
1

Building The iOS Wrapper
Version 1.3.0+

Contents
Introduction.. 2

Setting Up The Build Environment .. 2

Install xCode .. 2

Set Up Code Signing Requirements ... 2

Certificates ... 3

Identifiers ... 4

Devices .. 5

Provisioning Profile .. 5

Open The Project .. 6

Configuring The App ... 6

Behavior Settings (UPDATED) .. 6

Connection Settings .. 7

Customizing The App .. 8

Rename The Project (UPDATED) ... 8

Change The Identifier .. 9

Change The App Name ... 10

Add Custom Icons & Splash Screens ... 11

App Icons For iOS < 5 ... 12

Requesting GPS .. 13

Localize App .. 13

Edit The About screen (NEW) ... 15

Localize The About Screen .. 15

Edit The Credits Screen (NEW) .. 16

Bundle SCAFs (offline apps only) ... 16

Bundle Local Database ... 17

Remove Settings ... 18

Building The App ... 18

Building The UltraLite Target (NEW) ... 19

Building for iOS < 5.1.1 Devices .. 19

Deploying Your App .. 20

Manual Deployment ... 20

OTA Deployment (UPDATED) ... 21

App Store Deployment .. 23

2

Introduction

In addition to using the Omnis JavaScript Client in the browser on any computer, tablet or mobile device,

you can create standalone apps for iOS that have your JavaScript remote form embedded. These can

even operate completely offline (if you have a Serverless Client serial).

To do this, we provide a custom app, or "wrapper", project for iOS. This project allows you to build

custom apps, which create a thin layer around a simple Web Viewer which can load your JavaScript

remote form. They also allow your form access to much of the device's native functionality, such as

contacts, GPS, and camera.

This document describes the steps required in order to create and deploy your own customized wrapper

app for iOS. It should provide you with all of the information you need to create your own, self-contained,

branded mobile app, and deploy it to users manually or through the App Store.

Setting Up The Build Environment

Install xCode

In order to build iOS apps, you will need to install xCode 6.1.1 or later. You can download this (on OS X

10.7 or later) through the Mac App Store. You should start by installing this.

Set Up Code Signing Requirements

In order to build an app which will run on an iOS device, you need to code sign your app at build time.

The first step in this process is to sign up for one of Apple's iOS Developer Programs.

Apple gives you 3 options when signing up for their iOS Developer Program:

ǒ Free - This will allow you to download the iOS SDK, and test your applications on the simulator,

but you cannot distribute your app to a real device.

ǒ Standard ($99 per year) - This allows you to submit your app to the AppStore, and also allows

you to create and distribute Ad-Hoc apps to run on up to 100 specified devices.

ǒ Enterprise ($299 per year) - This option is for larger corporations only. Your company must have

a Dun & Broadstreet Number (DUNS). This does not allow the distribution of Apps through the

AppStore, but allows distribution to a greater number of (unspecified) in-house devices.

We expect the great majority of Omnis developers to sign up for the Standard program, and this is used

for the basis of the tech note.

You are also given the choice of signing up as a Company, or as an Individual. Signing up as a Company

gives you the ability to add team members, whereas signing up as an Individual does not.

https://developer.apple.com/register

3

Once you have signed up as an iOS developer, you should sign in to the iOS Dev Center, then follow

through the steps below:

Certificates

ǒ Open the Certificates section of your iOS Dev Center account, and select Production

certificates.

ǒ Push the + button to open a wizard to take you through the creation of a new certificate.

ǒ When prompted to select the type of certificate, you should choose an App Store and Ad Hoc

Production certificate.

ƺ You should also use the link provided on this page to download and install the

Intermediate Certificates (Worldwide Developer Relations Certificate Authority), if you

do not already have it installed.

ǒ The wizard will then guide you through the rest of the process to create your certificate.

ǒ Once you have created your certificate (and its associated private key), it is important that you

BACK THIS UP.

ƺ Open Keychain Access from your Mac's Applications/Utilities/.

ƺ Select the Certificates Category from the sidebar, and locate your certificate you just

created.

