Contents

Omnis App Framework 2
User Guide 2
Setup —ANdroid L 2
Support Library . . . e e 2
Add The Library TOYOUr Project o o e e 2
Instantiate The Omnis Interface L 4
SetUp - 10S . . . L e 5
Add the Framework 5
Stripping The Framework e 7
Loading FOrmMs o L 7
Loading Progress EVENTS e e 7
Offline FOrmMs . . L L 8
Implement Delegate e 8
Custom Messaging - i10S L L e 8
Photo Functionality - Android e e 10
Barcode Functionality - Android 10
omnisinterface e 10
SEAtICS . . o o o 10
Properties e n
Methods n
Features 13
SEAtICS . . o o e 13
Methods e 13
SEttiNgS . . o o o e 15
SEAtICS . . o o o 15
Methods . . . 15
LocalDBController 17
Properties e 17
Methods 17
OMCommesDelegate 18
Methods e 18
OMWebNavigationDelegate e 19
Methods . . . 19
ScafHandler . . . 21
Properties e 21
Static Methods o L 21
Methods 22
OMScafHandlerDelegate e 23

Methods L e 23

Enumerations e 24
OMDIalogs o 25
Static Properties e 26
Static Methods L e 26

Omnis App Framework

Omnis Software Ltd

September 2019

User Guide

Setup - Android

Instructions for setting-up the Omnis App Framework on Android devices.

Support Library

The Omnis Interface uses the AndroidX support library. At time of publication, this is a relatively new replacement to the previous
Support Library used by Android apps, so you may need to migrate existing code to AndroidX.

If you are creating a new project, there is currently a checkbox shown in the New Project wizard - “Use androidx.* artifacts” - make
sure to enable this.

Add The Library To Your Project

- Download and unzip the omnisinterface library.
- From your Android Studio project, right-click your app module, and select Open Module settings from the context menu.

- Add a new module, and select Import Gradle Project from the wizard which opens, then select the expanded omnisinterface
folder.

- Because the omnisinterface library is installed locally, rather than fetched from a repository by Gradle, you will need to include
its dependencies when you build.

- Add the following to your app’s build.gradle file's dependencies section:

// Dependencies required by OmnisInterface (as we're not pulling it in from a repository):
implementation omnisInterfaceImplementationDependencies.values()
implementation omnisInterfaceAPIDependencies.values()

https://developer.android.com/jetpack/androidx

Modules — Properties Default Config Signing Configs
+ b
app Compile 5

Create Mew Module

H' New Module

t Dynamic Feature Module Wear 0OS Module

Android Things Module Import Gradle Project

Figure 1.

And add the following to the top of that file:
apply from: "../omnisInterface/omnisinterface_dependencies.gradle"

Add the omnisinterface module as a module dependency of your app (again accessed via the module settings window):

Modules — Declared Dependencies

+ - + |-
<Al Madules> Dependency
app
omnisinterface

Add Module Dependency

Module 'app’

. Step 1.
Dependencies Please select the modules to add as dependencies.

v omnisinterface

Figure 2:

- Inorder to update the omnisinterface in the future, just replace the omnisinterface.aar and omnisinterface_dependencies.gradle.

Instantiate The Omnis Interface
- Add an OMWebContainer view to your layout - this view will become the container which hosts the webview to run your Remote

Forms etc.

<nat.omnls.omnisintartace.wabview. OMWabContainar

: Layout_width=

Figure 3:

- Construct an Omnisinterface instance, passing your OMWebContainer to the constructor.

- Make sure you keep this Omnisinterface in scope.

Example

private lateinit var mOmnisInterface: OmnisInterface
override fun onStart() {
super.onStart ()
if (!this::mOmnisInterface.isInitialized) {
val webContainer = findViewById<OMWebContainer>(R.id.omweb_container)
mOmnisInterface = OmnisInterface(webContainer, this)
}
}

Setup - iOS

Instructions for setting-up the Omnis App Framework on iOS devices.

Add the Framework

Add the framework to your project's Embedded Binaries:

E General Capabilities Resource Tags Info Build Settings Build Phases Build Rules
PROJECT ¥ Deployment Info
g Omnis Wrapper o
TARGETS Deployment Target 9.0 w
OmnisJSWrapper Devices Universal E
Il omnisJswrapper P... Main Interface Main E
Device Orientation Portrait
Upside Down
Landscape Left
Landscape Right
Status Bar Style = Default E
Hide status bar
Requires full screen
¥ App Icons and Launch Images
App Icons Source Applcon E ©
Launch Images Sourc Launchimage B (4]
Launch Screen File ﬁ
¥ Embedded Binaries
53 Omnisinterface.framework ...in Frameworks
¥ Linked Frameworks and Libraries
Name Status
=8 Omnisinterface.framework Required
+ - ® +

Figure 4:

Create a UlView, and set its Class to OMWebContainer - this view will become the container which hosts the webview to run your
Remote Forms etc.

