctrl:nopragma<cr><lf>

The letters can be in any case, but there must be no white space.

Cookie and Referer Headers

When a request arrives at the web server from an HTML form, there are some HTTP headers sent from the client that may be of
interest to the remote task instance. These include “Cookie:” and “Referer”. (Note that a discussion of how the various HTTP headers
work is beyond the scope of this document; there are many good sources of information on the Web). You can gain access to these
parameters using the following mechanism.

In your HTML form, include an empty parameter with the nameHTTP_<normalized header name>, where <normalized header name>
is the header name in upper case with any – (hyphen) characters changed to _ (underscore), for example, HTTP_COOKIE. This is an
instruction to the Omnis web server plug-in, telling it to insert the value of the corresponding HTTP header into the form parameter.
This means that when $construct() runs, there is a column HTTP_<header name> in the row variable parameter, and its value is the
value of the HTTP header. Note that the header value can be empty if it is either not present, or not available to the Omnis web server
plug-in.

Persistent Remote Tasks

Normally, the remote task instance created to process anHTML formdestructs, as soon as Omnis has called $construct(), and received
the result to return to the user. It is possible that youmaywant to keep the remote task instance available, so that it can receive further
requests. This mechanism is explained here. You should note:

• This mechanism does not work in conjunction with Load Sharing (Load Sharing is described in a later chapter).

364

• This mechanism does not detect use of the ‘back’ button on the browser, meaning that remote task instances can build up;
these only go away when they time-out.

Each time Omnis receives a request from an HTML form, its default behavior is to destruct the remote task instance after returning
the result. You can prevent this behavior, by implementing the $canclose method for the remote task instance, and returning kFalse
if the task is to stay open. The remote task instance has a property $connectionid, which identifies the particular Omnis web client
connection. The data you return to the user must contain $connectionid, so that the next request to the Omnis App Server addresses
the remote task instance. Typically, you return a new HTML form to the user. This must contain a parameter “ConnectionID” which
contains the value of $connectionid.

evPost events

WhenanHTML form request arrives at theOmnis AppServer, Omnis looks for theConnectionIDparameter. If there is none, processing
proceeds in the usual manner, calling $construct() for a new remote task instance. If there is a ConnectionID parameter, Omnis tries
to locate the existing remote task instance. If it is no longer present, Omnis returns an error to the user. Otherwise, Omnis sends an
evPost event to the $event() method of the remote task instance.

evPost works in exactly the same way as $construct(). In other words, there is a parameter which is a row variable containing the
HTML form parameters, HTTP header processing occurs for the parameters, and the result is one of the three alternatives allowed
for the result of $construct(). The only difference is that the parameters and return value are handled using event parameters. Event
parameter pPostData is a rowvariable containing the formparameters from the client, and youuse the field reference event parameter
pPostResult to return the result to the client.

After each call to evPost, Omnis calls $canclose, to see if the remote task instance can now be closed.

Multipart Form Data

You can pass data and upload files from HTML forms to the Omnis App Server, using the Multipart form data type. The content type
“multipart/form-data” can be used for submitting forms that contain files, non-ASCII data, and binary data files.

To use multipart form data, add the following attribute to the form tag:

enctype=”multipart/form-data”

and use the file=“type” attribute to identify files to be uploaded. For example:

<FORM method="POST" action="/omnis_apache" enctype="multipart/form-data" accept-charset="utf-8">
<input type="hidden" name="OmnisServer" value="3012">
<input type="hidden" name="OmnisLibrary" value="LIB">
<input type="hidden" name="OmnisClass" value="rt">
<input type="text" name="test">
<input type="file" filename="myfilename" name="fileparam">
<input type="submit" value="Send">

</FORM>

Note that the “get” method restricts form data set values to ASCII characters. Only the “post” method (with enctype=“multipart/form-
data”) will cover the entire character set.

The form parameters are passed to the remote task using a row variable. Parameters without the filename attribute behave as in
previous versions, that is, their contents is passed to the row variable. Parameters with the filename attribute are passed to the remote
task via a column in the row variable, called MultiPartFileList. This column is a list, with a row for each filename parameter. The list has
seven columns:

Column Description

ParamName the name of the filename parameter
ReceivedFileName the pathname of the file as it was specified on the client machine
DataLength the length of the file data in bytes
IsText if the length of the file is less than or equal to 16384 bytes, the data

is in one of the following two cols, depending on the value of IsText
CharData if IsText is kTrue, this contains the character data read from the file.

365

Column Description

BinData if IsText is kFalse, this contains the binary data read from the file.
TempFilePath if the length of the file is greater than 16384 bytes, TempFilePath

contains the pathname of a temporary file containing the file data;
the temporary file is deleted after the remote task has returned
from its $construct()

Direct Client Connections

In addition to the technique of connecting web based clients to an Omnis App Server via a standalone Web Server, you can connect
directly to Omnis, without the need to install a Web Server (Omnis has its own built-in web server). Using the built-in http server may
be a convenient way to test an Omnis Ultra-thin application, where the only difference is the format of the http call itself to Omnis: in
all other respects your application, including the code in your remote tasks, is the same.

To enable direct connections to the Omnis App Server you need to make somemodifications to the html file.

• The WebServer script attribute needs to be set to /webclient

• The WebServer url attribute needs to be set to http://<ipaddress>:port

In this case, the OmnisServer address attribute is not relevant when connecting directly to Omnis in this way.

The direct http call to Omnis is structured like this:

http://<Server>:<Serverport>/Ultra

<Server> is the domain name or the IP address of the computer on which Omnis Studio is running. This is often 127.0.0.1 for your own
local machine, but will be configured using a different address or server name on a remote server.

<Serverport> is the port number which has been set in $serverport of Omnis Studio; this is 5912 by default, but you can change it to
anything you wish, in the range 1-65535. The $serverport property is an Omnis preference ($root.$prefs).

To try this out, create a library called “DirectHTTP” and add a remote task called “rtDirectHTTP”. Then insert the following code into
the $construct() method of the remote task:

$construct() method
create the following variables
Parameter var: pParams (Row)
Local vars: fullhtml (Char 100000000) & html (Char 100000000)
Begin text block
Text: <html> (Carriage return,Linefeed)
Text: <body bgcolor="FFFFFF"> (Carriage return,Linefeed)
Text: <title>Hello [pParams.User] </title> (Carriage return,Linefeed)
Text: <H1>Hello [pParams.User] </H1> (Carriage return,Linefeed)
Text: Go back (Carriage return,Linefeed)
Text: </BODY> (Carriage return,Linefeed)
Text: </html> (Carriage return,Linefeed)
End text block
Get text block html
Calculate fullhtml as con('content-type: text/html',chr(13,10),'content-length: ',len(html),chr(13,10,13,10),html)

Quit method fullhtml

The Remote task can be called within an HTML form with the following source text:

<html>
<form action="http://127.0.0.1:5912/ultra" method="Get"> What is your name?

<input type="Text" name="User" size="30" maxlength="50"></br></br>
<input type="Submit" name="Send" value="Send">
<input type="hidden" name="OmnisLibrary" value="DirectHTTP">

366

<input type="hidden" name="OmnisClass" value="rtDirectHTTP">
</form>

</html>

Youmust change the IP address and the port according to your configuration, although the IP address and port number given above
are the default values.

Then open the HTML form in a browser, enter a name in the field, and click Send.

This will call the $construct method in the remote task “rtDirectHTTP”, passing a parameter called “User” to it, which will contain the
text you entered in the form. The full http call is like this:

http://127.0.0.1:5912/ultra?User=Username&Send=Send&OmnisLibrary=DirectHTTP&OmnisClass=rtDirectHTTP

The remote task processes the form values (and performs whatever other functions you like), and returns standard HTML text that is
displayed in the browser.

Chapter 6—Localization

If you are developing web or mobile applications for an international market, using the JavaScript Client, you may want to translate
the text and labels in your apps into another language, or support multiple languages. You can use the String Table Editor in Omnis
to create an external file to store alternative strings for the labels and text in your app to supportmultiple languages in your JavaScript
remote forms. The external file is stored in Tab Separated Value (TSV) format.

Using TSV files is now the preferred method for localization and the String Table Editor uses this format by default. The old way of
storing string tables internally (in.stb files) and handling themvia $stringtabledata and $stringtabledesignform still works (for Omnis
Studio 6.0 or above), but is only present for backwards compatibility and should not be used for new applications. This technique is
described in the Localization chapter in the Omnis Programmingmanual.

Localization for the JavaScript Client

String Table Format

The String Table external component uses a Tab Separated Value (TSV) file for storing string tables. TSV files should be stored in the
same folder as the library file, and have the following format and features:

• Data is stored in a UTF-8 encoded text file, as a series of rows of fields.

• Fields in the data are separated by tabs.

• Each field is enclosed in double quotes.

• Double quotes in field values are escaped as a pair of double quotes.

• Field can contain newline characters.

• Each row is separated by a newline outside the contents of a field.

• The fields in row 1 are the column names for the string table.

If you open the Catalog (press F9)while editing a remote formor remote task that has a string table associatedwith it (via $stringtable),
then the Catalog automatically loads the string table specified in $stringtable, if it is not already loaded, or reloads it if it has changed
on disk.

367

Localizing Remote Forms

Remote tasks have a property, $stringtable which is the name of the string table for the current library and shared by all JavaScript
Client remote form instances in the remote task. When a client connects and the remote task is using the $stringtable property,
Omnis loads the appropriate string table.

When you test a remote form that has an associated string table, Omnis generates a JavaScript file automatically if the file does not
exist or if the string table file (.tsv) is more up to date than the script file. In addition, Omnis inserts a script tag for the string table into
the HTML file generated automatically by the Test Form option. If you change the string table file name in $stringtable, you need to
test the form again in order to regenerate the HTML file containing the correct name. Note that only the Omnis development version
rebuilds the JavaScript string table file: this is not produced automatically in the Omnis Server.

The path of the string table JavaScript file is of the form:

html/strings/libname/file.js

where ‘strings’ is a folder in the html folder, ‘libname’ is a folder for the library, and file.js is the JavaScript file for the remote task strings,
named using the name of the task string table file.

For deployment, you need to place the file.js in the equivalent folder in theweb server treewhere the other Omnis HTMLpages, scripts,
etc are located. Alternatively, you can use an option in the String Table Editor to export the string table JavaScript file, rather than using
the exported file from your development tree. This option can be used to output the entire table as a JavaScript file, or you can output
one or more files for selected locales, where each file contains a single selected locale column and is named file.locale.js.

String tables are converted to separate JavaScript files and transferred to the client as needed and depending on its locale. The script
file is cached in the client browser and only reloaded when the string table has changed.

Optimizing string tables

Single-locale JavaScript string tables can be used to further improve loading performance for string tables. There is a new file,
jsStringTableSwitch.htm in the html folder in the main Omnis development tree. This file can be used as the initial remote form
for an application, and has markers where it can be customized - this allows you to specify the string table file to use for each locale,
and a default for unknown locales. In addition, jsStringTableTempl.htm needs to be customized to set up the initial remote form etc,
and the string table path. When a page based on jsStringTableSwitch.htm loads, the page:

• Runs a script which selects the string table file to use, based on the locale.

• Loads the template based on jsStringTableTempl.htm using AJAX.

• Sets the string table to use in the template

• Replaces the document content with the modified template

This results in an HTML page for the remote form that only loads the strings for the current locale, and which still has the original URL
you have chosen for your application.

Standalone Client

If you run your application in the Standalone client you have to set the library preference $serverlessclientstringtable to specify which
string table to use for the remote form instances in the SCAF for the library. This takes the name of a string table (tab-separated value
.tsv file in library folder).

String table functions

The client accesses the current string table for the stgettext() function, and properties assigned with the $st prefix. In addition, server
methods can also use stgettext() to look up strings for the client locale (either the locale received from the client, or the locale set
using $stringtablelocale). If the locale is not present in the string table, stgettext() will return values from column 2 of the string table.

368

Setting the Client Locale

You can use the ‘setlocale’ client command to override the locale on the client device in the JavaScript Client.

• “setlocale” takes a row with 2 parameters
cLocale - a string containing valid locale code (e.g. “fr”, “en”, etc)
[cPromptToReload] - defaults to false (no dialog opens), if true pops up a no/yes dialog asking the user if they wish to reload the
page for language changes to take affect. Defaults to No to reduce the chance of the user accidentally selecting yes and losing
any unsaved data.

• “clearlocale” takes a row with 1 optional parameter
[cPromptToReload] - as above

The application needs to be restarted on the client for the change in locale to have an effect. Note that the client commands set this
as a localStorage preference, so all Omnis JS client applications (forms) on the same client device will use this setting.

Localizing Built-in Strings

There are a number of strings that can appear in error messages and other dialogs in the JavaScript Client. These are built into the
JS client and are in English by default, but from Studio 10.2 onwards, support for German, French, Italian and Spanish translations is
provided, while support for other languages can be added as required.

Localized String files

The ‘locale’ folder under html/scripts/ contains a number of ,js files containing the strings for English and other languages. The files
are named in the format strings_[language code].js using either a 2 or 4 letter language code; for example, strings_en.js for standard
English, or strings_en_us.js for American English. Inside each file is an object, which is a member of jOmnisStrings, containing key-
value pairs to translate to the given language. The member name should match the language code given in the file name, therefore,
for french, the strings_fr.js file contains an object jOmnisStrings.fr. The strings_base.js file contains the base strings, and should always
be present.

There is a template file called strings_template.js, which provides more information about creating your own translations, with com-
ments for each key-value to help you understand what each string is used for.

Setting the supported languages

The global variable supportedLanguages is defined in the htm file for a remote form (i.e. the application). This contains an array of
language codes for the supported languages. On loading a remote form, the locale of the client is detected, and then checked against
the supported languages in the array. It will look for both the 4 and 2 letter language codes, and if found, will request strings_base.js
and the relevant localized versions. This means the JS client will only download the strings it needs.

Built-in Strings

The following strings are present in the jOmnisStrings strings object in the JavaScript Client, where \x01 is a place-holder which is
replaced by parameters added to the string when it is called by the client; you should retain \x01 in your translated text. You can use
the contents of strings_template.js for a definitive list of strings.

(Note that some of the error messages are very unlikely to appear in the final deployed version of your app, since they relate to design
mode only, so it is not entirely necessary to translate all of the error strings.)