ƺ Right click the certificate and select Export.

ƺ Keep this somewhere safe - if you change machines, or for any reason lose the

certificate from your keychain, you can import the certificate from this backup. If you want

to build an update to any of your apps, it must be signed with the same certificate, so this

is important.

https://developer.apple.com/devcenter/ios
https://developer.apple.com/account/ios/certificate/certificateList.action

4

Identifiers

An App ID determines which app Identifiers you will be able to sign with the profile you are creating.

ǒ Open the Identifiers section of your iOS Dev Center account, and select App IDs.

ǒ Push the + button to open a wizard to take you through the creation of a new App ID.

ǒ You can choose to create an Explicit App ID (can only be used to sign a single app identifier), or

a Wildcard App ID (can be used to sign any app whose Identifier matches the pattern specified).

ǒ The convention for app Identifiers is to use a reverse domain name.

E.g.com.mycompany.myapp. So you could set this as an explicit App ID, or if you are using a

wildcard App ID you could use anything from "*" to"com.mycompany.*".

Whichever you choose, make a note of this, as it will be needed later when you assign an Identifier to

your app.

ǒ Omnis wrapper apps do not require any App Services.

https://developer.apple.com/account/ios/identifiers/bundle/bundleList.action

5

Devices

If you are going to deploy via the Ad-Hoc method (not through the App Store), you need to explicitly

define each individual device which your app will run on.

ǒ Open the Devices section of your iOS Dev Center account.

ǒ Push the + button to open a page to allow you to add a new device.

ǒ Devices are added by their UDID (Unique Device Identifier). You can find your device's UDID by

connecting it to iTunes, and clicking on its serial.

ƺ whatsmyudid.com provides a simple tutorial for this.

Provisioning Profile

A Provisioning Profile ties together a Certificate and an App ID (and a group of Devices for Ad Hoc

Provisioning Profiles). It is with this that you then sign your app (in association with the matched

certificate/private key pair stored in your keychain).

ǒ Open the Provisioning Profiles section of your iOS Dev Center account, and select

Distribution.

ǒ Push the + button to open a wizard to take you through the creation of a new Provisioning Profile.

https://developer.apple.com/account/ios/device/deviceList.action
https://developer.apple.com/account/ios/profile/profileList.action%20target=

6

ǒ You will be offered the choice of creating an Ad Hoc or App store Distribution Provisioning

Profile. You should select that which matches the distribution model you are going to use. Make

sure you select a Distribution profile - not Development.

It is possible to create multiple Provisioning Profiles, so you can create one (or more) of each type, should

you wish.

ǒ Follow through the wizard, and once complete, you will be able to download the provisioning

profile. Do so, then double-click the downloaded file in the Finder, and it will be imported into

xCode.

Open The Project

ǒ First, download the latest iOS wrapper project from our website.

ǒ Extract the contents of the wrapper zip file to a folder on your Mac. Make sure that there are no

spaces in the path to the extracted folder.

ǒ Double-click the OmnisJSWrapper.xcodeproj file, to open the project in xCode.

Configuring The App

Configuration of the app is done through the config.xml file, which is situated in the root of your project.

You should set the values in this config file to point the app to your Omnis server, and to configure how

the app behaves.

The properties within the config file are as follows:

Behavior Settings (UPDATED)

ǒ AppTitle: Whether the app should show the status bar at the top. (1 for yes, 0 for no).

ǒ LightStatusBar: Whether the status bar should use white (1) or black (0) text. Only applies if

AppTitle is enabled.

ǒ MenuIncludeOffline: Whether the pull-down menu includes the option to switch between online

& offline modes. (1 for yes, 0 for no).

ǒ MenuIncludeUpdate: Whether the pull-down menu includes the option to update when in offline

mode. (1 for yes, 0 for no).

ǒ MenuIncludeAbout (NEW): Whether the pull-down menu includes the option to show the About

screen. (1 for yes, 0 for no).