- Construct an Omnisinterface instance, passing your OMWebContainer to the constructor.

- Make sure you keep this Omnisinterface in scope.
Example

class ViewController: UIViewController {
var omnisInterface: OmnisInterface!
@IBOutlet weak var webviewContainer: OMWebContainer!
override func viewDidLoad() {
super.viewDidLoad ()
omnisInterface = OmnisInterface(webviewContainer: webviewContainer, viewController: self)

}

01apiref.html#api-reference
01apiref.html#api-reference

= ~) - L 1 —| L LI

Figure 5:

Custom Class

Class ‘ OMWebContainer o

Module ‘ Omnisinterface

| Inherit Module From Target

Identity

Restoration ID ‘

User Defined Runtime Attributes

Key Path Type Value

_|__

Document

Label WebviewContainer ‘

el B ST NN
Object ID Xdo-UA-xzy
Lock Inherited - (Nothing)
Notes = = = = - [Y

No Font g

Comment For Localizer

Accessibility

Accessibility | | Enabled

Label [abc| |

Hint Hint |

Identifier |dentificr |

Traits | Button (] Link
[Image [| Selected
[| Static Text
[Search Field

M) Mlavn Caiand

Stripping The Framework

The Omnisinterface Framework is provided as a Fat Universal binary, which contains slices for both device & simulator architectures.

To keep the size of you built app down, and to allow your app to be submitted to the App Store, you should strip unused architectures
(i.e. Simulator architectures from device builds).

You can do this by:

- In your Project’s settings for each target:

- Under Build Phases, add a Run Script section after the Embed Frameworks section, with the following content:

Uncomment below to log output:
#exec > /tmp/${PROJECT_NAME}_striparchs.log 2>&1
APP_PATH="${TARGET_BUILD_DIR}/${WRAPPER_NAME}"
This script loops through the frameworks embedded in the application and
removes unused architectures.
Thanks to: http://ikennd.ac/blog/2015/02/stripping-unwanted-architectures-from-dynamic-libraries-in-xcode/
find "$APP_PATH" -name '*.framework' -type d | while read -r FRAMEWORK
do
FRAMEWORK_EXECUTABLE_NAME=$ (defaults read "$FRAMEWORK/Info.plist" CFBundleExecutable)
FRAMEWORK_EXECUTABLE_PATH="$FRAMEWORK/$FRAMEWORK_EXECUTABLE_NAME"
echo "Executable is $FRAMEWORK_EXECUTABLE_PATH"
EXTRACTED_ARCHS=()
for ARCH in $ARCHS
do
echo "Extracting $ARCH from $FRAMEWORK_EXECUTABLE_NAME"lipo -extract "$ARCH" "$FRAMEWORK_EXECUTABLE_PATH"
EXTRACTED_ARCHS+=("$FRAMEWORK_EXECUTABLE_PATH-$ARCH")
done
echo "Merging extracted architectures: ${ARCHS}"
lipo -o "$FRAMEWORK_EXECUTABLE_PATH-merged" -create "${EXTRACTED_ARCHS[@]}"
rm "${EXTRACTED_ARCHS[@]}"
echo "Replacing original executable with thinned version"
rm "$FRAMEWORK_EXECUTABLE_PATH"
mv "$FRAMEWORK_EXECUTABLE_PATH-merged" "$FRAMEWORK_EXECUTABLE_PATH"
done

Loading Forms

Once you have set up your Omnisinterface, you can call methods on it (or the objects it exposes as properties - such as scafHandler)
to interact with the JS Client.

To load a form, simply call Omnisinterface’s loadURL method, giving it the full URL to your Remote Form's .htm file.

Android Example

val theUrl = URL("https://mysite.com/myForm.htm")
mOmnisInterface.loadURL(theUrl)

iOS Example

let theUrl = URL(string: "https://mysite.com/myForm.htm")
self.omnisInterface.loadURL(url: theUrl!)

Loading Progress Events

In order to be notified when a form begins/ends loading etc, you need to assign a class which implements theOMWebNavigationDel-
egate protocol to your Omnislinterface's webNavigationDelegate property.

The delegate methods will then be called at the appropriate times.

01apiref.html#api-reference
01apiref.html#api-reference

Offline Forms

You must initialise your Omnisinterface’s scafHandler by calling initScafController, in order to enable support for offline forms.
This sets the ScafHandler up with details of your Omnis server, and offline form details etc.