String object String text (English default)

comms_error An error has occurred when communicating with the server. Press OK to
retry the request

comms_timeout The server has not responded. Press OK to continue waiting
ctl_dgrd_id You cannot use \x01 as a list column name for a list bound to a data grid
ctl_dgrd_other (1 other)
ctl_dgrd_others (\x01 others)
ctl_file_batchsizeerror Total batch of files is larger than maximum allowed upload size (\x01)
ctl_file_batchsizetext \x01 of \x01

369

String object String text (English default)

ctl_file_downloaderror Download error
ctl_file_filesizeerror File size is larger than maximum allowed upload size (\x01)// \x01 //
ctl_file_filesizetext \x01 of \x01
ctl_file_filesuploaded \x01/\x01 files
ctl_file_stopbutton Cancel upload
ctl_file_uploadbutton Upload
ctl_file_uploaderror Upload error
ctl_file_uploadmultipletitle Upload files
ctl_file_uploadstopped Upload stopped
ctl_file_uploadtitle Upload file
ctl_subf_params Control \x01: $parameters cannot be assigned at runtime
ctl_tree_badgnl Control \x01: Internal error calling get node line for dynamic tree
ctl_tree_badident Control \x01: You cannot use \x01 as a tree node ident - tree node idents

must be a non-zero positive integer
ctl_tree_dupident Control \x01: The tree already has a node with ident \x01 - tree node idents

must be unique
ctl_tree_invmode Control \x01: Invalid data mode for tree
disconnected You have been disconnected. Refresh or restart application to reconnect
error Error
local_storage_unavailable_error Unable to access localStorage (perhaps cookies are disabled?). //The

application will not run.
omn_cli_badobj object $objs.\x01 does not exist
omn_cli_callprivate callprivate cannot call ”\x01”://Exception: \x01
omn_cli_cgcanassign cannot use $canassign for row section object ”\x01” in complex grid

because it has exceptions
omn_form_addbadpage Parent page number \x01 not valid for paged pane ”\x01
omn_form_addbadparent Parent object ”\x01” for add control is not a paged pane
omn_form_addcg Cannot add control to parent object \x01 contained in complex grid
omn_form_addparent Cannot find parent object \x01 for add control
omn_form_addsrc Cannot find source object \x01 for add control
omn_form_ctrlinst Failed to install the control \x01. Possible missing class script
omn_form_nofile There is no file with the specified ident (\x01)
omn_form_noinstvar Instance variable does not exist (\x01)
omn_form_readfileerror Error \x01 occurred when reading the file with ident \x01
omn_inst_assignpdf Assign PDF: HTML control ”\x01” not found
omn_inst_badformlist \x01: Invalid formlist
omn_inst_badparent \x01: Invalid parent for subform set
omn_inst_badpn \x01: Paged pane does not have page \x01
omn_inst_badpp \x01: Cannot find the paged pane with name ”\x01
omn_inst_badservmethcall Cannot make server method call when waiting for a response from the

server
omn_inst_badsfsname \x01: Invalid or empty name for subform set
omn_inst_cliexcep Exception occurred when executing client method://
omn_inst_dupsfsname \x01: A subform set with this name already exists
omn_inst_dupuid Subform set already contains unique id \x01
omn_inst_excep Exception occurred when processing server response://
omn_inst_excepfile File ”\x01” Line \x01//
omn_inst_formloaderr Failed to load form data for \x01. Server returned \x01
omn_inst_formnum Invalid form number. Parameter error \x01
omn_inst_objnum Invalid object number. Parameter error \x01
omn_inst_respbad Unknown response received from server
omn_inst_senderr Failed to send message to server
omn_inst_sfsnotthere \x01: A subform set with name ”\x01” does not exist
omn_inst_xmlhttp Failed to initialize XMLHttpRequest
omn_list_badaddcols The argument count for $addcols must be a multiple of 4
omn_list_badrow Invalid list row
omnis_badhtmlesc Invalid HTML escape
omnis_badstyleesc Invalid style escape sequence

370

String object String text (English default)

omnis_convbad Error setting \x01: variable type \x01 not supported by JavaScript client
omnis_convbool Error setting \x01: data cannot be converted to Boolean
omnis_convchar Error setting \x01: data cannot be converted to Character
omnis_convdate Error setting \x01: data cannot be converted to Date
omnis_convint Error setting \x01: data cannot be converted to Integer
omnis_convlist Error setting \x01: data cannot be converted to List
omnis_convnum Error setting \x01: data cannot be converted to Number
omnis_convrow Error setting \x01: data cannot be converted to Row
omnis_escnotsupp Text escape not supported by JavaScript client
switch_off OFF
switch_on ON

Chapter 7—Deploying your Web & Mobile Apps

To deploy your Omnis web or mobile application you need to host it on the Omnis App Server which is the main engine at the heart
of your Omnis app deployment. You will also need aWeb Server to host the HTML page(s) containing your remote form(s) and any
other web pages or content. When the end user runs your application, the app connects to your Omnis library running on the Omnis
App Server, via the web server, and the JavaScript remote forms you have designed are loaded in the end user’s desktop browser or
the browser on their mobile device. You can deploy your JavaScript Client based application to the web ormobile devices in twoways:

• Web and mobile app deployment
you can deploy your application to the web and provide your end users with a URL to the location of the app, which they can
navigate to on their desktop, tablet or mobile device; the initial remote form is embedded into an HTML file which is created for
you during development which you will need to edit for deployment

• Standalone mobile app deployment
alternatively you can compile your app into one of Application Wrappers to provide a single standalone app for deployment to
mobile devices; in effect the wrapper points to the HTML page containing the initial remote form for your app hosted on the
Omnis App Server. Download the Application Wrappers.
A standalone app can operate “online” with a permanent connection to the internet and the Omnis App Server, or it can work
“offline” and then reconnect to the Omnis App Server to synchronize data and content. See Creating Standalone Mobile Apps
Alternatively, a standalone app can operate entirely in “serverless” mode without any connection to the Omnis App Server. See
Serverless Client
OnmacOS only, you can use the Omnis App Manager to test your standalone app on iOS phones and tablets before uploading
them to the Apple AppStore. See Omnis App Manager

In addition to hosting your HTML page, you need to install the Omnis Web Server plug-in into your web server which handles all
communication between the Omnis App Server and any connected web and mobile clients.

Server Installation and Licensing

You can download the Omnis App Server installer from the Omnis website at: www.omnis.net/developers/resources/download/. Hav-
ing installed the Omnis App Server you will need to serialize it according to the number and type of clients you expect to serve. There
are a number of different server deployment licenses for running web and mobile apps in the JavaScript Client, or you may have a
server license included in the Community Edition. Please contact your local sales office for details about these Omnis App Server
deployment licenses. In addition, you will need to purchase a different development license and deployment server license to create
and deploy standalone mobile apps running in serverless client mode.

Licensing Mechanism

In order to enforce licensing for JavaScript Client based apps, the UUID of each client is logged with the Omnis App Server. Prior to
Studio 8.1.6, the UUID was stored in a cookie in the client computer which required any clients to have cookies to be enabled for this

371

https://omnis.net/developers/resources/download/jswrapper.jsp
http://www.omnis.net/developers/resources/download/

licensingmechanism towork. However, themethod for storing the client UUID has changed in version 8.1.6: the UUIDs are now stored
in the ‘localStorage’ on each client which is now used tomanage client licenses on the Omnis App Server. Therefore, clients no longer
have to have cookies enabled for App Server Licensing to be enforced.

Omnis Web Architecture

The server side of your web or mobile app comprises the Omnis App Server that runs your Omnis library, a standard Web Server, and
your database server(s). All these parts would either run on the samemachine, ormore typically would be on the same LAN or subnet,
communicating via TCP/IP. The web server and the Omnis App Server can be hosted on aWindows, macOS, or Linux computer server.

The web server would store your entire website, including any HTML pages containing your JavaScript remote forms and any other
web pages as required, such as landing pages.

The Omnis library contains the GUI and data class definitions, business rules, and application logic, while the database server would
be an industry-standard database server, such as Oracle, MySQL, PostgreSQL, Sybase, DB2, or any JDBC or ODBC compliant database
such as MS SQL Server.

The Omnis App Server is the main engine that runs your web and mobile applications. It is a multi-threaded server that runs your
Omnis application, executing all the business logic, accessing your server database(s), and handling all the client interactions to-and-
from your web andmobile clients. Web andmobile client access to the Omnis App Server is restricted to a specified number of users
and is determined by the server license, which you must purchase separately from your locale sales office.

Editing Your HTML Pages

Omnis creates an HTML page when you test your JavaScript remote form (when you press Ctrl-T or use the Test Form option) that
contains details of the JavaScript Client object, your remote formclass, the location of yourweb server (or your computerwhen testing),
and so on. You can use this HTML file for deploying your web application, but you will need to edit it, or copy the relevant lines of code
containing the JavaScript Client object to your own HTML pages.

The test HTML file has the same name as your remote form plus the .htm extension, and is located in the html folder under the main
Omnis folder. For example, under Windows the HTML template is located in your AppData\Local folder, such as:

C:\Users\<user-name>\AppData\Local\Omnis Software\OS<version>\html

You can edit the test HTML in a standard web page design tool or a text editor, such as Notepad under Windows.

The JavaScript Client Object

In the template HTML file, there is a <div> that contains the JavaScript Client called ‘omnisobject1’. It contains various parameters that
provide details about your application that are sent to the Omnis App Server when the client connects. The parameter names are in
lowercase and prefixed with ‘data-‘, to comply with HTML5.

The code for omnisobject1 from the ‘jsctempl.htm’ file is as follows (for existing users, the equivalent old parameter names are included
in parenthesis):

<div id="omnisobject1" style="position:absolute;top:0px;left:0px" data-webserverurl="" (was WebServerURL)
data-omnisserverandport="" (was OmnisServerAndPort)
data-omnislibrary="" (was OmnisLibrary)
data-omnisclass="" (was OmnisClass)
data-param1="" data-param2="" (was param1, param2,..)
data-commstimeout="0"> (new parameter)

For example, the HTML page containing the Omnis quiz has the following <div> tag containing the JavaScript Client object and its
parameters:

<div id="omnisobject1" style="position:absolute;top:0px;left:0px" data-webserverurl="http://194.131.70.208/cgi-bin/js/omnisapi.dll" data-omnisserverandport="5775" data-omnislibrary="STUDIOQUIZ" data-omnisclass="jsQuiz" data-param1="" data-param2=""></div>

You can add another Omnis object to the same HTML page, but it must have a unique id, such as “omnisobject2”, and you can set its
own server, library, and form parameters.

372

JavaScript Client Object Parameters

data-webserverurl

The data-webserverurl property identifies the HTTP URL of either the local IP address of your computer during development or the
address of the Web Server and location of the web server plug-in.

When testing with the development version of Omnis, the data-webserverurl is set to “_PS_” which will be replaced with the address
of the computer fromwhich the HTML page is being served, that is, your development computer. For example, if the test HTML page
is at http://127.0.0.1:5000/jschtml/test.htm, then _PS_ will be replaced with http://127.0.0.1:5000. For testing, data-omnisserverandport
will be empty.

For deployment, when using a Web Server, the data-webserverurl parameter should be set to the location of the Omnis web server
plug-in, such as http://www.myhost.com/scripts/omnisapi.dll, .which handles all the communication between the server and the client.

data-omnisserverandport

For development and testing data-omnisserverandport can be empty. For deployment, data-omnisserverandport tells the Omnis
web server plug-in how to connect to the Omnis App Server. If the Omnis App Server is on the same machine as the web server,
then data-omnisserverandport can be the port number of the Omnis App Server, e.g. it could be “5000” if the Omnis App Server is
at port 5000 on the same machine as the web server. If the Omnis App Server is on a different server from the web server, then the
data-omnisserverandport parametermust be “IP-Address:Port-number” of the Omnis App Server, e.g. it could be “111.222.000.111:5000”
if the Omnis App Server is at port 5000 on a machine with IP address 111.222.000.111.

data-omnislibrary and data-omnisclass

The data-omnislibrary parameter identifies the library containing your remote form, and data-omnisclass is the remote form class
displayed by the omnisform object.

data-commstimeout

The data-commstimeout parameter allows you to give the end user the option to timeout a request or carry on waiting. The default
value of zero means that no timeout is applied, and the client will continue to wait for a response. To apply a timeout, you need to
enter an integer representing the timeout in seconds. When the client sends a message to the server it must respond within this
timeout period, otherwise the user will be prompted to either continue waiting for a response, or abort the request.

Version and Build Number

The Version and Build number of Omnis Studio is included in the HTML page. The “%%version%%” placeholder will be replaced with
the Omnis Studio version number when the Test Form option is used. For example, the following is added to the beginning of the
html:

<!DOCTYPE html>
<!-- Generated by Omnis Studio Version 11.0 Build 110034477 -->

The “%%build%%” placeholder will be replaced with the Omnis Studio build number, e.g. 110034477 in the above example.

Managing Wifi Connections

The client should handle a wifi connection going away while processing a request at the server, so when the connection comes back,
the client should respond properly. Otherwise, you have the option to provide a timeout, as above.

Additional and Custom Parameters

You can specify up to nine additional parameters (named data-param1, data-param2, ..) which can be passed into the row variable
parameter pParams of the $construct() method of the remote task assigned to the remote form.

In addition to the pre-defined parameters, you can include your own custom parameters if you wish to pass extra values to the task or
form $construct method. Custom parameter names should be prefixed with “data-“ and should be lowercase. The parameter will be
added to the construct row variable which you can interrogate in your task or form $construct method.

373

Positioning the Omnis object

The position or alignment of the “omnisobject1” itself within your HTML page is where the Omnis JavaScript Client remote formwill be
displayed in a web browser. For mobile clients you have less control since the remote formwill usually fill the entire mobile screen. By
default, the JavaScript Client is displayed in the top left corner of the client browser (set using style=“position:absolute;top:0px;left:0px”),
but for web clients you can reposition the JavaScript Client object to appear anywhere in your HTML page using alternative style or
positioning parameters.

Centering the omnisobject

By replacing the default style parameter in the div tag on the JavaScript Client objectwith style=”width:900px;margin:auto”will center
the remote form in the browser, assuming your remote form is 900 pixels wide. Note that you cannot use the align property on the
omnisobject to reposition it, therefore align=“center” will not center the omnisobject.

The above technique for centering the omnisobject will be fine for web-based applications but it may not work for all mobile devices,
therefore you can use the followingmethod to center the omnisobject for all devices. You have to place two extra divs around the div
containing the omnisobject and change the style parameter inside the omnisobject div, as follows:

<div id="grandparent" style="float:left; width:100%; overflow:hidden; position:relative;">
<div id="parent" style="clear:left; float:left; position:relative; left:50%;">

<div id="omnisobject1" style="display:block; float:left; position:relative; right:50%;" data-webserverurl="_PS_" data-omnisserverandport="" data-omnislibrary="JSLIBRARYNAME" data-omnisclass="JSREMOTEFORMNAME" data-param1="" data-param2="">
</div>

</div>
</div>

CSS styles and JavaScript folders

The Omnis html folder contains a number of other folders, including CSS, formscripts, icons, images, and scripts, which contain the
CSS style sheets, JavaScript files, icons, and other images, which are required to run the Omnis JavaScript Client: these folders and
their contentsmust be copied to the equivalent location in your web server relative to the HTML page containing your remote form(s).

Icon Sets

You need to copy any icon sets used by your JavaScript Client application, including any of your own icon sets as well as the Omnis
supplied icon sets, from your development tree to two places:

• The ‘html/icons’ folder of the Omnis App Server (so Omnis can generate relative paths for the icon URLs).

• The ‘icons’ folder at the same location as the .htm file containing the remote form for your app on yourWeb Server (these are
the actual resource files that the client will request).

Any custom icon sets you have used should be named in the $iconsets property of your library. The location of these icon sets in your
development tree could be in one of the following locations

<Application Directory>/iconsets
<User Data Directory>/iconsets
<User Data Directory>/html/icons

For example, if you have used the ‘studio’ icon set, you might copy this from:

<Dev Application Directory>/iconsets/studio

to:

<App Server's User Data Directory>/html/icons/studio
<Web Server Location of .htm file>/icons/studio

374

Fav icon

The icon used for the test HTML page (displayed in the top-left of the browser tab) is the image file called ‘favicon.ico’ located in the
html/images folder. The image file in the development version of Omnis is the Omnis logo, but for deployment you can replace this
image with your own fav icon file.

Customizing the JavaScript Working Message

You can change the appearance and positioning of the working message displayed in the JavaScript Client when some processing
is occurring. The working message is a transparent overlay with a circular spinner which is laid over the main JavaScript Client area.
You can restyle the working message overlay by extending the ‘standardOmnisLoadingOverlay’ class in the user.css file found in the
html\css folder in your Omnis development tree. This follows the same structure as the CSS class parameter for the “showloadingover-
lay” client command: see Custom Loading Indicator.