The About screen contains a link to the Credits screen. MenuIncludeAbout is set to 0, the Credits option

will instead be shown in the pull-down menu.

http://www.tigerlogic.com/tigerlogic/omnis/download/jswrapper.jsp

7

ǒ SettingsFloatControls: Whether controls on the form should float (using their designed

$edgefloat property) to adapt to the deviceôs full screen size. Does not apply if SettingsScaleForm

is enabled. (1 for yes, 0 for no). Recommended set to 1.

ǒ SettingsScaleForm: Whether the designed form should be scaled to fit the current deviceôs

screen. (1 for yes, 0 for no). Recommended set to 0.

ǒ SettingsAllowHScroll & SettingsAllowVScroll: Set these to 1 if you want to allow horizontal or

vertical scrolling of the form respectively, or 0 if not.

ǒ SettingsMaintainAspectRatio: If SettingsScaleForm is set to 1, this controls whether the scaling

maintains the design form's aspect ratio. 1 for yes, 0 for no.

ǒ SettingsOnlineMode: Whether the app should initially start in online mode (set to 1), or offline

mode (set to 0).

ǒ ServerLocalDatabaseName: The name (including .db extension) of the local sqlite database to

use. If you are bundling a prepopulated database with your app, its name should match that

which you set here.

ǒ UseLocalTime: If 0, dates & times are converted to/from UTC, as default. Setting this to 1 will

disable this conversion. (Offline only - online mode reads from remote task's $localtime property).

Connection Set tings

ǒ ServerOmnisWebUrl: URL to the Omnis or Web Server. If using the Omnis Server it should be

http://<ipaddress>:<omnis port>. If using a web server it should be a URL to the root of your Web

server. E.g. http://myserver.com

ǒ ServerOnlineFormName: Route to the formôs .htm file from ServerOmnisWebUrl. So if youôre

using the built in Omnis server, it will be of the form /jschtml/myform. If you are using a web

server, it will be the remainder of the URL to get to the form, e.g. /omnisapps/myform. (Do not

add the .htm extension!)

Only ServerOmnisWebUrl & ServerOnlineFormName are needed for Online forms. The

following Serveré properties are needed in addition to ServerOmnisWebUrl for Offline mode only.

ǒ ServerOmnisServer: The Omnis Server <IP Address>:<Port>. Only necessary if you are using a

web server with the Omnis Web Server Plugin. If the Omnis App Server is running on the same

machine as the web server, you can just supply a port here.

E.g. 194.168.1.49:5912

ǒ ServerOmnisPlugin: If you are using a web server plug-in to talk to Omnis, the route to this from

ServerOmnisWebUrl.

E.g. /cgi-bin/omnisapi.dll

ǒ ServerOfflineFormName: Name of the offline form. (Do not add .htm extension!)

8

ǒ ServerAppScafName: Name of the App SCAF. This will be the same as your library name.

Note: this is case-sensitive and must match the App Scaf (by default this is generally all lower-case).

ǒ TestModeEnabled: Enable test mode (Ctrl-M on form from Studio to test on device).

 Make sure to disable before publishing your release app. (1 to enable, 0 to disable)

ǒ TestModeServerAndPort: The <ipaddress>:<port> of the Omnis Studio Dev version you wish to

use test mode with.

NOTE: The values in the config.xml file are currently read only on first launch of the app. They are then
saved to, and read from, local storage to improve performance and allow in-app configuration from the
Settings screen.
As such, if you make changes to the config.xml, you will need to uninstall the old app from your device
before running the new version.

Customizing The App

Once you have imported the wrapper project into xCode, you should customize it for your particular

application.

Rename The Project (UPDATED)

NOTE: There seems to be an issue in Xcode 6.3 whereby it will crash on renaming the project.
If you are using Xcode 6.3 you should not attempt to rename your project.

Once you have opened the wrapper project in xCode, you will probably want to give it a name which

reflects your particular application.

Note that naming the project has no effect on the resulting app, but just better allows you to keep track of

your projects, especially if you are creating multiple different apps. You should use a separate project for

each app you create.

ǒ Show the Project Navigator view in the project's sidebar (click the folder icon in the sidebar's

toolbar).