Once this has been done, and SCAFs have been updated/extracted* you can load the configured offline form by calling:
self.omnisInterface.scafHandler.load0fflineForm()

* Note that this is an asynchronous process, so you need some way of determining when the offline form is ready:

Implement Delegate

You need to assign some class, which implements the OMScafHandlerDelegate to the scafHandler’s delegate property.

The delegate’s onOfflineModeConfigured method will then be called when your offline form is ready (either after startup, once every-
thing is prepared, or after you call updateScafs).

Custom Messaging - iOS

To implement custom messaging between the JS Client and your app:

Omnis to iOS

- Inyour iOS app, register a CommmsDelegate against the Omnisinterface.

- Call a form’'s sendWrapperMessage() method from JavaScript running in the JS client.
NOTE: This method did not exist before Omnis Studio 8.1.7. If you are using a prior version, load the following JavaScript after
omjscint.js:

omnis_form.prototype.sendWrapperMessage = function(id, data, formCallbackMethod)

{
if (formCallbackMethod)
{
var callbackString = 'var form = jOmnis.getOmnisForm(jOmnis.instIndexFromIdent(' + this.ident +
'), jOmnis.formIndexFromIdent(' + this.ident + '));' +
'[].splice.call(arguments, 0, 0, "' + formCallbackMethod + '");' + // Insert the method name as the first
'return form ? form.callMethod.apply(form, arguments) : null;';
}
else
callbackString = "";
sendDeviceRequest (id, callbackString, data);
}s
- Pass this function the following parameters:
- an ID to identify your message
- any data (should be a JISON object)
- optionally the name of a form method to call with the results.
Example

JavaScript:__form.sendWrapperMessage ("myMessage", {firstName: "Alan", lastName: "Alphabet"}, "$messageReturn")

- Your CommmsDelegate's messageFromJSClient(data:) method will be called, with the JSON payload you passed in, received as
a Dictionary.

01apiref.html#api-reference

- The dictionary should contain the following members:

* ID: The ID you sent for your message.
* Data: A JSON dictionary containing the data you sent.
* retlD: (Optional) JavaScript function code text, to be executed to pass the results back to the JS client.

- Return true if default handling should occur, else return false if you've handled the message.

iOS to Omnis

- Call omnisinterface’s callJS method to execute whatever JS you wish.

- You can optionally pass a completion handler to be called with any results from the JS call.

Or, in order to call a callback function passed to the wrapper fromm sendWrapperMessage above, you can use your Omnisinterface'’s
callJSFunctionText method, passing it the value given in messageFromJSClient’s retID member as the functionText.

Example

extension MainViewController: OMCommsDelegate

{
func messageFromJSClient(data: [String : AnyObject]?) -> Bool! {
if let id = data?["ID"] as? String
{
switch id
{
case "myMessage":
let firstName = data?["Data"]?["firstName"] as? String 77 ""
let lastName = data?["Data"]?["lastName"] as? String 77 ""
// TODO: Something with the data
// Call back to an Omnis method, if one was provided:
if let returnFunc = data?["retID"] as? String
{
omnisInterface.callJSFunctionText (returnFunc, params: [
"'\N(id)'", // Will be first param passed to method
"'\ (firstName)'", // Will be 2nd param passed to method
"'\ (lastName)'" // Will be 3rd param passed to method
], completionHandler: nil)
}
break;
default:
return false; // Let default handling occur for messages we're not explicitly handling.
}
}
print ("No ID provided!")
return false // Let default handling occur
}
}

If you followed the examples above, after sending the message to the wrapper, the form's $messageReturn method will be called,
with the following parameters:

pl: “myMessage” (The message ID)
p2: “Alan”

p3: “Alphabet”

Photo Functionality - Android

In order for the photo functionality to work with your app, you must create a File Provider, which allows sharing of files within your
app’s internal storage area (So the Camera app can save files there).

1) Create a resource file to define the File Provider:

Create an xml resource with content to provision a folder within the “files-path” area as shareable.

Example - fileprovider.xml

<?xml version="1.0" encoding="utf-8"7>
<paths>

<files-path name="photos" path="photos" />
</paths>

By default, it should have a path named “photos”.
2) Include the File Provider in your Manifest
Edit your AndroidManifest.xml file, and add the File Provider to the Application section:

Example

<provider
android:name="android.support.v4.content.FileProvider"
android:authorities="net.omnis.fileprovider"
android:exported="false"
android:grantUriPermissions="true">
<meta-data
android:name="android.support.FILE_PROVIDER_PATHS"
android:resource="@xml/fileprovider" />
</provider>

Set the android:authorities attribute to your own domain identifier.
3) Override File Provider defaults if necessary

The OMImages class has the following public static members, which should be overridden with your own values if they differ from the
defaults:

FILE_PROVIDER_AUTHORITY: Should match your android:authorities above (default = “net.omnis.fileprovider”).