Setting up the Omnis App Server

In order to deploy your Omnis web ormobile application, you need to download and install theOmnis App Serverwhich will run your
Omnis application (library) file. The Omnis App Server is available for Windows (32-bit & 64-bit), macOS, and Linux servers. There is a
Tech note on the Omnis website about setting up the Omnis Server which contains all the latest settings, etc:

• TNJS0003: Setting Up The Omnis App Server

OnWindows, you can set up the Omnis App Server to run as a Service which is described in this Tech note:

• TNWI0002: Running the Omnis Application Server as a Windows Service

You should read these tech notes for the latest information about setting up the Omnis App Server, including information about the
latest version of IIS and Apache appropriate to deploying Omnis web and mobile apps.

The server does not need to be located on the samemachine as your web server. For testing and debugging you can use the Omnis
development version, but for deployment you must use the Omnis App Server.

You need to place any libraries containing your application in the ‘Startup’ folder within the Omnis App Server tree, so that Omnis
automatically opens them when it starts up.

When Omnis is running as a Service, the prompt for a serial number is not shown on startup, plus serialization errors are sent to the
Windows Application event log.

Server Configuration

There is a JSON based configuration file in the Studio folder called ‘config.json’ which is used to configure the Omnis App Server,
including setting up properties for the server itself and logging, as well as the settings for Web Services support. The config file also
includes a section to enable the Java Class cache to be cleared, and other configurable items in Omnis.

The configuration of the Omnis App Server can be set up during installation or by selecting the Server Configuration option in the File
menu in the Omnis App Server. Alternatively, you can configure or change the settings of the Omnis App Server by editing config.json
using any compatible text editor, but the file must conform to JSON syntax.

Server Configuration File

The first part of the config.json file for the Server has the following layout:

{
"server": {

“disableInRuntime": false,
"port": "",
"stacks": 5,
"timeslice": 20,

375

02jsremoteforms.html#custom-loading-indicator
https://www.omnis.net/developers/resources/technotes/tnjs0003.jsp
https://www.omnis.net/developers/resources/technotes/tnwi0002.jsp

"webServiceURL": "",
"webServiceConnection": "",
"webServiceLogging": "off",
"webServiceLogMaxRecords": 100,
"webServiceStrictWSDL": true,
"headlessAcceptConsoleCommands": false,
"headlessDatabaseLocation": "",
"service": "homnis",
"start": false,
"retryBind": true,
"showBindRetryMessage": true,
"bindAttempts": 0,
"runtimeOpensTraceLogOnSocketBindError": true,
"RESTfulURL": "",
"RESTfulConnection": "",
"autoChunkRESTfulURLs": [
"http://localhost:8080/omnisrestservlet"

],
"getpdfFolders": [
""

],
"overridePushURL": "",
"timeOffsetMinutes": 0,
"timeoutReads": true,
"readTimeout": 20

},

where

• port, stacks, timeslice
configure the Omnis App Server executable

• disableInRuntime
when set to true (default is false) prevents the Omnis Server listening on its own port: this can be used to prevent firewall
prompts when the Omnis Server is not required

• webService…
these parameters configure WSDL/SOAP based web services

• RESTful…
these parameters configure REST based web services

• start
if true means Omnis automatically executes Start server at startup

• retryBind
Set retryBind to false if you do not want Omnis to retry binding to the server port after its first attempt; retryBind defaults to
true if it is omitted

• showBindRetryMessage
If retryBind is true (or omitted), showBindRetryMessage controls whether or not a workingmessage is displayed while retrying
the bind to the server port

• bindAttempts
If retryBind is true (or omitted), a positive value of bindAttempts overrides the default number of attempts to bind to the port
at 1 second intervals

• timeOffsetMinutes
allows you to add an offset to the date-time setting on theOmnis App Server. Omnis adds the value of this setting to the current
system date-time when generating the value for #D and #T. If the entry is not present, it defaults to zero, meaning no offset is
applied

376

Server Logging

The Omnis App Server has a logging mechanism to support RESTful web services, if applicable. There is an external component that
performs logging, located in the logcomp folder of the Studio tree, with just one component, logToFile. NOTE: you can use logToFile
in the Development version of Omnis Studio to log server activity including REST calls which can be useful while testing & debugging
your app.

You can configure server logging by adding a member to the config.json configuration file, with the following layout:

{
"server": {

"//": "See Server Configuration section above",
},
"log": {

"datatolog": [
"restrequestheaders",
"restrequestcontent",
"restresponseheaders",
"restresponsecontent",
"tracelog",
"seqnlog",
"soapfault",
"soaprequesturi",
"soaprequest",
"soapresponse",
"cors",
"headlessmessage",
"headlesserror",
"systemevent"

],
"logcomp": "logToFile",
"logToFile": {
"stdout": false,
"folder": "logs",
"rollingcount": 10,
"daily": true

},
"overrideWebServicesLog": true,
"windowssystemdragdrop": false

},

where

• logcomp
is the name of the logging component to use, that is, “logToFile” which referencese the logtofile.dll component in the logcomp
folder of the Studio tree.

• datatolog
is an array that identifies the data to be written to the log - one or more ofthe values listed in the array above

• tracelog means that data written to the trace log is also written to the new log

• seqnlog means sequence log entries that record method execution are written to the new log instead of the old sequence log
file

• overrideWebServicesLog
allows you to just send SOAPweb service log entries to the new log; truemeans just send log entries to the new log, falsemeans
send them to both the old web services log and the new log.

377

• windowssystemdragdrop
enables system drag and drop behavior available in versions before Studio 10.2

• logToFile
is a member with the same name as the value of logcomp. This contains configuration specific to the logging component.

• folder
is the name of the folder where logs will be placed; this can be a single folder name relative to the Omnis data folder, or it can
be a full path name, which must not end in a path separator character

• rollingcount
is the number of log files that will be maintained, can be up to 1024. The log component uses a new log file every hour (and a
new one at startup). The log component deletes the oldest file or files so that the number of log files does not exceed this count

• daily
allows you to enable daily log file (true) or the defauly hourly log files (false).

• stdout
for the MPS, if set to true, logging from all processes in the MPS (main and child) will go directly to standard output, serialised
between all of the processes using a shared mutex

logToFile: Folder location

The “folder” item in the “logToFile” section can be a folder name (relative to Omnis folder), or a full path name, which must not end
in a path separator character, and the end folder name will be created if it does not already exist. In previous versions, you could only
specify a folder relative to the Omnis folder, but now a full path can be usedwhich can be outside themain Omnis folder. For example:

"folder": "/Users/bd/Sites/logs"

would send the log to the specified folder, while

"folder": "logs"

would still be read as relative to the main Omnis folder (note no starting or ending path separator).

You must use / as the path separator on macOS and Linux, whereas, you can use / or \ on Windows.

logToFile: Rolling count

The maximum for the “rollingcount” item in the “logToFile” can be an integer up to 1024. The logtofile component uses a new log file
every hour, so the newmax value would allow logs to be stored for up to six weeks, at which point the oldest logs would be deleted.

If there is an error initialising logging, the logtofile component also writes it to standard output when running on Linux.

logToFile: daily

If set to true, Omnis creates a new log file for each day. Omnis re-uses the log file for a day if it is already present at startup. The
rollingcount applies as for hourly logs. The item defaults to false, which means hourly logging is used.

Log File Format

Each log record has the following layout:

{"thread":0,"when":"20141017 14:04:14","type":"tracelog","length":127}ExternalLibrary File 'C:\dev\UnicodeRun\xcomp\damdb2.dll' failed to load. OS Error: The specified module could not be found.

where

• thread
identifies the thread logging the entry,

378

• when
is the date and time of the entry,

• type
is the type of the entry (one of the datatolog values), and

• length
is the length in bytes of the data following the initial JSON header.

This is followed by a final CRLF. Log files can typically be read in a text editor, but be aware that they can contain binary data if the
content of RESTful requests or responses is binary.

Setting the Omnis App Server Port Number

You can set the Omnis App Server port using the command Calculate $prefs.$serverport as 5912.

Server Multi-threading

TheOmnisAppServer allowsmultiple client requests tobeprocessedconcurrently, allowing smoother allocationof availableprocessor
time and avoiding any lengthy delays on the client: a client requestmight be a request from a client to execute an event, or a request
from the client to call a server-side method. To handle these multiple client requests, the Omnis App Server can be made to run
in multi-threaded mode. By default, the Omnis App Server runs in single-threaded mode, handling client requests in a strictly first-
come, first-serve basis; in this case, client requests are queued, with each request being handled only when the previous request has
completed. You can however handle multiple client requests concurrently using the Omnis Multi-threaded Server, which you can
enable by executing the Start server command on the Omnis App Server: see below.

The Multi-threaded Server maintains a pool of method stacks that can process web and mobile client requests simultaneously. The
pooling mechanism allows a balance to be struck between performance and server resources - the number of method stacks in the
pool is configurable via the $serverstacks Omnis preference, and also available in the Omnis App Server Configuration dialog.

Multiple Method Stacks

The standard single-threadedOmnisAppServer has only a singlemethod stack toprocessmethods. Broadly speaking, once amethod
call has been pushed onto the method stack no other method call can begin to execute until the first call has completed. For the
majority of web and mobile client applications this is fine for processing events, particularly if some processing is performed on the
client and your web server receives relatively few hits or requests for data. By contrast, the Omnis Multi-threaded Server contains
a pool of method stacks which are available to process multiple client requests, and this is appropriate for more data intensive web
applications where lengthy calls to a server database are required, or for web applications that receive higher volumes of traffic. When
a request to execute a method is received from a web or mobile client, that method call is pushed onto any unused stack or, if there
are no unused stacks, the message is queued until one becomes available. Each method stack runs in its own thread, which means
that if a method stack is stalled (for example, it is waiting for the database server) the other stacks will continue to execute.

Potentially, theMulti-threaded Servermay have to copewith a very large number of simultaneous clients, eachwith their own remote
form and remote task instances. Typically though, a small proportion of clients will require the use of the server at any one time. In
fact, multi-threading does not increase the server processor time available, it just allows the available processor time to be allocated
in a smoother way. Themethod stack poolmechanism allows a balance to be struck between performance and server resources - the
number of method stacks in the pool is configurable with the $root.$prefs.$serverstacks property, which is set to 5 by default.

As method stacks are allocated dynamically, it is very likely that a remote client will not get the same method stack every time it
executes amethod on the server. Eachmethod stack contains its own state which, apart from during an individual method call, does
not belong to any particular client. This state includes the Current Record Buffers (CRBs) for all files and variables (apart from class
variables) and such modes as the current list. A client cannot rely on any properties or values of this state being preserved across
different method calls. The only things belonging to the client are its instance and task variables. So a client must do such things as
setting the main file and current list each time one of its methods is executed, and should not rely on such things as the values of
memory-only fields being maintained across method calls. As a special case, the class variables for the remote task and remote form
classes are shared amongst all clients so can be used to hold shared data (see below for the warnings about the care needed when
using shared variables).

379

Using the Multi-threaded Server

When the Multi-threaded Server starts up, it opens the libraries, data files and SQL session pools required by the clients (see below
for the description of a SQL session pool). You need to issue the Start server command to cause the method stacks and associated
threads to be created. The Start server command can specify an optional stack initialization method; when specified, this method is
pushed onto every client method stack and allowed to execute (so if $serverstacks is 5 it will execute five times), so it can be used to
initialize the state of the method stacks. The Start server command generates a fatal error if, due to lack of resources or some other
reason, it is unable to complete successfully.

When you want to stop the server, you should issue the Stop server command, but quitting the Studio program achieves the same
result.

When the server is active, Omnis continues to be responsive to events on the server and could, for example, display a window with
‘Start server’ and ‘Stop server’ buttons. It is not recommended that the server program performs any substantial tasks while it is
deployed and in use listening for client requests.

Any runtime errors generated by client methods are reported in the trace log (using a similar mechanism as errors during library
conversion), but you can override this default behavior by making sure each client method stack has an error handler. You can use
the stack initialization method call for the Start server command to define an error handler for each method stack.

Note that you cannot debug methods running in a remote form or task instance, after you have called the Start server command in
a development version of Omnis.

Database Access

If you are accessing a server database in your web application, and using the Multi-threaded Server, you must use the Object DAMs
(introduced in Omnis Studio 3.0) which are capable of multi-threading. Using the Object DAMs, you can connect directly to Oracle,
MySQL, PostgreSQL, DB2, and Sybase, as well as most ODBC- and JDBC-compliant databases such as MS SQL Server.

The Object DAMs are implemented as external components and use object variables based on the Object DAMs, and interact with a
DAM using the methods of the object. Using this approach, you create object variables of a particular DAM class. There is a group of
common methods that apply to all DAM objects and a set of DAM specific methods based on the type of object. Various chapters in
the Omnis Programmingmanual provide more information about accessing your data using the DAMs.

Omnis App Server Commands

There are some Omnis commands that you can use to control the Multi-threaded Server.

Start server

The Start server command is used to create the client method stacks and associated threads. It takes an optional stack initialization
methodas aparameter. The commandclears the flag if it is used in a copyofOmniswhich is not capable of supportingmulti-threading
or your serial number does not allow clients to connect. A fatal error is generated if for some other reason it is not possible to create
the stacks and threads.

Stop server

The Stop server command stops the server from responding to client requests. Once the server has been started you should stop it
before quitting Omnis, before using Omnis for anything apart from serving client requests (e.g. running a standard LAN-based Omnis
application), or before opening or closing any Omnis data files or libraries.

The Stop server command disposes of all remote task and form instances. The resources used by the client stacks and threads are not
released, but they will be reused by the next Start server command.

Begin and End critical block

These commands are used to denote a section of code which needs to execute in single threadedmodewithout allowing other client
methods to execute. For example:

380

Set current list cList
Begin critical block
Build list from file

End critical block

Here cList is a class variable which is shared amongst the clients and the critical block is used to prevent other clients from accessing
the list whilst it is being built. Generally class variables should only be used when the shared functionality is essential and only with
care:

Calculate cString as 'abc' ;; OK
Calculate cString as $cinst.$xyz()
only OK inside a critical block

Simple atomic operations such as the first line of the above example are safe, but when amethod call is involved itmay be interrupted
by other threads and cause problems. Class variables should not be used as bind variables or as the return list for SQL operations.

Yield to other threads

TheYield to other threads command is ahint that the executing thread iswaiting for other threads and is prepared to yield its processor
time. It can be used when waiting for semaphores (since with the Multi-threaded Server another client stack could be holding the
semaphore), as follows:

Do not wait for semaphores
Repeat
Prepare for edit
If flag true

Break to end of loop
End If
Yield to other threads

Until break

Commands which are not available to a client

The following commands are not available for methods running on the Multi-threaded Server. They usually generate a ‘Command
not available when executing a client method’ fatal error but some (such as the Debugger… group) simply do nothing:

• The Libraries… commands

• The Classes… commands

• Pre V30 SQL commands…

• The Data management… commands

• The Message boxes… commands

• The Debugger… commands

• Quit Omnis

• Enter data

• Prompted find

• And all the Omnis data file and lookup commands

Any other command which would cause a dialog to be displayed on the server is not available for methods running on the Multi-
threaded Server. In addition, there is a lot of notation, such as the notation for opening and closing libraries and data files, that will
not work in a method running on the Multi-threaded Server.

381

SQL Session Pools

Suppose theMulti-threaded Server has Nmethod stacks, and therefore N threads capable of processingmethods on behalf of clients.
This means that at any one time, there can be at most N SQL sessions in use. However, the Multi-threaded server may have many
more than N current users. If you are using SQL, you need a potentially large number of sessions to the database server. There is
nothing wrong with this in itself, and there are occasions when you might want to use database access permissions, to control the
tables and columns accessible to different users. If this is the case, you require a separate session for each user. However, if all users
have the same access permissions, you really only need N SQL sessions. This can significantly reduce the resource usage of the server.
SQL Session Pools provide a way to do this.