ǒ Select the project name at the top level of this view, then push Enter to allow you to rename the

project.

9

ǒ Change the name, then push Enter again. You will be prompted as to whether you'd also like to

rename various other instances - select to rename all of these.

ǒ The current version of xCode (at the time of writing) seems to miss renaming the Prefix Header of

other targets. So you need to manually change this:

ƺ Select the root level of your project in the Project Navigator - this will bring up your project

settings in the main pane.

ƺ Select one of the Targets, and view its Build Settings.

ƺ Locate the Prefix Header setting (you may like to make use of the search box), and

ensure that the .pch file name is set to <NewProjectName>-Prefix.pch.

ƺ Repeat this for each of the 3 Targets.

Change The Identifier

The Identifier identifies your app, and must be unique amongst all apps on the device. Two apps with the

same Identifier will be seen by the device as the same app, so this is an important step.

As such, it is recommended to use a reverse domain name syntax. E.g

com.mycompany.omnis.myfirstapp.

ǒ Select the root of your project in the Project Navigator.

ǒ Select any of the Targets, and open its General tab.

ǒ Change the Bundle Identifier to your own value.

10

Change The App Name

To change the display name of your app:

ǒ Select the root of your project in the Project Navigator.

ǒ Select one of the Targets, and open its Build Settings tab.

ǒ Locate the Product Name in the list of settings, and change it to your own value.

ǒ Repeat this for each of the targets.

11

Add Custom Icons & Splash Screens

The images used for the Icons and splash screens are stored in an asset catalog named

Images.xcassets in the project's OmnisJSWrapper folder. You should replace these with your own

versions.

ǒ Select Images.xcassets in the Project Navigator (in the OmnisJSWrapper folder), to view it in the

asset catalog editor.

ǒ Select AppIcon in the sidebar to view the catalog of app icons.

ƺ Here you can see your current icons for each specified size. These are all square icons,

so e.g. 40pt means an image source sized 40x40.

ƺ To add/update an icon, you just need to drag the appropriately sized source image from

the Finder, or your Project, onto the appropriate space.

ǒ Select LaunchImage in the sidebar to view the catalog of launch images (similar to a splash

screen, but should be designed to match the background of your app, to give the appearance that

your app is starting more quickly).

ƺ As before, you can update the images by dragging your own image files into the

appropriate spaces.

ƺ In order to find the appropriate size for a particular image, select its space in the asset

catalog editor, and in the Utilities pane on the right, select the Attributes Inspector view

, and you will see the Expected Size displayed.

ƴ If the right-hand pane is not shown, click the Show or Hide Utilities button on

the far right end of the toolbar .

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/AppIcons.html#//apple_ref/doc/uid/TP40006556-CH19-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/LaunchImages.html#//apple_ref/doc/uid/TP40006556-CH22-SW1

12

NOTE: The wrapper project does not ship with image sizes to cover all devices and versions. The
supplied images will however work with all iOS devices & versions (from iOS 6).
However, for the best end-user experience (to avoid any icons being scaled) we recommend you
create images to match each of the sizes specified by the asset catalog editor.

App Icons For iOS < 5

iOS devices running iOS prior to iOS 5 do not understand App Icons in the asset catalog image format,

and using the above technique may result in blank icons for these devices.

If you wish to support these devices, you will need to include some duplicate images in your app.

ǒ Using the Project Navigator, drill down to OmnisJSWrapper/App Icons. In this folder are a

collection of app images which will be used for devices which donôt support Asset Catalog icons.

ǒ You should replace these files with your own images, making sure to keep the names and sizes

the same.

ǒ By default, to keep the size of the app down, these images are not included in the compiled app.

In order to add them, you need to:

ƺ Select all of the image files in the Project Navigator.

ƺ Open the File Inspector in the Utilities pane (on the right).

ƺ Under Target Membership, tick the box next to all of the targets. This means that the

files will be included when compiling that target.

13

Requesting GPS

When GPS is required in your app, via the Device control, the end user receives a prompt to agree to the

use of GPS. Apple changed the APIs for this in iOS8 and included a new requirement for all apps through

the app store. You need to make sure one of two strings exists in your iOS project, either using the

default string, or adding your own. This string is shown on the prompt on the end user's device when

requesting access to GPS.