FILE_PROVIDER_PATH: Should be the path specified for your files-path entry in fileproviderxml (default= “photos”).

Barcode Functionality - Android

Barcode functionality on Android makes use of Google's ML Kit framework, and as such requires a Firebase project.

You need to create a project in Firebase, then download the Google-Services.json file for your project, and add to the root of your App
module in your Android Studio project.

API Reference o= =—=—=—=—==

Omnisinterface

The main interface between your native app and Omnis.

Statics

10

Property Name Type Description
DEVICE_ID String A read-only unique identifier for this device. May be reset if the app is uninstalled then later re-
Properties

Property Name Type Description

features Features Contains the device features this app supports.
settings settings The current settings used by the interface.
database LocalDBController

scafHandler
viewController
webNavigationDelegate
commsDelegate

ScafHandler
UlViewController
OMWebNavigationDelegate
OMCommsDelegate

Controls access to and features of offline forms.

The View Controller the Omnisinterface was initialised
The delegate which receives page navigation events fr
The delegate which receives messages from the JS Clie

Methods

Method Name

Description

init(webviewContainer, [viewController, settings])

loadURL(url, [withParams])

callJS(jsString, [completionHandler])
callJSFunctionText(functionText, [params, completionHandler])

Constructor: Initialises the interface, and creates a webview within the cont

Loads the passed URL in the attached webview.
Executes the passed JS string in the webview. Optional callback with result

Executes the passed JS function text in the webview (inside an IIFE). Optior
callback with result.

init()

init(webviewContainer, [viewController, settings])

Constructor: Initialise the Omnisinterface, ready to be used.
This must be called before you can interact with the Omnisinterface.

Parameters

Name

Type

Description

webviewContainer

viewController

settings

OMWebContainer!

(Optional) UlViewController?

(Optional) Settings

A UlView with class OMWebContainer,
the Omnis JS Client. It must have no ct
The viewController on which the Omni
views (e.g. for barcode scanning, dialoc
will attempt to find the webviewContal
Initial Settings to use with the Omnislr
Settings will be created during initializ:

Returns

None.

01apiref.html#features
01apiref.html#settings
01apiref.html#localdbcontroller
01apiref.html#section
01apiref.html#omwebnavigationdelegate
01apiref.html#omcommsdelegate

loadURL()

Loads the passed URL in the attached webview.

Use this to load your Remote Form.

loadURL(url, [withParams])

Parameters
Name Type Description
url URL The URL to load.
withParams Dictionary A Dictionary of String names and values to set as URL Query parameters.
These will be received as a JSON string, in the form's $construct row (first
parameter to $construct - make it of type Row)
Returns
None.
callds()

callJS(jsString, [completionHandler])

Executes the passed JS code in the webview. Calling an optional completion handler once complete.
If called from a background thread, this will be posted to run on the main thread as soon as possible.

Parameters

Name Type

Description

jsString String!

completionHandler (Optional)func (Any?, Error?) -> Void

The JS code to execute.

Returns
None.

Example

omnisInterface.callJS("12 + 7", completionHandler: {(result, error) in

print(result!)

b

callJSFunctionText()

callJSFunctionText(functionText, [params, completionHandler])

Executes the passed JS function text in the webview (inside an IIFE). Calling an optional completion handler once complete.
If called from a background thread, this will be posted to run on the main thread as soon as possible.
Used to call a callback function provided with a device message request.

Parameters

12

A handler to be called with the results of the e

00usage.html#custom-messaging---ios

Name

Type Description

functionText
params

completionHandler

String The JS Function content to run.

[String] An array of params, expressed as strings, to be used as rz
must be surrounded in extra (escaped) quotes.

(Any?, Error?) -> Void A handler to be called with the results of the execution.

Returns

None.

Features

A class containing the device features supported by this app.

Statics

FeatureTypes

Name Type

FeatureTypes struct

Contains constant values for the built-in features.

Key

Description

NATIVE_DIALOGS

SHOW_PDF

PRINT_PDF

STORED_PREFS

The app supports the overriding of Omnis’ JS dialogs with native dialogs. (It handles
Comms delegate. The Omnisinterface does by default)

The app supports displaying PDFs. (It handles the “showPDF" message sent to the (
does by default)

The app supports printing of PDFs. (It handles the “printPDF" message sent to the C
does by default)

The app supports a native implementation for storing preferences, rather than using
“savePref”’ & “loadPref’ messages sent to the Comms delegate. The Omnisinterface

Methods

Method Name

Description

addFeature(featurelD)
removeFeature(featurelD)
getFeatures()
hasFeature(featurelD)

Add a feature to the list of supported features.

