Chapter 2—Libraries and Classes
		Exporting Libraries to JSON
[bookmark: _Toc318212141]Chapter 2—Libraries and Classes
The components for your Omnis application are stored in an Omnis library file. This file contains all the class definitions that define the data and GUI objects in your application. The class types available in Omnis include remote forms (web or mobile forms), remote tasks for handling web communications, schemas for defining your data structures, reports, and so on.
Classes are predefined structures that control the appearance and behavior of the objects in your application, and therefore classes are the main components in your library file. You can create classes using the wizards provided in the Studio Browser, or you can create them from scratch using class templates. You can create any number of classes in each library file and modify them at any time while you develop your application. You can check classes in and out of the Omnis VCS and work on different parts of your library on a collaborative basis (depending on the license you have).
[bookmark: _Toc318212142]Omnis Libraries
Each library file contains a number of system classes and preferences that control the behavior of your library and its contents. A library has certain properties too, which you can examine and change using the Property Manager.
You can create and open any number of library files in the Studio Browser, and each library can contain any number of classes. In practice, you may want to split your whole application into one or more libraries and store different types of objects in different libraries. Alternatively, you can develop your classes in one library or a number of libraries, then check them into the Omnis VCS and export them into a library file when you are ready to deploy your final application.
To create a new library
· Start Omnis and open the Studio Browser: if the Studio Browser is not open you can press F2/Cmnd-2 to open it or bring it to the top
· Select the Libraries option and click on the New Library option in the Studio Browser. This option opens the App Builder which allows you to create a new Blank Library or create a library based on one of a number of templates, including the ‘Your database’ and ‘Import data’ options
· If you select the Blank Library option in the App Builder, the New Library dialog is opened
· Enter a name for the new library, including the .LBS file extension and click on Save or press Return
When you name a new library, you can use the file naming standards for the current operating system. The .LBS file extension is not obligatory, but it will help you distinguish library files from other types of file in your file system. The new library is opened in the Studio Browser under the Libraries option and shown as a single icon in icon view, or as a single line in details view.
You can also create a new library by importing a JSON tree using the New Library from JSON option in the Studio Browser: the JSON tree must previously be exported from Omnis Studio using the export to JSON option: see the end of this chapter for details.
[bookmark: _Toc517447160]Library Conversion
When you try to open an existing library, created in a previous version of Omnis Studio, Omnis will prompt you to convert the library. You are strongly advised to make a secure backup of the old library before you open and convert it in the latest version of Omnis Studio since THE LIBRARY CONVERSION PROCESS IS IRREVERSIBLE.
[bookmark: _Hlk517682215]The library conversion prompt applies to libraries you open manually in Omnis Studio and any libraries located in the Startup folder that are loaded automatically and require conversion.
[bookmark: _Toc14096986]Library Conversion Logs
The library converter adds an entry to the Find and Replace log that allows you to quickly navigate to each change made by the converter by double-clicking on a line in the log. In addition, the converter writes a log file to the ‘conversion’ folder in the logs folder in the data part of the Studio tree. The log file provides a more permanent record of the changes applied to the converted library.
Conversion Log Delimiter
The conversion log file uses tab-delimited format, with exported text in quotes (the default). You can change both of these options using configuration items in the config.json file, in the log section:
 "conversionLogDelimiter": "\t",
 "encloseConversionLogTextInQuotes": true
If conversionLogDelimiter is empty, Omnis uses the default log delimiter, a semicolon (;).
Conversion Prompts & Working Messages
You can enable the option "disableAllLibraryConversionPrompts” to suppress conversion prompts when a library that needs to be converted is opened from the Startup folder: the option is in the "defaults" section of the Omnis Configuration file (config.json) and defaults to false, so you can set this option to true to prevent library conversion prompts.
You can disable the working messages such as "Converting class..." during library conversion by setting the "showLibraryConversionWorkingMessage" option located in the "defaults" section of the config.json file. The option defaults to true, but you can set it to false to disable the conversion working messages.
Library Properties
A library has a set of properties or preferences that control how it behaves. You can use the Property Manager to display or change the properties of a library.
To view the properties of a library
· Select the library icon or name in the Studio Browser and press F6/Cmnd-6 to open the Property Manager
or
· Right-click on the library icon or name in the Studio Browser
· Select the Properties option from the library context menu
The Property Manager displays the properties of the currently selected library: to view all the properties of a library, ensure that the ‘Show All’ option is enabled. You can move you mouse over a property to display its help text. The library preferences are displayed under the Prefs tab in the Property Manager.
Library Default name