The default string NSLocationAlwaysUsageDescription which allows the app to access GPS in the

background and foreground. You can change the text of this to something more appropriate for your app.

You can remove this string and add another string NSLocationWhenInUseUsageDescription (also with

a description). This will limit the app to GPS data ONLY when running and active with no background

support.

Only one of these strings should be included in the app.

Detail of project properties.

Localize App

If you wish to translate text used by the wrapper app, you can do so as described here. If the user's

device is set to one of the supported languages, it will use the specified translated strings.

ǒ Select the top level of the project in the Project Navigator, and select the project's Info pane.

ǒ Locate the Localizations section, and add a new language.

14

ǒ In the window which appears, make sure you select both the Localizable.strings and

InfoPlist.strings files to be localized.

ǒ Now if you locate Localizable.strings in the Project Navigator, you will see that it can be

expanded. If you do so, you will see that a copy of the file has been created for your new

language.

ǒ This file contains a group of key-value pairs. The keys (to the left of the equals signs) must be left

as they are. The values (to the right of the equals signs) should be translated to your new

language.

ǒ Make sure to always end each line with a semi-colon.

Similarly, if you wish to change some of the attributes of your application package (e.g. The App name,

icon etc), you can do so by:

ǒ Locate the InfoPlist.strings file in your project, under Supporting Files, expand this and select

the file which corresponds to the appropriate language.

ǒ This file can be built up using key-value pairs, in the same way that the Localizable.strings files

are. i.e: "Key Name" = "Key Value";

ǒ The key names in this case must match a key defined in your <Project Name>-Info.plist file.

These keys aren't displayed with the default Property List viewer, so right click the file and Open

As > Source Code to see these.

ǒ Remember to end each line with a semi-colon.

15

Edit The About screen (NEW)

If enabled in your appôs config.xml, the About screen can be accessed from the pull-down menu.

You will want to customize the default About page to reflect your app/brand.

The About page is formatted as html, to enable you to easily customize its content.

ǒ Browse to the Resources/About folder in the Project Navigator.

ǒ This folder contains about.htm, which is the content of the About page. You should customize

this as you see fit for your application.

ǒ Any local resources your page may need can also be added to this folder, as demonstrated by

the TL_logo_white.png image used by the default About page.

Localize The About Screen

If you are localizing your app, you will probably want to provide a translated About page for your

supported languages.

Once youôve set up localization, as described in the Localize App section, this is very straightforward:

ǒ Select the about.htm file in the Project Navigator.

ǒ In the Utilities pane (the left-hand pane of Xcode), show the file Inspector view, and select the

languages you wish to localize for in the Localization section.

ǒ This will add a drop-arrow to about.htm in the Project Navigator - if you drop this, you can edit a

separate file for each language.

16

Edit The Credits Sc reen (NEW)

If the About menu option is enabled in the config.xml, the About screen will have a link to the Credits

screen in its Navigation Bar. Otherwise, a Credits option is displayed in your app's pull-down menu.

NOTE: The Credits page MUST be accessible from your app.

The Credits screen works in a similar way to the About screen - displaying the contents of the

credits.html file from your projectôs Resources/Credits folder. It can be localized in the same way as the

About page.

You may add to or style this page if you like, but you must include all of the included attributions.

If you use any extra third-party libraries or resources, you should add your attributions to this page,

otherwise, in most cases, it will be sufficient to leave this as it is.

Bundle SCAFs (offline apps only)

If your app includes offline support, you need to decide whether or not to include the SCAFs (Serverless

Client Application Files) inside your app. If you do so, the app will be larger, but it will run in offline mode

immediately, with no need to first update from the server.

If you wish to include the SCAFs in your app, you should do the following:

ǒ Browse to the html/sc folder of your Omnis Studio installation.

ƺ On Windows, this will be in the AppData area. e.g:

C:\Users\<username>\AppData\Local\TigerLogic\OS6.X\