Remove a feature from the list of supported features.

Get an array of the features (by ID) which are currently supp
Checks whether a feature has been enabled.

13

addFeature()

addFeature(featurelD)

Add a feature to the list of supported features.

Parameters

Name Type Description

featurelD String A string denoting the feature to add. May be a custom String, or a FeatureTypes value.

Returns

None.

removeFeature()

removeFeature(featurelD)

Remove a feature from the list of supported features.

Parameters

Name Type Description

featurelD String A string denoting the feature to remove. May be a custom String, or a FeatureTypes value.

Returns

None.

getFeatures|()

getFeatures|)

Get an array of the features (by ID) which are currently supported.

Parameters
None.
Returns
Type Description
[String] An array of featurelD strings.
hasFeature()

hasFeature(featurelD)

Checks whether a feature has been enabled.

Parameters

14

Name Type Description

featurelD String The ID of the feature you wish to check. May be a custom String, or a FeatureTypes value.

Returns

Type Description

Bool Whether the feature is enabled.

Settings

The current settings used by the Omnisinterface.
Change these settings to alter various aspects of behaviour.

These settings are not saved to disk.

Statics
Name Type Description
SettingNames struct Contains the setting key names for built-in settings.

SettingNames

Contains the setting key names for built-in settings.

Key Description

USE_LOCAL_TIME If true, when running in offline mode, dates will not be converted to UTC during transmission (online
mode reads from remote task’s $localtime property).

EXPECT_SCAFS If true, give an error if SCAF files are not found initially. Must be set before calling initScafController().

Methods

Method Name Description

setSetting(name, value) Sets the value for a named setting.

setSettings(dictionary) Sets multiple settings from a provided Dictionary.

getSetting(name, defaultValue) Gets the current value for a named setting.

resetSettings() Resets the settings to their default initial values.

15

setSetting()

setSetting(name, value)

Sets the value for a named setting.

Parameters

Name Type Description

name String! The name of the setting to apply. Could be a SettingNames value, or a custom string. Overwrites any
existing setting with the same name.

value Any The value for the setting.

Returns

None.

setSettings()

setSettings(dictionary)

Sets multiple settings from a provided Dictionary.

Parameters

Name Type Description

settings Dictionary A Dictionary of key-values. The keys should refer to setting names (e.g. SettingNames values)

Returns

None.

getSetting()

getSetting(name, defaultValue)

Gets the current value for a named setting.

Parameters

Name Type Description

name String! The name of the setting whose value should be returned.
defaultValue Any? A default value to return in the event that the setting was not found.
Returns

Type Description

Any? The value for the specified setting (or the default value).

16

resetSettings()

resetSettings()

Resets the settings to their default initial values, i.e. any custom settings will be removed, and the built-in settings will be reverted to
their initial values.

Parameters
None.
Returns

None.

LocalDBController

An interface into the local database used by Omnis' $sqglobject.

Must be initialised for local database and Sync Server support to work.

Properties

None

Methods

Method Name Description

initLocalDatabase([dbName]) Initialises local Database and Sync Server su|

sendLocalDBRequest(request) Adds a database request to the queue. Only
“ExecuteSQL" message.

close() Closes the local database resources (threads

initLocalDatabase()

initLocalDatabase([dbName])

Initialises local Database and Sync Server support. This must be called in order for the JS Client’s local database support to work (and
the associated request spooling thread, etc).

Parameters

Name Type Description

dbName String The name (including “.db” extension) for the local SQLite database to be used. If not provided, “local.db” wi
Returns

None.

17

sendLocalDBRequest()

sendLocalDBRequest(request)

Adds a database request to the queue. Only for use with the payload sent to the Comms delegate’s “ExecuteSQL" message. Once
executed, the results will be sent back to the JS Client’'s omnis_sqgl_callbackFromWrapper (internal) method. So this is not suitable for
making general SQL requests from outside the JS Client.

Parameters
Name Type Description
request String! A JSON string describing the database request.
Returns
None.
close()

close()

Closes the local database resources (threads etc).
Parameters

None.

Returns

None.

OMCommsDelegate

Contains methods which will be called when communication messages from the JS Client are received.

Accessed via Omnisinterface’s commsDelegate property.

Methods
Method Name Description
messageFromJSClient(data, omnisinterface) Called whenever a nr

messageFromJSClient

messageFromJSClient(data, omnisinterface)

18

Called whenever a message to the app comes in from the JS Client. It should return a boolean denoting whether the default
handling (if any) should occur for this message.