A SQL Session Pool is a set of multi-threaded DAM sessions, which can be shared by clients. Typically, you would create a session pool
with one session for each method stack. Details of how to use SQL Session Pools can be found in the Omnis Programmingmanual.

Server Load Sharing

Load sharing allows a pool of Omnis App Server processes, running on one ormoremachines, to serve clients. Once a client connects
to an Omnis App Server process, all subsequent requests for that client need to be handled by the same Omnis App Server process,
since the process contains the instance data for the client. Therefore, load sharing provides a mechanism that assigns a new client
connection to an Omnis App Server process. Note that Load Sharing is not available in the Community Edition.

The data-omnisserverandport parameter in an HTML page normally has the syntax:

[(IP address|domain name):](service name|port number)

To use load sharing, you prefix this property with a name for the pool of Omnis App Server processes and a comma, for example
“Omnis,6000”, or “Omnis,194.131.70.197:6000”. In this case, the address information in the property no longer addresses an Omnis App
Server. Instead, it addresses a newmodule, a load sharing process.

When a new connection arrives at the Omnis web server plug-in, the plug-in inspects the syntax of the data-omnisserverandport
parameter. If it is prefixed by a pool name, the plug-in connects to the load sharing process, and sends it a message that asks for
the address of a server process in the pool. The load sharing process typically returns the address and port number of the least busy
process in the pool. The plug-in then connects to this process, and sends the web or mobile client connection to it. When the plug-in
responds to the client, it includes the address of the Omnis App Server process in the response.

When the client sends subsequentmessages to theweb server for this web ormobile client connection, it sends the address passed in
the connect response instead of the data-omnisserverandport parameter. Thus the only additional overhead imposed by load sharing
occurs during connection setup.

So howdoesOmnis know (1.) whichOmnis App Server processes exist, and (2.) whichOmnis App Server process is the least busy? The
load sharing process (LSP) has a .ini file, which contains the pool names for the pools for which it is responsible, and for each pool, the
addresses of the Omnis App Server processes in the pool. Periodically, the load sharing process polls each Omnis App Server process,
and asks it for the percentage of web or mobile client connections currently in use (using the serial number as the maximum), and
information about howmuch time the server has spent processing requests. The load sharing process combines this information to
determine which process is the least busy.

You can configure the time interval between polls of each Omnis App Server process via the .ini file. Once every 10 or 20 seconds is
usually frequent enough.

Enabling Load Sharing

To enable the load sharing process you need place the LSP programon your web server, or amachine connected to your web server. It
is a single executable called Omnislsp.exe (Windows) or omnislsp (Linux andmacOS). A configuration file (omnislsp.ini) must bemade
to accompany the Omnislsp program, and this takes the following format:

[Setup]
Port=6001
QuietMode=0
BucketSize=100
LogLineThreshold=16
Pool1=Omnis
[Omnis]
PollTimer=10
Server1=123.145.71.123:7001
Server2=123.145.71.124:7002

382

The commands for the lsp are:

omnislsp –start

omnislsp -stop

(with the omnislsp.ini in the same directory as the program)

The Port entry in the .ini file identifies the TCP/IP port number onwhich the LSP listens for requests from theOmnisweb server plug-in.

The QuietMode entry in the .ini file indicates if the LSP generates OKmessages, or messages to the console, to report its status. When
set to zero, it will generate messages. When set to one, it will not.

The LogLineThreshold entry in the .ini file indicates when the text log generated by the LSP will be reduced in size. If the LSP writes
a line to the log, and the file contains LogLineThreshold lines, it will reduce the file size to LogLineThreshold/2 lines, maintaining the
most recently written lines, before writing the line to the log. The log is in the same directory as the omnislsp program.

The BucketSize entry specifies how the LSP breaks up the server processes into groups, based on how busy they are. It is a value
in milliseconds. The LSP divides the processes into 10 buckets, based on the average time to process a request obtained from the
information it gathers by polling the server processes periodically. The buckets are numbered 1-10, where 1 contains the least busy
servers, and 10 the most busy servers. A server is in the smallest numbered bucket, for which its average time to process a request is
less than or equal to (bucket number)*BucketSize. If a server is so busy that this calculation does not allocate it to a bucket, it belongs
to bucket 10. You may need to experiment with possible settings for BucketSize, in order to determine the optimum setting for your
application.

Each pool has its own section in the .ini file. The PollTimer entry indicates the frequency in seconds at which the LSP polls the server
processes in the pool for information. The ServerN entries identify the TCP/IP address and port of each server process in the pool.

You also need to edit the ‘data-omnisserverandport’ parameter in your HTML file containing the JavaScript Client plug-in, for example:

data-omnisserverandport="Omnis,6001" or
data-omnisserverandport="Omnis,123.456.789.010:6001"

where Omnis is the name of a pool of Omnis App Server processes and 6001 is the port number of the LSP.

On the LSP servers

The Omnis App Servers may be stopped and restarted without the need to stop the LSP.

Load Sharing Mechanism

The load sharing process periodically polls the processes in a pool of Omnis App Server processes. Each server returns the current
number of connections to the server, the maximum number of concurrent connections allowed to the server (specified by the serial
number), the number of requests since the last poll, and the total elapsed time in milliseconds taken to process the requests. The
load sharing process organizes the servers into buckets, based on the results of the information returned from polling the servers.

When a connection request arrives at the load sharing process, it allocates a server to the request as follows. It traverses the buckets,
starting with that for the least busy servers, looking for a server that has some free connections. Within a bucket, it looks for the
server with the smallest percentage of connections in use, using the results of the last poll. If there is more than one server with the
same smallest percentage of connections in use, the process allocates the connection to the server to which it least recently allocated
a connection. At this point, the load sharing process also updates the connection statistics from the last poll, to reflect the new
connection. The traversal stops when a free process has been found. If all servers are fully utilized, the LSP allocates the connection
to a server at random; in this case, it is likely that the server will reject the request, and return a suitable error to the client.

Installing as a Service (Windows only)

The omnislsp process canbe installed as a servicewhich starts-up automaticallywhenWindows loads. For this purpose, two additional
parameters are supported:

omnislsp –install Creates and starts the “Omnis Load Sharing Process” service.
omnislsp –uninstall Stops and removes the service.

The startup-type for the new service is set to “Automatic” and the service uses the omnislsp executable and .ini file at their current
locations. When omnislsp runs as a service, dialog boxes are disabled and messages are written to the application event log instead.

383

LSP Debugging

You can enable debugging in the LSP using the DebugMode setting in the [Setup] section of ini configuration file. If DebugMode=1,
more information will be logged, such as when the LSP fails to connect to the Omnis App Server, in the following format:

Tue Sep 13 20:38:19 2023 [DEBUG] [127.0.0.1:7001] Failed connecting to OMNIS server.

Furthermore, any debug messages will have [DEBUG] in the message.

Socket Binding

For the development version, Omnis will retry the bind 5 times, once a second, and then report an error via the trace log; this behavior
is the same as previous versions. The Omnis App Server will retry indefinitely once a second.

When running as a Service, after a few bind attempts, Omnis outputs a message to the system event log (if the event log is being
used for Studio), “Failed to bind web client socket - will retry indefinitely”. If the bind is eventually successful, Omnis outputs a second
message, “Successful bind of web client socket”.

Note that you can stop the service while the indefinite retries are occurring, but you cannot use the tray to bring Omnis to the front
(or do anything else with the Studio service) as the web client bind occurs quite early in the initialization of Studio.

The Omnis App Server displays a working message while the retries are occurring; this allows the end-user to cancel the retry loop.

Managing Server Timeouts

You can manage what is displayed in the end user’s browser when the Omnis Server responds with a Server error or Disconnected
message. You can create a client-executed remote formmethod named $ondisconnected which will be called when there is an error
on the server or the client is disconnected.

Themethod has a single parameter which provides the error text. This is only populated if it was triggered by a server error, rather than
a disconnect due to Remote Task timeout etc. If you wish to prevent the default behavior, you must return kTrue from this method.

The formwhich initiated the server request will be queried for themethod first. If it is not found, or it does not return kTrue, any parent
forms (if it is a subform) will be tried.

Setting Up Your Web Server

In addition to the Omnis App Server, you need to install and configure a standard web server, such as Microsoft IIS, Apache, or Tomcat:
you should download the web server software from the appropriate vendor. You need to install the appropriate OmnisWeb Server
plug-in in the correct location on your web server, for example, in the /cgi-bin, /scripts, or /webapps folder. A web server plug-in is
available for Apache onWindows, macOS and Linux, plus IIS and Tomcat under Windows.

Installing the Web Server Plug-in

Typically, a web server will have a place to store all executable code accessible via HTTP over the Internet. This is often the /cgi-bin or
/scripts folder, but it can be any folder configured to allow execution. You need to place the Omnis Web Server plug-in, such as the
omnisapi.dll (IIS) ormod_omnis.so (Apache), in this folder and ensure that theweb server is set up correctly to enable it to be executed.
The location of the plug-in should be specified in the data-webserverurl parameter of your HTML files containing your remote forms.

For information about installing the Omnis Web Server Plug-ins, please refer to the Tech note: TNJS0003 Setting Up The Omnis App
Server

Installing the Java Servlet

NOTE: In previous versions of Omnis Studio (prior to Studio 10.x) we included a JavaServlet plug-in, but this is no longer provided in
the Omnis tree due to a change in licensing for Java: see the Readme for more details about Java Legacy Integration or contact
Omnis Tech Support for more information. The information here is provided if you need to use the JavaServlet, but otherwise should
be ignored.

The Java Servlet web server plug-in allows you to run your Omnis web applications with any web server that supports version 2.3 of
the Servlet API. Web servers that comply with Java Servlet API 2.3 include the Apache TomCat and Jetty web servers, but there are
several others. For more information about Java Servlets, see: https://www.oracle.com/java/technologies/

384

https://www.omnis.net/developers/resources/technotes/tnjs0003.jsp
https://www.omnis.net/developers/resources/technotes/tnjs0003.jsp
https://www.oracle.com/java/technologies/

The Java Servlet allows Omnis remote forms to connect to an Omnis App Server via a Java web server. In this respect, the Servlet is
the Java equivalent of the ISAPI, CGI or the regular Apache plug-in available in Omnis Studio.

The Java Servlet is called RdtaServlet and can be found in theOmnis Studio installed tree in the clientserver\server\omnisservlet folder.
Inside the Servlet folder, the servlet files are in the following folder structure:

Servlet
|
- WEB-INF

|
- rdtaserv.dll (Platform dependant)
|
- web.xml
|
- classes
|
- com
|
- rdta
|
- RdtaServ.class

To install the servlet on your web server, such as the Apache Tomcat server, you should place the whole servlet folder in theWebapps
folder within the Tomcat installation. If you wish, you can rename the servlet folder.

You will need to restart the webserver in order for the servlet to be loaded.

Web server parameters for the Java Servlet

The data-webserverurl parameter in your HTML containing your remote form must have the correct format to access a web server
with the Java Servlet.

• data-webserverurl
thismustbe theURL to the tomcatwebserver appendedwith thenameandpathof the servlet, suchas “http://www.mydomain.com/servlet/%servletname%”

Note if you have renamed the servlet folder you should use the new name in the data-webserverurl parameter instead of ‘servlet’;

The default value for %servletname% is ‘rdtaservlet’. You can modify this or add others by modifying the web.xml file. The following
xml can be added to the <web-app> element in the document to add a new servlet alias name. For example

<servlet-mapping>
<servlet-name>RdtaServ</servlet-name>
<url-pattern>/%servletname%</url-pattern>

</servlet-mapping>

ISP Web Hosting

If your web site is hosted by a third-party, such as an ISP, they will need to place the OmnisWeb Server Plug-in in their cgi-bin folder,
and furthermore they need to provide you with a direct connection to the Internet. Your ISP may want to test the web server plug-in,
usually the case for any files you place in their cgi-bin folder. Alternatively, you can rent a whole server in the cloud, in which case you
will have more control over the setup of the server and you can place the Omnis files in the correct location.

If your Omnis web application uses a web site hosted by an ISP you will need to adjust your port settings in the Omnis App Server and
HTML files. In this case you can use DomainName:Port or IPAddress:Port in your port setting.

385

Secure Sockets (SSL)

It is regarded as essential to use an SSL certificate for all web and mobile applications, to protect communications between clients
and the application server, and indeed most browsers will mark any web pages (applications) that do not use SSL as unsafe.

You can use secure sockets (HTTPS) if you have installed an SSL certificate on your web server. The JavaScript Client will use a secure
connection to connect the client to theweb server if youprefix theURLor IP_address in thedata-webserverurl parameterwith “https://”,
for example:

https://remainderOfFullURL

In addition, remote tasks have the $issecure property that lets you turn secure mode on and off dynamically, by assigning to the
property at runtime in your application.

Secure socket connections do not support the “address:port” format for the data-webserverurl parameter of a JavaScript Client object.

Web Server Plug-in Custom Configuration

You can configure the Web Server plug-in via a separate configuration file, allowing greater security and control over user access
to your Omnis web or mobile application. It is not necessary to configure the web server plug-in in most circumstances, but this
functionality provides added flexibility and security, as follows:

• Access and Security
Using the web server plug-in configuration file you can restrict access to an Omnis App Server

• Configure Server parameters
The configuration file allows you to override parameters for the Omnis App Server, or in effect, provide default parameters if the
oserver parameter is blank in your cgi parameters in your html; in this case the value would be taken from the configuration file.

• Post content to Remote tasks
the configuration file allows you to pass HTTP Post content to the Omnis remote task.

The parameters specified in your configuration file can provide default connections for clients, simplifying the post command required
to connect to the Omnis App Server. The configuration file should be placed in the same directory as your Web Server plug-in.

Server plug-in activation

The custom functionality in the Omnis Web Server plug-in is built into the plug-ins supplied with the Omnis App Server installation,
but to activate the functionality you have to rename plug-in itself.

mod_omnis.so

If you are using mod_omnis.so under Linux or Windows, you need to change the value of the location in your http.conf or equivalent
apache configuration script to /omnis_apacheini, for example:

<location /omnis_apacheini>
SetHandler omnis-apache

</location>

nph-omniscgi

Rename the nph-omniscgi.exe to nph-omniscgiini.exe for Windows, or rename nph-omniscgi to nph-omniscgiini for Linux.

omnisapi.dll

For Windows IIS based servers, rename omnisapi.dll to omnisapiini.dll.

rdtaserv.dll

If you are using the Web Services enabled Web Server plug-in, rename rdtaserver.dll to rdtaserverini.dll.

386

Creating a Configuration file

The configuration file should benamedomnissrv.ini andbeplaced in the samedirectory as yourWebServer plug-in, for bothWindows
and Linux.

The format of the configuration file mirrors that of a Windows .ini file and is defined as follows:

• Section names are contained in square brackets e.g. [SectionName].

• A section ends when another section begins or at End Of File (EOF).

• Comments are lines beginning with a semicolon (‘;’).

• All text following a comment is ignored until the line is terminated.

• Keys are of the form keyname=value where keyname is a unique identifier within the section and value is the value of the
specified key.

• Section names, key names and key values must not contain white space.

• Section names and key names are case sensitive.

The functionality in the Web Server plug-in is controlled using specific named sections in the configuration file. The omnissrv.ini file
can contain the AllowConnectionsTo section which controls access to the Omnis App Server. The .ini file can also include either a
DefaultConnection or OverrideConnection section (but not both), which either provide default parameters for the Omnis App Server
or override parameters posted to the Omnis App Server from the http web server.