A library has an internal name which Omnis uses to reference the library in your code and elsewhere, such as the prefix for a class name in a multi-library structure, i.e. Libraryname.classname. The default internal library name is created automatically using the name of the disk file: the file extension is removed, and any remaining characters in the set . $ () [] (dot, dollar, open and close parenthesis, open and close square bracket) are converted to _ (underscore). The default internal library name will have the case of the library name to be consistent with Omnis running on the macOS and Linux platforms (prior to Studio 10, library name and file paths on the Windows platform were converted to upper case when opened which resulted in the default internal name for a library being upper case on the Windows platform).
You can assign an alternative internal name for a library by setting the $defaultname library property and once set this is used to reference the library, overriding the auto-generated name. The characters and format of the string allowed in $defaultname are limited: no leading or trailing spaces, the name cannot start with a digit, or contain the following characters: . $ () [or].
If you rename the library file on disk the $defaultname remains the same retaining all class references. If you change the $defaultname property after you start developing your library, all class references that use it will fail: therefore, in a multi-library system you should set it once before you start adding classes to your library.
Multi-library Projects
Omnis lets you structure your application into one or more libraries that you can load either together or separately. This lets you
· break up your application into smaller, less complex subsystems
· develop the subsystems in different programming groups or departments
· test the subsystems or modules separately
· reuse libraries in different applications, mixing and matching reusable code without modification
[bookmark: _Toc294340057][bookmark: _Toc295157564][bookmark: _Toc298233210][bookmark: _Toc300721320]Although Omnis always ensures the integrity of objects, there is no built-in locking or concurrency checking to prevent two users from modifying the same object. If more than one user opens an object in design mode, the last one to close the object overwrites the changes made by the other users. There is no way to ensure that changes made to an object are seen by other users before the library is reopened: objects are cached in memory and it is not possible to predict when Omnis will discard an object from the cache. In a team of developers you should therefore use the Omnis VCS.
Omnis VCS
The Omnis VCS provides you with a full-featured version control system for your Omnis libraries and other components. If you put your application under version control, you eliminate the inherent risks involved in group development. See later in this manual for details about the Omnis VCS.
Comparing Classes
The Studio Browser includes a tool that lets you compare classes in two different versions of the same Omnis library or different revisions of the same class in a VCS project. The Compare Classes tool lets you compare all the classes in one library or VCS project or individual classes. To use the new tool, click on the Compare Classes option in the Studio Browser.
[bookmark: _Toc447028204][bookmark: _Toc318212143]Shared Access to Libraries on macOS
The 64-bit macOS version of Omnis Studio does not support shared access to libraries. For libraries ($root.$libs.LIB) on 64-bit macOS, the $shared property cannot be set to true as shared access is not supported: in effect, this property is redundant on this platform.
Default Classes
When you create a new library in Omnis, it contains certain default classes including a task class called Startup_Task and various System Classes that control the behavior and appearance of your library. As you begin to prototype your application, you don’t need to modify the default classes, but this section gives you a brief overview of how they affect your library.
The Startup task
When you create a new library it contains a task class called Startup_Task. When you open your library on the desktop (local runtime environment) the startup task is opened and the initialization code within it is run automatically. Therefore if you want your library to do something in particular when it starts up (such as open a window or install a menu), you can put the code to do it in the startup task.
The Startup_Task is not relevant for web or mobile apps, since the end user will be opening your application in their browser or native wrapper: any initialization of a web or mobile app should be done in the initial remote form to open in the end user’s browser.
Each library has a preference called $startuptaskname which stores the name of the startup task, and is set to Startup_Task by default. To change the task that is run when your library opens, you need to change this property, but in most cases you can leave it set to Startup_Task.
The startup task has a special function when you are designing your library and adding other classes and variables to your library. At present you don’t need to worry about the startup task or do anything to it, you can proceed to create your data and GUI classes in your library.
[bookmark: _Toc437513039]Library Startup Task
The Omnis root preference $clibstartuptask reports the startup task for the library containing the current executing method.
System Classes
Every new library contains a number of System Classes, contained in a folder called ‘System Classes’. You can hide or show them using the Class Filter option in the Studio Browser. Many of the system classes relate to desktop apps only, and are therefore irrelevant for web and mobile apps.
System classes are special types of class that hold information about the Omnis environment, including field styles, fonts, input masks, and external components. You can edit some of the system classes to change the way Omnis behaves. The settings for these tables are stored for each separate library. You can copy system classes from one library to another and you can edit them, but some options available for normal classes are not available for these tables. Like other classes, you can check system classes into the Omnis VCS.
The system classes are as follows:
	Name
	Description