Parameters

Name Type Description

data [String: AnyObject] The JSON data passed with the message. For built-in messages, tf
(String) member, a “data” member (usually [String: AnyObject]), an
function to call to pass the results back to the JS Client)

omnislnterface OmnislInterface The Omnisinterface which is calling this delegate.

Returns

Type Description

Bool True if default handling for this message should occur. False if you've handled it yourself and do not want default behaviour.

iOS Example

extension MyClass: OMCommsDelegate

{
func messageFromJSClient(data: [String:AnyObject], omnisInterface: OmnisInterface) -> Bool!
{
let ID = data["ID"] as? String // The ID for the message action.
switch ID
{
case "myMessage"?:
// Handle a custom message
let theMessage = data["myKey"] as? String 77 ""
handleMyMessage (theMessage)
return true // We've handled this message
default:
return false // We've not handled the message - allow the default handling to try.
}
}
}

OMWebNavigationDelegate

Provides callbacks for when web navigation events occur (a page starts/end loading etc).

Accessed via Omnisinterface’'s webNavigationDelegate property.

Methods

Method Name Description
omnisBeginLoading(webView, navigation) Called when t
omnisLoadingComplete(webView, navigation) Called when t
omnisLoadingFailed(webView, navigation, error) Called when t

19

omnisBeginLoading()

omnisBeginLoading(webView, navigation)

Called when the webview begins loading a page.

Parameters

Name Type Description

webView WKWebView The webview

navigation WKNavigation The navigation object which initiated the page load.

Returns

Type Description

Bool True if you have handled the event, or false if you wish default handling to occur. Default handling is to add a loading overlay t«

omnisLoadingComplete()

omnisLoadingComplete(webView, navigation)

Called when the webview successfully completes loading of a page.

Parameters
Name Type Description
webView WKWebView The webview.
navigation WKNavigation The navigation object which initiated the page load.
Returns
Type Description
Bool True if you have handled the event, or false if you wish default handling to occur. Default

handling is to remove any loading overlay from the webView.

omnisLoadingFailed()

omnisLoadingFailed(webView, navigation, error)

Called when the webview fails to load a page.

Parameters

Name Type Description

webView WKWebView The webview.

navigation WKNavigation The navigation object which initiated the page load.
error Error The error that occurred.

Returns

20

Type Description

Bool True if you have handled the event, or false if you wish
default handling to occur. Default handling is to remove any
loading overlay from the webView & show an OK message
with the error.

ScafHandler

A class used to administer the handling of SCAFs (Serverless Client Application Files), and functionality to do with running offline
forms.

The only instance of this you will need will be accessed via your Omnisinterface’s scafHandler property.

Properties
Property Name Type Description
delegate OMScafHandlerDelegate A delegate to receive callt

Static Methods

Method Name Description
deleteOfflineFiles(atSubfolder) Deletes any offline fi
moveOfflineFiles(fromSubfolder, toSubfolder) Moves all of the offlir

deleteOfflineFiles()

deleteOfflineFiles(atFolder)deleteOfflineFiles(atFolder, context)

Deletes the specified folder (relative to the app’s Documents directory)

Parameters

Name Type Description

atSubfolder String A relative path to the folder to delete. E.g. “subfolder/moreFiles”
context Context The Context from which to resolve the file paths.

Returns

Type Description

Bool Whether the directory was successfully found & deleted.

moveOfflineFiles()

moveOfflineFiles(fromSubfolder, toSubfolder) throwsmoveOfflineFiles(fromSubfolder, toSubfolder, context) throws

Moves the contents of a subfolder (relative to Documents directory) to another subfolder.
The destination folder must not exist.
Throws an Error on failure.

21

Parameters

Name Type Description

fromSubfolder String A relative path to the folder to delete. E.g. “subfolder/moreFiles”

toSubfolder String A relative path to the folder to move to. Must not exist.

context Context The Context from which to resolve the file paths.

Returns

None.

Methods

Method Name Description

initScafController(inSubfolder, formName, scafName, Initialise the SCAF controller, to enable offline mode. This must be called before otf

omnisWebUrl, [omnisServer, omnisPlugin]) (non-static) methods.

updateScafs|) Query the configured Omnis server for any updates. Any available updates will be
downloaded and applied.

loadOfflineForm([queryParams]) Load the configured offline form.

initScafController()

initScafController(inSubfolder, formName, scafName, omnisWebUrl, [omnisServer, omnisPlugin])

Initialise the SCAF controller, to enable offline mode. This must be called before other (non-static) methods.