Controlling Server Access

You can control access to your Omnis App Server by including the [AllowConnectionsTo] section in the configuration file. This section
contains a list of key names of the form address<n> where n is a sequentially numbered character starting at 1. When this section
is present, connections to Omnis App Servers are limited to those defined in the specified key values. In the event that the oserver
parameter is defined as a port number, only the port number is required.

For example, in the followingAllowConnectionsTo section connections are limited toOmnis App Servers running on the localmachine
on port 5920 and the remote machine 192.168.0.2 on port 5920.

[AllowConnectionsTo]
address1=5920
address2=192.168.0.2:5920

Note that the local IP address in the configuration file cannot be resolved. Imagine the server plug-in and the Omnis App Server
are on the same machine, with an IP address of 192.168.0.3. If the incoming request was of the form data- OmnisServer=5920, the
configuration file has to match this form. So if you want to allow only connections to port 5920, you would have to add this line to the
[AllowConnectionsTo] section: address1=5920. If you use the expanded form of the address, i.e. address=192.168.0.3:5920, the server
plug-in would deny the request. In the event of a denial of service the plug-in returns a HTTP 403 error with the following message
‘Access to the resource has been denied’.

Default Connections

You can provide default connection parameters in the [DefaultConnection] section of the configuration file. This section provides a
means of adding missing values into an HTTP post, or in effect, providing a complete set of default parameters if none are provided
in the HTTP post. When they are present in the HTTP request, the values in DefaultConnection are ignored and the values are taken
from the original request. The DefaultConnection section can contain the following keys:

• OmnisServer

• OmnisClass

• OmnisLibrary

• PostDataParamName

• Any number of additional parameter pairs in the form Parameter Name=value

387

The OmnisServer, OmnisClass and OmnisLibrary mirror the operation of the identically named remote form parameters. The value
of the PostDataParamName key specifies a variable name for all the content of the HTTP post. All other keys are assumed to be
parameters. They are passed to the Omnis remote task and appear as columns in the row variable. The column name is the key name
and the valuematches the value of the key. One thing to note, if the parameter is present in the original request and the configuration
file also contains a definition for the parameter, the value is always taken from the request even if the parameter has no associated
value. For example:

[DefaultConnection]
OmnisServer=192.168.0.1:5920
OmnisClass=remoteTask
OmnisLibrary=TEST
param1=value1
param2=value2
PostDataParamName=PostData

In the context of the above DefaultConnection section, consider the following URL which attempts to connect to Omnis:

/omnis_apacheini?OmnisClass=remoteTask¶m1=1234

TheOmnisClass andparam1 values are taken from theURLwhile the other values are taken from theDefaultConnection section. In this
case, no OmnisServer andOmnisLibrary parameters are provided in the query string, so those values are taken from the configuration
file. Therefore the plug-in will amend the query string to:

/omnis_apacheini?OmnisClass=remoteTask&OmnisServer=192.168.0.1:5920&OmnisLibrary=TEST¶m1=1234¶m2=value2&PostData=

Note PostData is empty as the content-type is application/x-www-form-urlencoded, so in this case the data is not passed to Omnis.

Overriding Connections

You can override the server parameters passed to the Omnis App Server by an HTTP post by including a [OverrideConnection] section
in your configuration file. In this case, all the values in the request are ignored, and the Omnis App Server uses values from the
configuration file. The OverrideConnection section may contain the following keys with associated values:

• OmnisServer

• OmnisClass

• OmnisLibrary

• PostDataParamName

• Any number of additional Parameter Name=value

These keys function exactly as described in the DefaultConnection section. An example OverrideConnection section is as follows:

[OverrideConnection]
OmnisServer=192.168.0.1:5920
OmnisClass=rtTest
OmnisLibrary=TEST
param1=value1
param2=value2
PostDataParamName=PostData

In the context of the above OverrideConnection section, consider the following URL which attempts to connect to Omnis:

/omnis_apacheini?OmnisClass=remoteTask¶m1=1234

In this case, the values in OmnisClass and param1 submitted in the post are ignored, and all the values for the post are taken from the
DefaultConnection section in the configuration file. Therefore the query string is amended to:

/omnis_apacheini?OmnisClass=rtTest&OmnisServer=192.168.0.1:5920&OmnisLibrary=TEST¶m1=value1¶m2=value2&PostData=

Note PostData is empty as the content-type is application/x-www-form-urlencoded, so in this case the data is not passed to Omnis.

388

Creating Standalone Mobile Apps

In addition to using the JavaScript Client in theweb browser on any computer ormobile device, you can embed your JavaScript Client
based remote forms into a Standalone app or “wrapper”, which you can deploy to end users as a self-contained app which they can
install onto a mobile device. To create a standalone app, we provide a JavaScript Wrapper Application for each supported mobile
platform, which currently includes Android and iOS. The wrapper applications create a thin layer around a simple Web Viewer which
can load the initial JavaScript remote form for your mobile application.

The wrapper applications allow you to deploy mobile apps that end users can run either in Offline or “serverless mode”, without
any connection to the Omnis App Server, or in Online mode which would allow end users to connect to the Omnis App Server to
synchronize their data and update the application content.

Figure 219:

• Offline or Serverless mode
end users can run your app in standalone or “offline” mode without ever connecting to the Omnis App Server or a database
server. The Application Files (remote form definitions, scripts, etc) are bundled with the wrapper app to create a single, clickable
application file; this allows complete “offline” operation, or a one-off connection can bemade to the Omnis App Server to install
the applications files and from there on a connection to the Omnis App Server would not be needed

• Optional connection
endusers have theoption to switch to “online” to synchronize thedatabase andappcontent via theOmnisAppServer; thismode
would suit end users who have an intermittent connection, but often need to synchronize their data with a central location

Wrapper Application Source Files

The projects and source code for the wrapper applications are available to download from the Omnis website: https://omnis.net/
developers/resources/download/jswrapper.jsp

The ZIP files contain template configuration files, together with the project and source files so you can build your standalone app or
customize the wrappers if required.

There is a separatemanual called ‘Building The [Android / iOS]Wrapper’ available on theOmnis website about using and customizing
thewrapper applications formobile app deployment: thismanual contains all the latest information for each of the supportedmobile
platforms and will be updated regularly to keep abreast of any changes in the build process.

Configuring the Wrapper Application

The wrapper applications can be configured to run a single JavaScript remote form as the entry point to the app, which can be
configured in a configuration file called config.xml.

389

https://omnis.net/developers/resources/download/jswrapper.jsp
https://omnis.net/developers/resources/download/jswrapper.jsp

Configuration file

The config.xml file contains theURL for the page containing your JavaScript remote formanddepending on the platform,may contain
a number of other parameters specific to your platform. The config.xml is standardized for all platforms, and is based on the following
structure:

<?xml version="1.0" encoding="utf-8" ?>
<settings>
<AppTitle>0</AppTitle>
<AppStandardMenu>1</AppStandardMenu>
<AppTimeout>300000</AppTimeout>
<MenuIncludeSettings>1</MenuIncludeSettings>
<MenuIncludeOffline>1</MenuIncludeOffline>
<MenuIncludeAbout>1</MenuIncludeAbout>
<SettingsFloatControls>0</SettingsFloatControls>
<SettingsScaleForm>1</SettingsScaleForm>
<SettingsAllowHScroll>0</SettingsAllowHScroll>
<SettingsAllowVScroll>0</SettingsAllowVScroll>
<SettingsMaintainAspectRatio>0</SettingsMaintainAspectRatio>
<SettingsOnlineMode>1</SettingsOnlineMode>
<ServerOmnisWebUrl>http://172.19.250.25:5911</ServerOmnisWebUrl>
<ServerOnlineFormName>/jschtml/rfOnline</ServerOnlineFormName>
<ServerOmnisServer></ServerOmnisServer>
<ServerOmnisPlugin></ServerOmnisPlugin>
<ServerOfflineFormName>rfOffline</ServerOfflineFormName>
<ServerAppScafName>mylib</ServerAppScafName>
<TestModeEnabled>0</TestModeEnabled>
<TestModeServerAndPort>172.19.250.25:5911</TestModeServerAndPort>

</settings>

The config.xml contains the following properties (note that somemay not be included on a particular platform):

• AppTitle
whether or not the app displays a title bar at the top. Note that hiding the title on Android 3 will hide the ActionBar which will
remove access the testing menu

• AppStandardMenu
whether or not the standard menu is displayed at the top.

• AppTimeout
the time in milliseconds after which the app will close after being sent to the background.

For all platforms:

• MenuIncludeSettings
whether the “Settings” menu option is available in the app.

• MenuIncludeOffline
whether the runtime menu option is available to switch to offline mode.

• MenuIncludeAbout
whether the “About” menu option is available in the app.

The following settings control the scaling of the app (remote form) on the device:

• SettingsFloatControls
when SettingsScaleForm is “0” (false), the client uses the $edgefloat property of each JavaScript Client control on the form.
When applying the screen size, the client uses $edgefloat to float the edges of controls (note that the component values are
not supported, just the edge-related values). If the form is wider or taller than the screen, floating only occurs if the relevant Set-
tingsAllowHScroll or SettingsAllowVScroll parameter is false. The amount by which the controls float is the difference between
the actual screen width or height and the designed width or height of the form for the closest matching layout breakpoint. The
value of $edgefloat is stored for each layout brealpoint

390

• SettingsScaleForm
If you set this to “1” (true), the client scales the form to fit the available screen space. The scaling factor is the screen width or
height divided by the value of the closest matching layout breakpoint. For these purposes, the actual screen size excludes the
operating system areas such as the status bar

• SettingsAllowHScroll and SettingsAllowVScroll
set these to “1” if you want to allow horizontal or vertical scrolling of the form respectively, or “0” if not

• SettingsMaintainAspectRatio
If you set this to “1”, scaling maintains the aspect ratio of the form. When turned on, and depending on SettingsAllowHScroll
and SettingsAllowVScroll, it may reduce the scaling factor in one direction, to make the form fit, and center the form vertically
or horizontally as required

• SettingsOnlineMode
whether the app starts in Online mode.

The following settings relate to the Omnis App Server:

• ServerOmnisWebUrl
URL to the Omnis App Server or Web Server. If using the Omnis App Server it should be http://<ipaddress>:<omnis port>. If
using a web server it should be a URL to the root of your Web server. http://myserver.com

• ServerOnlineFormName
route to the form’s .htm file from ServerOmnisWebUrl. So if you’re using the built in Omnis server, it will be of the form
/jschtml/myform.htm. If you are using a web server, it will be the remainder of the URL to get to the form, e.g. /omnis-
apps/myform. (Do not add the .htm extension!)

Only ServerOmnisWebUrl & ServerOnlineFormName are needed for Online forms. The other Server… properties are for Offline mode.

• ServerOmnisServer
The Omnis App Server <IP Address>:<Port>.

• ServerOmnisPlugin
If you are using a web server plug-in to talk to Omnis, the route to this from ServerOmnisWebUrl. E.g. /cgi-bin/omnisapi.dll

• ServerOfflineFormName
Name of the offline form. (Do not add .htm extension!)

• ServerAppScafName
Name of the App Scaf. This will be the same as your library name.

The remaining parameters refer to test mode.

• TestModeEnabled
whether the app will start in test mode (Ctrl-M on form from Studio to test on device)

• TestModeServerAndPort
the <ipaddress>:<port> of the Omnis Studio Dev version you wish to use test mode with.

You can also change these parameters by pressing the menu button on the mobile device, and using the menu options to change
them. The app remembers the last settingmade via the menu, so the config.xml lets you set the initial values in the wrapper applica-
tion.

Access Permission Requests

When you deploy your app and the end user downloads it, the appmust request permissions to access various areas of the device, for
example, the app must request access to the device Contacts, Camera, or Location (GPS) if this functionality is required in your app.

It is considered bad practice and potentially confusing for the end user to include unnecessary permissions for your app, especially if
you are distributing your app through one of the online app stores. When downloading/installing your app, the user can see which
permissions your app has requested access to, so any unnecessary permission requests may give the user the impression that your
app is malicious and they may not download and use your app.

391

Testing Remote Forms in a Wrapper App

During development, you can open a JavaScript remote form in a wrapper application using the Test Form Mobile (Ctrl-M) option,
assuming a wrapper application is setup and enabled (otherwise you can still test your mobile forms in a desktop browser on your
development computer before you setup the wrapper app). This option appears beneath the ‘Test Form’ option in the remote form
context menu. The Test Form Mobile option is only displayed in the relevant menus when both:

• A wrapper application is enabled for test form (see the menu of the Android app, and the system settings for the iOS app)

• A wrapper application is connected to the Omnis App Server, using the test form parameters.

The $designshowmobiletitle property determines whether or not the title of a wrapper application is visible when you use the Test
Form Mobile (Ctrl-M) option. For deployment, config.xml allows you to configure whether or not the title is displayed in the wrapper
application.

Serverless Client

PLEASE NOTE: you will require a new alternative Development license to enable the $serverlessclient property in a remote form: the
property will remain grayed out without this alternative license. (Also note that previous versions of the Serverless Client provided
local database support using UltraLite and a MobiLink server from Sybase but this setup is no longer supported.)

You can switch a remote form to operate in “Serverless Client” mode in which case your mobile app can operate entirely without
a connection to the Omnis App Server. In order for a remote form to be available in Serverless or offline mode, you must set its
$serverlessclient property to kTrue.

Any mobile app containing remote forms in serverless client mode and you can switch between “offline” and “online” modes, if re-
quired. Separate forms can be used for the same app in offline/online modes to provide different functionality.

The Serverless Client also includes Local Database support, utilizing a SQLite database, and even provides the ability for your offline
form to synchronize an end user’s local database with an online database. This means that a user could switch to offline mode while
in areas of no or patchy network coverage to continue working, and then switch back to online mode when back in the office.

How does it work?

The Serverless Client has provision for a local client-side database. This can be used as a local database for the standalone mode for
your app, or it can be used to synchronize with an online “Consolidated Database” (CDB). In the latter case, the local database is used
for storing tables held in the server-side database and for caching SQL transactions performed whilst the Omnis App Server is not
available.

Figure 220:

JavaScript Serverless Client allows forms to work in ‘offline’ mode

The client-side database can be SQLite and the synchronization of the local database with a “consolidated database” administered by
the SQLite Synchronization Server provided by Omnis Software.

You can download the ‘SQLite Synchronization Server’ manual from the Omnis website: www.omnis.net/download

392

Serverless Client Methods

All methods running in a Remote form in serverless client modemust be set to ‘Execute on Client’ (right click the method name in
themethod editor and select ‘Execute on Client’). From Studio 10.0.1 onwards the default execution type for newmethods added to a
serverless client remote form is client-executed.

Initialization and Termination Methods

The $construct() and $destruct() methods in a remote form cannot be executed as client methods, therefore you can createmethods
with thenames$init() and$term()whichperforma similar function that canbeexecutedon the client. The$init() and$term()methods
can be used in standalone apps running inside the JavaScript Client wrapper application in which all methods must be executed on
the client.

The $init() method is called after the form and the client script files have been loaded. This allows you to do any final initialization of
the remote form. The $term() method is called when a remote form instance destructs.

You can use $cinst.$layouttype in client methods, including $init(), to get the current layout breakpoint of the remote form on the
client (you can use $cinst.$screensize for the old $screensize based forms).

Remote Task Instances

The ApplicationWrappers send a unique device IDwhen connecting to the Omnis App Server. Omnis checks whether there is already
a remote task instance with the same device ID and form name in the current library, and if it finds one, it will close it before opening
a new task instance. This means that wrappers will not free the remote task connection when they timeout (as you cannot trap this
event), but when the app is re-opened, it will close the old task before opening a new one.