Parameters

Name Type Description

inSubfolder String A path (relative to the app’s Documents directory) in which the app’s offline files will be stored. E.
formName String The name of the offline form (including “.htm” extension)

scafName String The App SCAF name (usually lower-cased version of the library name)

omnisWebUrl String The URL to the Omnis server, or web server. (If using a web server, you must provide omnisServer
omnisServer String If provided, the route to the Omnis server from the web server plugin.

omnisPlugin String If provided, the relative URL to the web server plugin, from the root of the web server.

Returns

None.

Example

omnis omnisInterface.scafHandler.initScafController(inSubfolder: "offline", formName: "jsOffline.htm",

scafName: "myapp", omnisWebUrl: "https://mysite.com", omnisServer: "192.168.1.123:9816", omnisPlugin:
"/omnis_apache")

Example

omnis omnisInterface.scafHandler.initScafController(inSubfolder = "offline", formName = "jsOffline.htm",
scafName = "myapp", omnisWebUrl = "https://mysite.com", omnisServer = "192.168.1.123:9816", omnisPlugin
= "/omnis_apache")

updateScafs()

22

updateScafs|)

Updates SCAFs from the Omnis server configured in initScafController().
OMScafHandlerDelegate methods will be called with results.

Parameters

None.

Returns

None. (OMScafHandlerDelegate methods will be called with results)

loadOfflineForm()

Load the configured offline form.

loadOfflineForm([queryParams])

Parameters

Name Type Description

queryParams Map<String, String> A Map of key-value pairs to send as URL query parameters. These can be obtaine
the JavaScript: commmand to call: jOmnis.getURLParameters()This will return a JS
& values.

or

Name Type Description

queryParams [String: String] A dictionary of key-value pairs to send as URL query parameters. These can be ob
using the JavaScript: command to call: jOmnis.getURLParameters() This will retu
these keys & values.

Returns

None.

OMScafHandlerDelegate

Provides callbacks regarding SCAF update progress etc.

Methods

Method Name

Description

onScafHandlerError(errorText, action)

onScafUpdateCompleted(didUpdate, withErrors,
newHtmIPath)

onOfflineModeConfigured(htmlPath)

(Optional) Called when an error occurs during the SCAF update/extraction
process.

(Optional) Called when the SCAF update process completes (possibly with
errors).

Called when offline mode is first ready (either around startup time if offline files
are already present, or after a successful SCAF update).

23

Enumerations

ScafAction

An enum containing the various actions the ScafHandler may execute.
Used in specifying which action failed when onScafHandlerError is called.

Key Description

Unknown No specific action.

CheckFiles Checking for local HTML files or SCAF.
ExtractSCAF Extracting a SCAF.

ReadSCAF Reading the contents of a SCAF.
AccessForm Accessing the offline form.

UpdateSCAFs Updating SCAFs from the Omnis server.

onScafHandlerError()

onScafHandlerError(errorText, action)

(Optional) Called when an error occurs during the SCAF update/extraction process.

Parameters
Name Type Description
errorText String A description of the error which has occurred.
action ScafAction The action which failed.
Returns
Type Description
Bool True if you have handled the error, false if you wish default handling to occur.

Default handling varies based on the action, but will generally show an OK
message, or print a message to the console.

onScafUpdateCompleted()

onScafUpdateCompleted(didUpdate, withErrors, newHtmIPath)

(Optional) Called when the SCAF update process completes (possibly with errors).

Parameters

Name Type Description

didUpdate Bool Whether an update occurred. If this is false, and withErrors is empty, then no updates were a
withErrors [String] An array of error strings for any errors which occurred.

Returns

24

Type Description

Bool True if you have handled the message, false for default
behaviour to occur. Default behaviour is to show an OK
message with the results (Success, failure with errors, or no
updates available).

Example

func onScafUpdateCompleted(didUpdate: Bool!, withErrors: [string]?, newHtmlPath: String!) -> Bool
{

if (withErrors.count == 0)

{
let message = didUpdate ? "Update successful" : "No updates available"
OMDialogs.showOKMessage (message: message, title: "SCAF Update")

b

else {

OMDialogs.showOKMessage (message: withErrors.componentsJoined(by: ", "), title: "SCAF Update Error")

}
self.offlineFormPath = newHtmlPath

onOfflineModeConfigured()

onOfflineModeConfigured(htmlPath)

Called when offline mode is first ready (either around startup time if offline files are already present, or after a successful SCAF update).

Parameters

Name Type Description

htmlPath String The path to the directory containing the offline form. Each time a SCAF update occurs, this will change
caching issues). Use the updated value passed to onScafUpdateCompleted to update any referencesy
to this.

Returns

None.

Example

func onOfflineModeConfigured(htmlPath: String!) {
self.offlineDir = htmlPath
self.omnisInterface.scafHandler.load0fflineForm()

}

OMDialogs

A class providing helper methods to display dialogs and loading overlays.

Everything is accessed statically.

25

Static Properties

Name Type Description

LOADING_OVERLAY_FONT UlFont The font used for text on loading overlays. Defaults to UlFont.sys
LOADING_OVERLAY_TEXT_SIZE CGFloat The text size used for loading overlays. Defaults to 16.
LOADING_OVERLAY_TEXT_COLOR UlColor The color used for text on loading overlays. Defaults to white.

Static Methods

Method Name

Description

showOKMessage(message,
title)showOKMessage(context, message, title, callback)
showDialog(message, title, buttons) showDialog(context,
message, title, buttons)

showYesNoMessage(message, title, onYes,
onNo)showYesNoMessage(context, message, title, onYes,
onNo)

showDialogForOmnisinterface(omnisinterface, data)

showlLoadingOverlay(onView, text, cancelAppearsAfter,
cancelHandler)showlLoadingOverlay(context, onViewID,
inLayout, text, cancelAppearsAfter, cancelHandler)
removelLoadingOverlay(onView)
removeloadingOverlay(onViewlID, inLayout)

Show a dialog with a single ‘OK’ button.

Show a dialog with a list of defined buttons.

Show a dialog with “Yes’ and ‘No’ buttons, with a handler for each.

A helper function to show a dialog using the JSON data provided by
the JS client for such dialogs.

Adds a dark loading overlay to a view. Blurs the background, and

shows a centered Activity Indicator and optional text.

Removes any loading overlay from the passed view.

showLoadingOverlay()

showlLoadingOverlay(context, onViewlID, inLayout, [text, cancelAppearsAfter, cancelHandler])

Adds a loading overlay to a view.

Blurs the background, and shows a centered Activity Indicator with optional text and cancel handler.

Parameters

Name Type Description

context Context The Context in which to execute.

onView!|D Int The Resource ID of the view to which the overlay should be added.

inLayout ConstraintLayout The layout which contains the view which should be overlaid. (Currently onl
supported)

text String? A message to display on the overlay.

cancelAppearsAfter Long Number of milliseconds to wait before showing a cancel button. Set to less 1
button to appear.

cancelHandler () » Boolean Callback function to call when the cancel button is pressed. Return false fro
overlay to be removed automatically.

Returns

None.

Styling

The colour of the overlay background and text can be overridden by adding color xml resources named “omnis_loading_overlay_background”

and “**omnis_loading_overlay_text“** to your project.

Similarly, the text size can be altered by adding a dimen xml resource named “omnis_loading_overlay_text_size".

26

showLoadingOverlay()

showlLoadingOverlay(onView, [text, cancelAppearsAfter, cancelHandler])

Adds a loading overlay to a view.

Blurs the background, and shows a centered Activity Indicator with optional text and cancel handler.

Parameters

Name Type Description

onView UlView The view to which the overlay should be added.

text String? A message to display on the overlay.

cancelAppearsAfter Long Number of milliseconds to wait before showing a cancel button.Set to less than
appear.

cancelHandler () » Bool Callback function to call when the cancel button is pressed. Return false from tl
to be removed automatically.

Returns

None.

Styling

The appearance of the loading overlay can be edited by changing the following static properties of OMDialogs:

Name Type Description

LOADING_OVERLAY_FONT UlFont The font used for text on loading overlays. Defaults to UlFont.sys
LOADING_OVERLAY_TEXT_SIZE CGFloat The text size used for loading overlays. Defaults to 16.
LOADING_OVERLAY_TEXT_COLOR UlColor The color used for text on loading overlays. Defaults to white.

27

	Omnis App Framework
	User Guide
	Setup – Android
	Support Library
	Add The Library To Your Project
	Instantiate The Omnis Interface

	 Setup - iOS
	Add the Framework
	Stripping The Framework

	Loading Forms
	Loading Progress Events

	Offline Forms
	Implement Delegate

	Custom Messaging - iOS
	Photo Functionality - Android
	Barcode Functionality - Android
	OmnisInterface
	Statics
	Properties
	Methods

	Features
	Statics
	Methods

	Settings
	Statics
	Methods

	LocalDBController
	Properties
	Methods

	OMCommsDelegate
	Methods

	OMWebNavigationDelegate
	Methods

	ScafHandler
	Properties
	Static Methods
	Methods

	OMScafHandlerDelegate
	Methods
	Enumerations

	OMDialogs
	Static Properties
	Static Methods