Serverless Client Application File (SCAF)

The Serverless Client Application File (SCAF) is a SQLite database that contains all of the resources necessary for a mobile application
to run locally in the wrapper in standalone mode. These resources include JavaScript scripts, CSS files, image files and Omnis remote
forms. There are two SCAF files needed for each wrapper application:

• Omnis SCAF (omnis.db)
files needed to run the JavaScript Client

• Application SCAF (<library_name>.db)
contains all your application files

Omnis Studio will generate these SCAF files automatically in the ‘/html/sc’ folder under the main Omnis folder. These files need to be
placed on the Omnis App Server in the same location for end users (mobile clients) to access if necessary (see below).

Whenever you save a remote form which has $serverlessclient set to kTrue, it will update the application files in your Omnis folder. A
message is displayed while Omnis exports all the necessary files.

If you need to rename your library, rename the library file itself in the file browser; you cannot rename it by changing the $name
property as it will revert to the original name when the library is re-opened. If you change the $defaultname library property, the new
name is used in the SCAF which is then rebuilt the next time the library is opened.

Updating the SCAF

When you make changes to CSS files or scripts you must update the SCAF to ensure your app is built using an up-to-date SCAF. You
can update the SCAF in the Studio Browser by clicking on the ‘Omnis Studio’ node and selecting the ‘Update Omnis SCAF’ option. For
example, the SCAF needs to be updated after the ‘user.css’ has been changed to ensure the omnis.scaf contains the updated style
sheet. Quitting and restarting Omnis Studio also updates the SCAF.

393

Deployment of SCAF Files

When the wrapper application is executed for the first time in offlinemode it will check if any SCAF files are bundled with the applica-
tion (see the wrapper building section for info on how to do this). If these files exist, they are copied into the application space on the
device and used in the wrapper. Note that bundling SCAF files with the application will increase the size of the application bundle.

If SCAF files are not distributed with the application the application will attempt to connect to the Omnis App Server on startup and
download the latest versions of the SCAF files.

For the application to knowwhich application SCAF to use the option: <APPSCAF>name</APPSCAF> (where name is the name of the
Omnis library)
is used in the config.xml file within the wrapper application.

Updating SCAF Files

Once the app has been installed onto a device, it will add an entry to the ‘Settings’ app of the device, with the same name as your app.

The wrapper configuration sub menu “Update Omnis Software Package” contains options for updating the SCAF files. The available
options are:

• Never
the SCAF will never be updated

• Always On Startup
will attempt to connect to the Omnis App Server and update the SCAF files every time the application is run

• Next Startup Only
will attempt this update only on the next execution of the wrapper application

It is also possible for the end-user to update the SCAF from inside the app by swiping down the screen to open the runtime menu
and selecting the appropriate menu item.

Database Support

The JavaScript wrapper application contains embedded support for SQLite and provides client-executed methods with access to a
local private SQL database. The database can currently only be used by Serverless Client applications in offline mode, inside the
wrapper application on Android and iOS.

All interactions between the JavaScript Client and the wrapper will be asynchronous, so the database API also takes this into account.

394

Schema and Query Classes

The JavaScript Client-executed method code generator restricts the $definefromsqlclass() method for use with either a query or a
schema class name as the first argument although it is still possible to pass a subset of column names required using parameter two
onwards. This will allow for example:

Do list.$definefromsqlclass('SchemaName')

and the code generator will expand this into JavaScript to define the list or row with the columns from the schema.

Data Types

When creating rows to be used for bind variables, it is important that the data types of the columns in the row match those in the
database.

Client methods only provide a ‘var’ data type when creating variables, which will generally be interpreted as Character type. As such,
it is safest to manually add columns to your row, using the function:

Do lRow.$cols.$add(<name>,<data type>,<data subtype>,[<length>])

For example:

Do lRow.$cols.$add('Age',kInteger,kShortint)

The SQL Object

A Serverless Client application gains access to the embedded database using a SQL Object, which in this case is a property of the
current remote form called $sqlobject:

$cinst.$sqlobject

For example:

Calculate oVar as $cinst.$sqlobject

All requests to the SQL object are asynchronous (except $getlasterrortext and $getlasterrorcode), and call a client-executed comple-
tion method ($sqldone) in the current remote form instance upon completion. Each request returns an identifier when called and
the same identifier is passed as a parameter to the completionmethod, allowing the request to be identified. Thus, multiple requests
may be in progress “simultaneously”, although they will only execute serially in the wrapper.

Note that you do not need to provide a $sqldone() method although if you do not, errors may be ignored. On success, the returned
unique identifier is positive. A negative value indicates an error code.

In the following sections, oSQL is a Var containing the SQL object returned by $cinst.$sqlobject.

$getlasterrortext()

Do oSQL.$getlasterrortext() Returns lErrText

Returns the error text of the last operation. “OK” implies success.

$getlasterrorcode()

Do oSQL.$getlasterrorcode() Returns lErrCode

Returns the error code of the last operation. 0 implies success.

395

$selectfetch()

Do oSQL.$selectfetch(cSQL, lBindVars, iFetchCap) Returns id

Executes a statement with a result set (typically select or select distinct) and fetches the initial set of rows.

• cSQL
is the statement. This may be hand-coded, or the result of $select/$selectdistinct for a schema or query class. cSQL can contain
bind variable place-holders in the form@[column_name], where column_name is the name of a column in lBindVars.

• lBindVars
is a row variable referenced by one or more bind variable markers in the SQL text.

• iFetchCap
is the number of rows to initially fetch (this can be kFetchAll to fetch all rows in the result set).

For all object methods, note that lBindVars may contain columns not referenced by the SQL text. Only those columns referred to by
name in the bind place holders will be read.
On completion, $sqldone() is called with the following parameters:

• The request id (as returned by $selectfetch)

• A list containing zero or more rows from the initial result set.

At this point it is your responsibility to copy or populate the appropriate form controls to display the data.

Example1:

Do iList.$definefromsqlclass('myQuery')
Do oSQL.$selectfetch($clib.$queries.myQuery.$select, iList, 100) Returns id

Example2:

Do oSQL.$selectfetch('select * from Table1 where age=@[age]', lBindVars,100) Returns id

$fetch()

Do oSQL.$fetch(selectfetchid, iFetchCap) Returns id

Fetches more rows from the result set generated by the last $selectfetch() executed.

• selectfetchid is the id returned by $selectfetch() and passed to $fetch(); a new ID is returned.

• iFetchCap is the number of rows to fetch.

In this case, the id returned by the call to $fetch() is a new ID. On completion, $sqldone() is called with the following parameters:

• The request id (as returned by $selectfetch)

• A list containing zero or more further rows from the result set.

396

$insert()

Do oSQL.$insert(cSQL, list) Returns id

Inserts one or more rows into a database table.

• cSQL is the insert statement. Thismay be hand-coded, or the result of $insert for a schema class. cSQL can contain bind variable
place-holders in the form@[$column_name], where column_name is the name of a column in listorrow.

• listorrow is the list or row containing the data to insert.

On completion, $sqldone() is called with the following parameters:

• The request id (as returned from $insert()).

Example:

Do oSql.$insert("INSERT INTO Product (name, quantity) VALUES (@[colName],@[colQuant])",lBindVars) Returns IDinsert

$delete()

Do oSQL.$delete(cSQL, row) Returns id

Deletes zero or more rows from a database table.

• cSQL is the delete statement. This may be hand-coded, or the result of $delete() for a schema class. cSQL can contain bind
variable place-holders in the form@[column_name], where column_name is the name of a column in row.

• row contains the values referenced by the bind variable place-holders.

On completion, $sqldone() is called with the following parameters:

• The request id (as returned from $delete()).

$update()

Do oSQL.$update(cSQL, newRow, oldRow) Returns id

Updates zero or more rows of a database table.

• cSQL is the update statement. This may be hand-coded, or the result of $update for a schema class. cSQL can contain bind
variable place-holders in the form @[$column_name], where column_name is the name of a column in newRow or oldRow. If
the bind variable is used in the SET clause, it will come from the newRow variable, if it is used in theWHERE clause, it will come
from the oldRow variable.

• newRow is the row containing the values referenced by the bind variable place-holders of the new values, i.e. those specified in
the SET clause.

• oldRow is the row containing the values referenced by the bind variable place-holders of the old values, i.e. those specified in
the WHERE clause.

On completion, $sqldone() is called with the following parameters:

• The request id (as returned from $update()).

397

$execute()

Do oSQL.$execute(cSQL) Returns id

Executes a SQL statement that does not return a result set, intended for use with DDL administrative commands such as CREATE,
DROP and ALTER.

• cSQL is the SQL statement to be executed. Note that bind variable place holders are not supported.

On completion, $sqldone() is called with the following parameters:

• The request id (as returned from $execute()).

The following methods may be used to obtain database meta-data:

$selecttables()

Do oSQL.$selecttables() Returns id

Retrieves table names defined in the local database.

On completion, $sqldone() is called with the following parameters:

• The request id (as returned from $selecttables()).

• Single-column list containing the TableName of each table in the local database.

$selectcolumns()

Do oSQL.$selectcolumns(tableName) Returns id

Retrieves column names and type information for the specified table.

On completion, $sqldone() is called with the following parameters:

• The request id (as returned from $selectcolumns ()).

• A list describing the table column definitions, defined with the following columns: ColumnName - name of the table column.
SqlType - name corresponding to the column’s SQL data type. ColumnSize - the size of a variable-length data type, e.g. for CHAR
and BINARY. Precision - the numeric precision for a NUMERIC column. Zero for others. Scale - the numeric scale for a NUMERIC
column. Zero for others. Default - the default value that was assigned to the column when the table was created.

$selectindexes()

Do oSQL.$selectindexes(tableName) Returns id

Retrieves column index information for the specified table.

On completion, $sqldone() is called with the following parameters:

• The request id (as returned from $selectindexes ()).

• A list describing the table column definitions, defined with the following columns: IndexName - name of the index. Column-
Names - comma-separated list of column names used by the index. PrimaryKey - kTrue if the index was created with the
PRIMARY KEY clause. Unique - kTrue if the index was created with the UNIQUE clause.

398

$sqldone method

The $sqldone method is the client-executed completion method for SQL objects. When you add the $sqldone method to a remote
form Omnis adds pre-defined or boilerplate code, as well as the required parameter variables, and sets the method to execute on the
client automatically. This saves you having to add the same code every time you want to create the $sqldone method – you can then
add to or amend the code as you wish. The code added to $sqldone is:

parameter vars pRequestId (Var type), pList (List) created
local vars lErrorCode and lErrorText created
Check for an error:
Do $cinst.$sqlobject.$getlasterrorcode() Returns lErrorCode
If lErrorCode<>0 ## sql error occurred, show message
Do $cinst.$sqlobject.$getlasterrortext() Returns lErrorText
Do $cinst.$showmessage(lErrorText,'SQL Error')
Quit method

End If
Switch pRequestId
Add cases for the IDs returned by your requests here.

End Switch

The code first checks if there was an error, then creates a Switch statement to handle the results based on the request in pRequestId.
If you do not want to use this code, just select the lines of code and delete them.

SQLite Database Support

The SQLite offline storage and synchronization process uses a SQLite database on the remote client device. More specifically, SQLite
synchronization relies on SQLite databases on the server and on each client device to store user tables as well as synchronization
status info. The SQLite Synchronization Server uses these tables to pass data to/from each synchronization client and to forward
synchronization requests on to the Consolidated Database (CDB). The SQLite Synchronization process is described in the ‘SQLite
Synchronization Server’ manual which you can download from the Omnis website: www.omnis.net/download

To use the SQLite database object, the mobile device application is linked with the dbSQLite library. The SQLite initialization parame-
ters are as follows:

$syncinit()

Do oSQL.$syncinit(syncParams) Returns id

The SQLite module currently recognizes the following parameters:

Username – The synchronization user name (defined at the synchronization server).
Password – The synchronization user password (defined at the synchronization server).
HostString – RESTful connection URL to Omnis Sync Server.
Timeout – The timeout in seconds for synchronization operations.

On completion, $sqldone() is called with the following parameters:

• The request id (as returned from $syncinit()).

Example:

Do con.$define(Username, Password, HostString, Timeout)
define using local variables
Do con.$assigncols('user1','xxxxxx','http://192.168.0.10:7001', 5)
Do oSQL.$syncinit(con) Returns id

399

HostString

The HostString parameter is a RESTful connection URL to Omnis Sync Server. For a direct connection to the built-in Omnis server, the
HostString should be of the form:

http://<ip-address>:<$serverport>

If you are connecting through a web server, you need to add the omnisrest… server plugin to your web server (in the same way as the
other server plugins), and connect through that. The HostString should then be of the form:

http://<web server address>/<Omnis rest plugin>/ws/<XXX>

where <XXX> is either:

<Omnis $serverport> (if Omnis is on the same machine as the web server)

<Omnis server ip-address>_<Omnis $serverport>

<Server Pool>,<Omnis server ip-address>_<Omnis $serverport>

For example:

http://mysite.com/cgi-bin/omnisrestisapi.dll/ws/192.168.1.14_7001

or

http://mysite.com/cgi-bin/omnisrestisapi.dll/ws/POOL,7001...

$sync()

This method invokes a request for uplink synchronization followed by downlink synchronization. Only tables previously configured
for uplink (or normal) synchronization will upload IUD requests to the SyncServer. Likewise only tables configured for downlink or
(normal) synchronization will receive IUD requests.

Please refer to the ‘SQLite Synchronization Server’ manual for information on the design, implementation and usage of the synchro-
nization server. You can download this manual from the Omnis website: www.omnis.net/documentation

No Database Support

If the remote client application does not require database support, the application can instead be linked with the dbNoSQL library.
This library provides stub definitions for the database API calls required by the wrapper application. Note that in this mode however,
any calls to the SQL object will fail.

JavaScript Client Wrapper Application

The wrapper encapsulates aWebView which hosts the JavaScript Client application. The wrapper initializes using the supplied con-
fig.xml file which also informs the wrapper of the HTML page to load for the application.

The wrapper can be configured to connect to the Omnis IDE as a client for testing purposes. This is achieved via the Test Mobile Form
menu option in the Studio IDE. The wrapper also provides device-independent access to features such as GPS, the camera and audio
interface using the Device Control (see the JavaScript Components chapter for details about accessing device features).

To support Serverless operation, the WebView runs local scripts that contain client executed methods.

Before you compile the app, you will need to customize the config.xml file.

When the client operates in online mode it uses the URL parameter from the config file to load the remote form and the wrapper
behaves like a standard JavaScript application. If the client is to run offline however, the other config parameters are used to allow the
wrapper to (optionally) update its local copy of the application, or to run the forms locally.

iOS Wrapper Project

The iOS wrapper project has two targets, both with differing local database support, and one with support for Push Notifications.
These are:

• OmnisJSWrapper – includes embedded SQLite database which is used for local database support, plus Synchronization with a
back-end server using the SyncServer.

• OmnisJSWrapper – as above but with Push Notifications.

400

03jscomps.html

Figure 221:

iOS Wrapper Licensing

The iOS applicationwrapper uses theUICKeyChainStorewrapper, createdby kishikawakatsumi andgovernedby theMIT license: more
info is available here:
https://github.com/kishikawakatsumi/UICKeyChainStore

If you distribute your Omnis app using the iOS wrapper you will need to comply with the terms of this license and include the MIT
requirements in your own software license.

Push Notifications

Push Notifications are supported in the Android and iOS JavaScript Wrappers (version 2.0+) which means you can send messages to
any clients that have yourmobile app installed (even if it is not running). In this respect, the ability to send push notifications provides
a powerful and interactive feature that proactively encourages end users to open and use your mobile app.

A notification or message pushed to a client could include an important news item, a message to users about a new entry into the
database, or anything else you want your end users to know about. You can include a payload of data to send with the notification,
which will be passed to your Remote Form, allowing you to provide a response or outcome to the user clicking on the notification. The
following is a notification on an Android phone.

Figure 222:

Setting up Push Notifications

Support for notifications is provided via the Cloud Messaging or Push Notification Service on the respective platform, which must
be enabled in your mobile app project when it is built using the latest JavaScript Wrapper SDK. To setup notifications in your app on
Android and iOS, you will need to use Firebase from Google.

401

https://github.com/kishikawakatsumi/UICKeyChainStore

In order to manage notifications, it is possible to create groups of devices, and send notifications to particular groups, or individual
devices. All functionality can be achieved in your Omnis code (using the notation), or using an admin tool, called Push Notifications,
under the Tools menu on the Omnis menubar. Note the tool is an Omnis library located in the Startup folder which must be present
for Push Notifications to work in your mobile apps, including your Omnis code, and for the Omnis App Server configuration to be
setup.

For further information about setting up Push Notifications in your mobile apps, see the Push Notifications document on the JS
Wrapper Download page.

Omnis App Manager

The Omnis App Manager is an iOS app that allows you to connect to and test your Omnis mobile applications, and manage multiple
such configurations – it also allows you to test your iOS apps without having to go through the submission process with Apple which
you will need to do when you want to deploy your completed iOS app. Therefore, the Omnis App Manager should be used primarily
for testing, and when you are ready to deploy your Omnis application, you can download the JavaScript Wrappers from the Omnis
website, and build a completed stand-alone app.

Specifically, you can use the AppManager to test functionality in the JSDevice control before compiling your complete app using the
wrappers. You should note that the AppManager does not support Push Notifications, so you will need to compile your app using the
wrappers to test notifications.

You can download the Omnis App Manager from the Apple Appstore using the following shortcut: https://bit.ly/omnis-app-manager

There is no appmanager for Android since you can easily build the Android wrapper on any platform and sideload the app to devices
to test it, without having to go through the App Review process.

Creating an App Configuration

To set up the AppManager to test yourmobile app, open the appmanager, and click on the + icon to add a new configuration. To test
an app you can just fill out the first three fields, as follows:

• Name
a suitable display name for the app.

• Host Server
the IP address of your development computer or Omnis Server, including the port number, e.g. 9814. The server address should
be something like: http://192.168.1.100:9814. The port number is stored in the $serverport property under the Prefs option in the
Studio Browser. If you are using a web server, this should be the address of your web server.

• Online Form URL
the location and name of your test form, such as /jschtml/<remote-form-name>.htm. Note that you need to have tested your
remote form in order to open the test HTML pagewhich is created automatically when you open a remote form in designmode.
If you are using a web server, this should be the path to your form’s .htm file on your web server, relative to ‘Host Server’ above.

When the app information is complete tap on Save. To open the app (form), tap on the app name. Your remote form will open in the
app manager allowing you to test its functionality, for example, you could test actions in the Device control.

The remainder of the settings in the app configuration are for setting up a standalone application running in offline mode as follows:

• Offline Form Name
the name of the remote form used for offline mode (the $serverlessclient property of the form is set to kTrue), minus the .htm
extension, e.g. jsOffline.

• App SCAF Name
the name of the SCAF file for the application, generally a lower-case version of the library name, e.g. myapp.

• Web Server Plugin
if you are using a web server plug-in to talk to Omnis, this is the name and location of the plug-in from the server named in the
‘Host Server’ field, e.g. /cgi-bin/omnisapi.dll.

• Omnis Server
This is only necessary if you are using a web server with the Omnis web server plug-in, and can be either: 1) the Omnis port
number (if Omnis is running on the same computer as the web server), or 2) <ip-address>:<port>, e.g. 192.168.1.100:9814.

402

https://omnis.net/developers/resources/download/jswrapper.jsp
https://omnis.net/developers/resources/download/jswrapper.jsp
https://bit.ly/omnis-app-manager

• Omnis Studio Version
the version number of Omnis Studio, e.g. 10.2

• Start Offline
enable to start your app offline

• Disable UTC Data Conversion
disables the automatic conversion of datetimes to UTC from local time when they are sent to the server.

Next are the database settings.

• Local Database Name
this is the name of the local SQLite database to be used, including the .db extension, e.g. local.db. Multiple configurations with
the same name here will share the same local database.

The Behaviour settings.

• Disable Swipe To App List
this option disables the ability to swipe from the edge of the screen to open the apps list.

You can createmultiple configurations in the appmanager to test your Omnismobile applications, but in order to test an app it needs
to be open and running either in your development copy of Omnis or on the Omnis Server.

Headless Omnis Server

There is a “headless” version of the Omnis App Server on Linux that allows you to run your JavaScript Client-based web and mobile
applications in a headless environment. The headless server is available for Linux only.

A so-called headless Omnis Server installed under Linux does not have awindow-based interface, but can be controlled remotely from
the command line in a Terminal window on the Linux machine, or you can configure the headless server using an Admin Tool which
is accessible using an HTML page located in the HTML folder in themain Studio folder (the admin tool library is located in the Startup
folder of the Headless Omnis Server tree).

Console Commands

The ‘headlessAcceptConsoleCommands’ item in the ‘server’ section of config.json controlswhether or not the headless server provides
a basic command line interface when used in a terminal window. The default setting for ‘headlessAcceptConsoleCommands’ is false.
If set to True all Console Commands are recorded whichmeans that 100% of CPU is used when the Headless server is run as a service:
you will need to enable this option in config.json to accept all Console Commands.

Functions

The function isheadless() returns true when running in the headless server.

sys(231) returns zero in headless server.

sys(233) returns empty in headless server; it returns the title of the main Omnis application window in the full server.

Java

You can start the JVM at startup by setting the ‘startjvm’ in the ‘java’ section of config.json to true: it cannot be started by any other
mechanism on the headless server.

Class Notation

If yourOmnis code createsnewclasses usingnotation, there is amechanism to initialise newobjects using template files, located in the
‘componenttemplates’ folder in the ‘Studio’ folder. The folders are: componenttemplates/window, componenttemplates/remoteform,
componenttemplates/report containing the template files to create window, remote form, and report instances, respectively. Each
template file name is complibrary_compcontrol.json, with spaces converted to _ (underscore): it is a copy of an object.json file where
only the properties andmultivaluepropertiesmembers are used. complibrary and compcontrol are the component library and control
name.

403

Restrictions

There are various restrictions or differences from full Omnis Server, as follows:

• Printing images to PDF in the headless server is restricted to PNG images (or true-color shared pictures) only.

• There is no port support.

• You should use the ‘start’ entry in the ‘server’ section of config.json to start the multi-threaded server

• The Test if running in background command always sets flag to true in the headless server.

• Several commands and notation methods generate an error if executed in the headless server e.g. open window, $open for a
window, etc.

• Picture conversion functions are not supported: pictconvto, pictconvfrom, pictconvtypes, pictformat, pictsize (a runtime error
is generated).

• Standard messages generated by the server (OK messages and errors) are sent to the server log file, or could be routed to the
Terminal if appropriate

Printing JPGs

In order to print JPEGs from an application running on the Headless Linux Server, the ImageMagick package has to be installed.

Logging External Errors

The Headless Server logs amessage when an external or external component cannot be loaded. This is a message of type headlesser-
ror, and includes the system error text reporting the missing dependency that caused the component not to open.

Installing the Headless Server (Linux)

Download the Headless Omnis Server installer for Linux from: https://www.omnis.net/developers/resources/download/index.jsp

This install assumes you are running as Root or using sudo.

Update your version of Linux using the commands below that correspond to your distribution of linux:

Centos/Redhat: sudo yum update
Suse: sudo zypper update
Ubuntu/Debian: sudo apt-get update

Once updated, you will need to install the dependencies that Omnis requires to run, which are as follows:

Centos/Redhat: cups, pango
Suse/Debian: Runs out of box
Ubuntu: cups, libpango1.0

Once these are installed you can start the installer:

./Omnis-Headless-App-Server-11-x64.run

Follow through the installer as you would a normal install of Omnis Studio making sure your serial number is correct or the install will
fail.

You can serialize theHeadless Omnis Server using theOMNIS_SERIAL environment variable. If the Headless Server checks for serial.txt
and there is no serial number saved in the omnis.cfg, it reads the serial number from the OMNIS_SERIAL environment variable before
failing.

For Centos 7 and Redhat the service will not automatically start after a reboot, therefore you will need to manually add Omnis (or
whatever you called your service) to the service autostart list using the following lines:

404

https://www.omnis.net/developers/resources/download/index.jsp

sudo /sbin/chkconfig --add homnis
sudo /sbin/chkconfig --list homnis (This line is to show that you have added homnis correctly)
sudo /sbin/chkconfig homnis on

You can now configure the Headless server using the Admin tool, as below.

To summarize the steps for each platform:

CENTOS7 & REDHAT

Required commands for Omnis to run on Centos:

sudo yum update
sudo yum install cups pango
sudo /sbin/chkconfig --add homnis
sudo /sbin/chkconfig --list homnis
sudo /sbin/chkconfig homnis on

SUSE

The Headless Server should work out of the box on SUSE, but we would recommend an update just in case:

sudo zypper update

Ubuntu 16.04, 17.04 & DEBIAN 9

sudo apt-get update
sudo apt-get install unzip libpango1.0 cups

Headless Server Admin Tool

There is an Admin Tool (OSAdmin) that you can use to configure the Headless Omnis Server: the Admin tool is implemented as a
remote form and can be loaded in a web browser by opening the web page called ‘osadmin.htm’, which is located in the ‘html’ folder
of the Omnis Server tree (not the SDK). However, before you can open this page to configure your headless server, you will need to set
edit the osadmin.htm file to specify the location of your headless server. You need to edit the “data-webserverurl” parameter (enter
either URL, IP address or Service name, and Port number, e.g. http://192.1.1.68:5000), thenmove the file to a location that allows you to
open the file in a web browser and has network access to the headless server (the Headless Omnis Server installer should prompt you
to set these options, but you may also like to change themmanually).

The Headless Server Admin tool has a number of tabs that let you view or configure the server Activity, Logs, Settings, and Users.
When you first open the admin tool in your browser, you are requested to login: use the default username: omnis, password: 0mn1s
(first character is zero). After logging in, you can change the password for the default user, or create other users.

The configuration and settings for your Headless Server are stored in a SQLite database. The location of this database is specified in
the “headlessDatabaseLocation” item in the “server” section of the Omnis Configuration file (config.json).

Activity

The Activity tab lets you see all Open Libraries on the server. You can use the Refresh button to refresh the list.

The Open button lets you open a library on the server; note the construct method will be run if present. You can click on a library in
the list and close it using the Close Library button; note that closing a library will suspend all clients connected to that library.

The Active Tasks tab shows all current, active task instances or client connections on the server; you can select a task or connection
and view its details. You can kill or close a task instance or connection using the Kill Task button; note that killing a task or connection
will suspend the operation of the application for the connected client.

405

Figure 223:

Logs

The Logs tab lets you view the logs for the Server:

• Server
provides a log of the headless server activity (the location of the logs can be set under the main Settings tab)

• Monitor
provides a log of all the active client connecttions (task instances)

• Service
provides a log of all the errors ormessages generated by the server including anymessages in the trace log or information about
any web service requests.

Under the Service tab, the Configure button lets you set up what messages are recorded in the log, including the attribute “folder” of
“logToFile” which is the name of the path relative to the Omnis Server tree where the service logs are generated. These settings are
added to the config.json for the server, under the “log” member:

"log": {
"logcomp": "logToFile",
"datatolog": [
"restrequestheaders",
"restrequestcontent",
"restresponseheaders",
"restresponsecontent",
"tracelog",
"seqnlog",
"soapfault",
"soaprequesturi",
"soaprequest",
"soapresponse",
"cors",
"headlessdebug",
"headlesserror",
"headlessmessage",

406

"systemevent"
],
"overrideWebServicesLog": true,
"logToFile": {
"stdout": false,
"folder": "logs",
"rollingcount": 10

},
"windowssystemdragdrop": true

}

Settings

Under the Settings tab you can specify the location of the Server and Monitor logs, plus the timer period and size of the logs. You can
also set up the Server Port, number of Server Stacks, and the Timeslice for the Headless server (and specified in the config.json file),
and you can restart the service from here.

The default service name of the Headless server is “homnis” which is specified in the “server” member of the config.json file:

{
"server": {
…
"service": "homnis"

You can upload libraries from the developer version to the startup folder of the Omnis Server, as well as move .htm files to the root of
your web server (/var/www/html); plus you can remove files. Under the Settings section you can set the path to webroot and the web
server handler, which default to /var/www/html and /omnis_apache respectively.

If you are running a different web server or web root directory, you need to modify these settings before uploading. For example, if
you are using the Omnis built-in web server, you need to set the webroot path to ‘[path to Omnis read/write directory]/html’ and the
handler to ‘_PS_’.

Furthermore, osadmin will change the htm uploaded to use the specified web handler and the server port Omnis is currently bound
to, therefore changing an htm before uploading it could break this functionality, so do not edit the htm file in this case.

Users

The Users tab lets you update users or create new ones. The default omnis user can be changed here. When checked, the Re-start
Optionwill allow a user to restart the server.

MultiProcess Server

Under normal operation, the multi-threaded Omnis Server does not take full advantage of multi-core processors, because it uses
a time-slicing model that single threads the execution of Omnis code in all situations, other than when some sort of external call
(e.g. a DAM call) is in progress. The concept of the MultiProcess Server (MPS) for the Linux Headless server has been designed to
eliminate this short-coming and deliver significant performance improvements in your applications, by using amultiprocess rather
thanmultithreaded server model.

When using the MPS in the Omnis Linux Headless Server:

• There is a single main server process that receives requests from clients.

• There is a separate child process for each client, represented by a single remote task.

Themain server process passes the request to a child process which executes the request. The child process then passes its response
back to the main process, which then sends the response to the client.

Each child process is created using a forking system; however, the server is implemented so that when a child process becomes free
(because its remote task destructs), it can be added to a pool of free child processes, ready to be associated with a new remote task.
This greatly improves performance.

407

One of the main features of the MPS is that it can be plugged into an existing server configuration, and it will still work with the load
sharing process; in other words, it still has exactly the same interface via its server port.

Another major advantage of using the MPS is that since execution is isolated to a single client per process, any problem in the child
process (a crash perhaps), will only result in a single client receiving an error, and the server will continue running.

Configuration

To use the MultiProcess Server (MPS), you need to add some entries to the “server” section of the configuration file (config.json) for
the Linux Headless Server. The entries are:

• multiProcess
When multiProcess is true, the Linux Headless Server will start up in multiprocess mode; in this case, the entries “start” (Start
server flag), “stacks” and “timeslice” in the server section of config.json are ignored as they are not relevant to the MPS.

• maxChildProcesses
is the maximum number of child processes; default is 0 (zero), which means there is no maximum number of child processes

• maxFreeChildProcesses
is the maximum number of free child processes (not associated with a remote task); default is 5

The new options are written to the “server” section of config.json like this:

"server": {
“multiProcess”: true,
“maxChildProcesses”: c,
“maxFreeChildProcesses”: f

},

The settings formaxChildProcesses andmaxFreeChildProcesses depend on the size of the application, and the power andmemory of
the system, therefore a degree of system tuning will be required. Another factor to consider is the serial number. If the serial number
only allows 100 users, then only 100 child processes can be created; however, if the serial number is a MAXW number, then 32000
users (themax number allowed) is probably toomany for a single Omnis instance – in this case, you would want to prevent thatmany
Omnis client connections coming to the single server, using load balancing.

When there is a free child process, a new client will connect a bit faster, as a free process is ready to go, so it is worth allowing these to
build up to a sensible number.

In addition, you may want to handle timeouts for client connections. The headless server in all its variants (single-threaded, multi-
threadedandmulti-process) supports the followingentries in the “server” section of config.json that provide somecontrol over reading
requests from a client:

"timeoutReads": true,
"readTimeout": s

These entries indicate if the server will timeout a connection from a client if the complete request is not received in “readTimeout”
seconds.

Configuration files

Child processes never write to the files omnis.cfg and config.json.

Libraries

The MPS starts up just like the normal headless server. As such, it opens libraries in the startup folder, and constructs their startup
tasks. There are however some rules that need to be followed, because of the way the forking process works:

• No DAM connections can be left open after the startup task constructors have run.

408

• No files opened by FileOps or other externals should be left open after the startup task constructors have run. This is because
their file descriptors will be shared by each child process, because of how the forking process works.

• A child process can only write to a library that it has opened or created itself (this is opened with exclusive access by the child
process). If the child process attempts to save a class to a library it did not open or create, Omnis ignores the error and returns
success rather than an error code.

• A child process can only close a library that it has opened or created itself .

• osadmin cannot open and close libraries in the MPS.

Internally, when the forking occurs, the child process closes and re-opens the file descriptor (read-only, shared) for all open library files,
since the otherwise shared file descriptor with the main process has a common shared file offset. Additionally, byte range locking
calls in the child become no-ops.

Classes

As part of startup of the MPS, Omnis caches all class data from all open startup libraries in memory. This allows the class data to be
immediately available to a child process after it is created using the forking process. As stated earlier, you cannot write to the startup
libraries. Therefore, you should not modify classes belonging to these libraries in a child process, since the child process will typically
be used for many remote task instances during its lifetime. However, this is not enforced.

Commands

You cannot use the following commands in the MPS:

• Start server and Stop server.

• Set timer method and Clear timer method.

All of the above generate the error 125446 (cannot use this command, function, or notation, in the multi-process server).

You cannot use the command Quit Omnis in a child process of the MPS. Attempting this generates the error 125437 (cannot use this
command, function, or notation, when running in a child process in the multi-process server).

Finally, the commandsBegin critical block and End critical block have no effect in theMPS. This is because each child process handles
a single remote task.

sys() functions

There are two sys() functions to support the MPS:

• sys(243) returns true if and only if Omnis is running in MPS mode.

• sys(242) returns the child process ID, a character string that uniquely identifies the child process that is currently running. When
the method is not running in the MPS, or not running in a child process, this has the value “0”.

sys(242) can be used to identify the child process that is to process a request from a client: see the section “Using The Same Child
Process” later in this document.

Process init method ($processinit)

When theMPS creates a new child process via the forking process, the child process runs the $processinit() custommethod (if present)
in the startup task of each open startup library. You can use $processinit() to carry out any initialization required to set up the environ-
ment in which all remote tasks handled by the child process will run.

Database Connections

Each child processhas its own SQLdatabase connections. You could use $processinit(), for example, to create a server pool containing
a single database connection, that you can then use for all remote tasks that the child process handles.

409

Remote Task Methods

$maxusers

The MPS does not support the $maxusers property of a remote task.

$sendall()

Due to itsmulti-process architecture, theMPS does not support notation such as $iremotetasks.$sendall(), because if you execute this
in a child process, it will only apply to the currently executing remote task.

To overcome this, Omnis includes (for all platforms, and all variants of server: single-threaded, multi-threaded andMPS) the following
notation that allows you to “broadcast” a message to all remote tasks, including those running in another child process in the MPS.

Sending messages to Remote task instances using $broadcast()

There is a method of the $iremotetasks group of remote task instances called $broadcast() that can be used to send or “broadcast” a
message via a public method to all task instances; its syntax is:

• $broadcast()
$iremotetasks.$broadcast(cMethod, vListOrRow [, bWait=kTrue])

Calls the public method cMethod in all open remote task instances, passing vListOrRow as a parameter to each call. If bWait is kTrue
returns a list of return values, containing a line for each remote task that executed the method.

cMethod does not need to exist in all remote tasks; if it does not exist, Omnis ignores the remote task.

When using bWait with value kTrue, all remote tasksmust return the same data type. If the returned type is row, then the return value
list is defined to have all of the columns of the row (so all remote tasksmust use the same definition for their returned row), otherwise
the return value list has a single column with the returned data type as its type.

Omnis Data Files

Omnis data files cannot be opened in theMPS. Attempting to open one causes the error 101437 (Cannot use data files (either because
the serial number does not allow data files or because Omnis is running as amulti-process server or because Omnis was invokedwith
–runscript)).

Icon data files such as omnispic.df1 can still be used. As for libraries, the child process closes and re-opens (read-only, shared) the file
descriptor for all open picture data files when it initializes itself after it has been created by the forking process.

Execution

When a new message arrives from a client, the main process inspects it. If the message is for an existing remote task, the main
process sends it to the child process handling that remote task; to do this, the main process maintains a table that maps remote
task connection id to child process. If the message requires a new remote task, then the main process either sends it to a free child
process, or creates a new child process via the forking process (if configuration allows), and sends the request to the new child; if the
configuration does not allow (the maxChildProcesses limit has been reached), the main process queues the request internally until a
child process becomes available. This latter queueing behavior works best in a server handling RESTful, ultra-thin or SOAPweb service
requests, since these requests are usually processed relatively quickly; when the server is handling JavaScript client remote forms, it
is best to allow essentially unlimited child processes, so a client can connect immediately.

Child processes send an event to the main process when their remote task destructs. The main process can then decide whether to
tell the child process to exit (because themaximumnumber of free child processes has been reached), or add the child process to the
pool of free child processes.

410

Licensing

Management of the server user count is handled using a shared memory semaphore. The main process initializes the semaphore
with a count equal to the server user count. When a child process creates a remote task, and therefore needs a license, it waits on
the semaphore. For a RESTful request, it waits indefinitely, and for other requests it tries to wait, and if the semaphore does not have
availability, it rejects the request. This behavior is then equivalent to that of the multi-threaded and single-threaded servers, in that
RESTful requests are queued waiting for a license, and other requests are rejected immediately if a license is not available.

When a child process deletes a remote task, it frees the license by posting the semaphore.

If a child process crashes while it is holding a license, the license will not be freed by the child. However, the main Omnis process
attempts to restore the license semaphore count by posting to the semaphore appropriately, based on the server user count and the
number of child processes currently assigned to a remote task.

Load Sharing

It is possible to use the MPS in conjunction with the Load Sharing Process, although this only really makes sense when each Omnis
server accessed via the load sharing process is running on a separate machine, since the MPS is essentially providing a load sharing
mechanism. The main process maintains the load sharing statistics and responds to the load sharing statistics request message.

Remote Debugging

Due to the dynamic nature of the Omnis environment, remote debugging is supported in theMPS only in the context of a single child
process, explicitly created to execute clients that are to be remotely debugged – this is called a Remote Debug Child.

Debugging Startup

The following sections describe key points regarding how to remotely debug Omnis code running in the MPS.

If the member pauseAtStartupUntilDebuggerClientStartsExecution in the remote debug configuration is true, you can debug the
startup tasks of the remotely debuggable code in the MPS. This code runs in the main process.

Start the MPS, use a Windows or macOS copy of Omnis to connect a remote debug client to the MPS, and debug the startup code.

After MPS startup completes, the remote debug connection closes.

Debugging the Remote Debug Child

AfterMPS startup, assuming remotedebugging is enabled, theMPS creates the remotedebug child, and the remotedebug child then
becomes the instance of Omnis visible to remote debug clients. Therefore, using the remote debug client on a macOS or Windows
copy of Omnis, you can connect to the MPS remote debug child, and debug that directly.

If the member pauseAtStartupUntilDebuggerClientStartsExecution in the remote debug configuration is true, the remote debug
child pauses, waiting for a remote debug client to connect, before running any $processinit() methods. In this case, the remote
debug client has a hyperlink “Run Process Init” rather than “Run Startup”.

Making a Client Use the Remote Debug Child

For JavaScript remote form clients, specify ?omnisRemoteDebug=1 on the URL used to open the Omnis remote form.

For ultra-thin clients, include omnisRemoteDebug=1 in the query string used to invoke the ultra-thin request.

For RESTful clients, include the header omnisremotedebug in the request.

In all of the above cases, the request that requires the remote debug childwill be queued if necessary, waiting for that child to become
available.

411

Using the Same Child Process

The MPS allows you to cache data for ultra-thin and RESTful requests, to improve performance, using a query string parameter or
HTTP header respectively, to specify the process ID (sys(242)) of the child process that is to ideally process the request.

When a request arrives that identifies a specific child process, the main process sends it to that child if the child still exists, otherwise
it sends it to any available child.

For ultra-thin, the query string parameter is named ProcessID.

For RESTful, the HTTP header is named omnisprocessid. When using RESTful in conjunction with a process ID, you must always
immediately respond to all requests, i.e. you cannot defer the response until later by assigning kFalse to $restfulapiwillclose.

Logging

The old-style web service logging to a data file is not supported for theMPS. Instead, you can configure the datatolog for the logToFile
logcomp to include web services.

If you configure logging to go to standard output, by setting stdout to true in the logToFile object in config.json, logging from all
processes in the MPS (main and child) will go directly to standard output, serialised between all of the processes using a shared
mutex.

If you configure logging to go to a file in the logs folder, all child processes send their log data to the main process, which then writes
the log data to file.

Command Line

All versions of Omnis on all platforms use –version as the switch to report the Omnis version and build number, rather than -version.

The Linux Headless Server has a number of command line switches. Pass the switch –help to display them all.

Command Action

homnis –help Print the help information and then exit
homnis –version Print version and build number and then exit
homnis <sw> Start the server using the start server and multi-process settings in

config.json
homnis <sw> –st Start the single threaded server ignoring the start server and

multi-process settings in config.json
homnis <sw>–mt Start the multi-threaded server ignoring the start server and

multi-process settings in config.json
homnis <sw>–mp Start the multi-process server ignoring the start server and

multi-process settings in config.json
homnis <sw> –runscript=path <args> Open the supplied library identified by <path>, construct its startup

task, and pass the remaining command line arguments <args> to the
$runscript method in the startup task

<sw> can be any combination of the following:

Switch Meaning

–jscomments Includes comments in client-executed JavaScript generated by homnis
–debugport=n Overrides the configured remote debugging port
–pausestartup Forces homnis to wait for a remote debugging client to connect before

running startup (and $processinit if relevant)
–debugscript Starts the remote debug server at startup when invoked with –runscript
Any other user parameters that can be accessed from Omnis code using
sys(202)

412

–runscript

This mode allows you to use headless Omnis to run a script, that is, use headless Omnis to run some Omnis code within a shell
script. For example, you could use the HTTPWorker Object in some Omnis code to invoke requests against an Omnis server. Used in
conjunction with bash (or other shell) this can be quite powerful.

For example, you can write a script such as:

for i in {1..10}
do homnis —runscript=mylib.lbs <args> &

done
wait

and execute it using

time ./myscript

This will create 10 instances of the run script homnis process, wait for them to complete, and report how long execution took.

In more detail, the path passed via the runscript argument is the path of an Omnis library, the startup task of which must contain
a method named $runscript. This method receives as parameters the remaining parameters on the homnis command line, so for
example you could pass a URL or an iteration count, or both. When homnis starts up in run scriptmode, it opens just this single library
(ignoring startup libraries) and executes the method $runscript in the context of its startup task. The script library is responsible for
calling Quit Omniswhen it has finished. This allows it to start workers which may not complete until after $runscript has returned.

When homnis is running a script:

• It does not write to configuration files omnis.cfg and config.json.

• It does not accept command input from stdin.

• It only logs to stdout if logging is configured

• It will only open the script library passed as a parameter

• It will not open Omnis data files

You can use the printf() function to output a string from a script: printf(string[, newline=kTrue]) writes the string to standard output
followed by a newline character if required (Ignored onWindows. Executes on macOS and Linux only).

External Components

It is possible that a loaded external component will not be in a good state after the forking process, probably due to problems with
data structures in use by external libraries it is using (typically data structures containing some sort of operating system handle or file
descriptor).

To cater for this, an external component with this kind of issue needs to return the flag EXT_FLAG_RELOAD_AFTER_FORK in the flags
returned by ECM_CONNECT. This means that the main process unloads the component (calling ECM_DISCONNECT) after startup
completes. Each child process then reloads the component (calling ECM_CONNECT again) as part of its initialization. As a result, each
child process has a clean copy of the component.

413

	Creating Web & Mobile Apps
	About This Manual

	Chapter 1—Tutorial
	Starting Omnis
	Creating a New Library
	Creating a Database Session
	Opening a Database Session
	Viewing your Tables
	Viewing your Data
	Making a Schema
	Editing a Schema
	Creating a Desktop Form using a wizard
	Creating a Web Form from scratch
	Creating a Web Form using a wizard
	Testing your Web Form
	Changing the form theme
	Summary

	Chapter 2—JavaScript Remote Forms
	Creating JavaScript Remote Forms
	Remote Tasks
	Remote Objects
	Remote Form Properties
	Remote Form Instances and Methods
	Remote Form Events
	Testing JavaScript Remote forms
	Client Methods
	Client Commands
	Remote Menus
	Context Menus
	Subform Sets
	Using Subform Palettes
	Running JavaScript in the Client
	Styled Text
	Animations
	Time Zones and Dates
	PDF Printing
	Toast Messages

	Chapter 3—JavaScript Components
	Example Apps and Code
	JavaScript Components
	Creating JavaScript Components
	Component Properties
	Component Events
	Component Icons
	Component Fonts
	Drag and Drop Data
	Copying data
	Side Panels
	Tab Order
	Accessibility
	JS Themes
	Active and Enabled Properties
	Creating Customized JavaScript Components
	JavaScript Component Templates
	Position Assistance
	Group Selection & Object Properties
	Activity Control
	Background Shape
	Bar Chart Control
	Button Control
	Camera Control
	Chart Control
	Check Box Control
	Color Picker
	Combo Box Control
	Complex Grid
	Data Grid Control
	Date Picker Control
	Device Control
	Droplist Control
	Entry Field
	File Control
	Floating Action Button
	Gauge Control
	HTML Object
	Hyperlink Control
	Label Object
	List Control
	Map Control
	Native List
	Native Slider
	Native Switch
	Navigation Bar Control
	Navigation Menu Object
	Page Selector
	Paged Pane
	Picture Control
	Pie Chart Control
	Popup Menu Control
	Progress Bar Control
	Radio Button Group
	Rich Text Editor
	Scroll Box
	Segmented Bar
	Slider Control
	Split Button
	Subform Control
	Switch Control
	Tab Bar Control
	Tile Grid
	Timer Control
	Toolbar Control
	Trans Button Control
	Tree List Control
	Video Player
	External Components

	Chapter 4—JSON Components
	JSON Control Object
	JavaScript

	Chapter 5—Ultra-thin Omnis
	HTML Forms and Remote Tasks
	Using Task Methods to Process Requests
	Returning Content to the Client
	Persistent Remote Tasks
	Multipart Form Data
	Direct Client Connections

	Chapter 6—Localization
	Localization for the JavaScript Client

	Chapter 7—Deploying your Web & Mobile Apps
	Server Installation and Licensing
	Editing Your HTML Pages
	Setting up the Omnis App Server
	Setting Up Your Web Server
	Creating Standalone Mobile Apps
	Serverless Client
	Push Notifications
	Omnis App Manager
	Headless Omnis Server
	MultiProcess Server