	#BFORMS
	boolean formats: these specify the format of Boolean fields allowed in your library: see below

	#DFORMS
	date formats: these specify the format of short date, and date and time values: see below

	#EXTCOMPLIBS
	the external components available in the current library: here you can load or remove ext comps for your library or Omnis itself

	#ICONS
	the icon datafile for the current library: double-clicking opens the Icon Editor: alternatively, you can use icon sets for JS Client apps

	#MASKS
	input masks for data entry fields: see below

	#NFORMS
	number formats for numeric data entry fields: see below

	#PASSWORDS
	the master and user passwords for desktop libraries only, not JS Client: this is hidden by default, but you can show it via the Class Filter option

	#STYLES
	character styles for window and report fields, and text objects: you can print a list of styles by right-clicking on the class and selecting Print Class

	#TFORMS
	text formats for character based fields: see below

	#WIRFONTS, #MARFONTS #UXRFONTS, #MXRFONTS
	font table for report classes under Windows, Linux/Unix, macOS, or JavaScript

	#WIWFONTS, #MAWFONTS #UXWFONTS, #MXWFONTS, or #JSWFONTS
	font table for window or remote form classes under Windows, Linux/Unix, macOS, or JavaScript

You can edit a system table by double-clicking on it in the Studio Browser. For example, you can double-click on #DFORMS which opens the Date formats dialog showing all the date formats for the current library.
By using the FONT system tables for window, report, or remote form classes you can map fonts used on one operating system to fonts appropriate for the other operating systems.
[bookmark: _Toc462049789][bookmark: _Toc318212144]#BFORMS: Boolean formats
Formats used for the $formatstring property in Masked Entry fields (window class only) when $formatmode is set to kFormatBoolean.
	
	Formatting

	1
	T

	2
	t

	3
	Y

	4
	y

	5
	O

	6
	1

	7
	[GREEN]O;[RED]O

	8
	[GREEN]Y;[RED]Y

#DFORMS: Date formats
The entries in #DFORMS are used to specify the format of Date Time variables (when defined in the Method Editor), and for the $formatstring property in Masked Entry fields (window class only) when $formatmode is set to kFormatDate.
	
	Formatting

	1
	D m y

	2
	H:N

	3
	h:N A

	4
	H:N:S

	5
	H:N:S.s

	6
	D m Y H:N

	7
	D m Y H:N:S

	8
	D m Y H:N:S.s

	9
	M/D/Y

	10
	w, n D, y

	11
	D/M/Y

	12
	w, D n, y

	13
	M/D/Y h:N A

	14
	D/M/Y H:N

The following standard date formatting characters are supported:
	D
	Day (12)

	V
	Day of week (Fri)

	w
	Day of week (Friday)

	E
	Day of year (1..366)

	n
	Month (June)

	M
	Month (06)

	m
	Month (JUN)

	y
	Year (1989)

	Y
	Year (89)

	A
	AM/PM

	H
	Hour (0..23)

	h
	Hour (1..12)

#MASKS – Input masks
Formats used for the $inputmask property in Masked Entry fields (window class only).
	
	Formatting

	1
	>>(###) ###-####

	2
	>>(###) ###-#### Ext(#####)

	3
	>>(####) ######

	4
	>>(####) ###### Ext.###

	5
	>>#### #### #### ####

	6
	>>###-###-###

	7
	>>aa ## ## ## a

	8
	>>##-aaa-##

	9
	>>##-aaa-####

	10
	>>##/##/##~D/M/Y~

	11
	>>##/##/####~D/M/y~

	12
	>>##/##/##~M/D/Y~

	13
	>>##/##/####~M/D/y~

#NFORMS – Number formats
Formats used for the $formatstring property in Masked Entry fields (window class only) when $formatmode is set to kFormatNumber.
	
	Formatting

	1
	0

	2
	0.00

	3
	#,##0

	4
	#,##0.00

	5
	#,##0;[RED](#,##0)

	6
	#,##0.00 'cr';#,##0.00 'dr'

	7
	'£' #,##0;[RED]'£'-#,##0;;'Nil'

	8
	'$' #,##0;[RED]'$'-#,##0;;'Nil'

	9
	0%

	10
	0.00%

	11
	0.00 E+00

	12
	0.00 E-00

#TFORMS – Text formats
Formats used for the $formatstring property in Masked Entry fields (window class only) when $formatmode is set to kFormatCharacter.
	
	Formatting

	1
	'('@@@')' @@@'-'@@@@

	2
	'('@@@')' @@@'-'@@@@ 'Ext('@@@@@')'

	3
	'('@@@@')' @@@@@@

	4
	'('@@@@')' @@@@@@ 'Ext.'@@@

	5
	@@@@ @@@@ @@@@ @@@@

	6
	@@@'-'@@@'-'@@@

	7
	@@ @@ @@ @@ @U

Overriding Date and Number Formatting
You can override individual entries within the System Class tables at runtime, without modifying the system classes in the library. This may be useful in a multi-library deployment, where all of the libraries need to share the same base set of system classes, but you may want to change individual settings in the formatting tables, such as the date format, according to the language or location of the end-user.
The definitions for these alternative formatting tables can be stored in a JSON file, which should be named “tables.json” and placed in the Studio folder under the main Omnis folder. You can then use a method called $overridetables to load an entry from the JSON file to override an entry in one of the default system tables in the current library.
The override only applies while the library is open: therefore, if you close and re-open the library, you need to call $overridetables again if you want to override the default system tables: typically, you would do this at the start of $construct in the Startup task of your library.
The tables.json file should contain a JSON object, and each member of the JSON object defines the content of one or more of the formatting tables: tables which do not have an entry for a member are not affected when that member is used. The following format is used:

{
 "en": {
 "#BFORMS": ["[GREEN]Y;[BLUE]Y","y","Y"],
 "#DFORMS": ["D/M/Y H~N", "D m Y H:N"],
 "#TFORMS": ["@@ @@ @@ @@ @U", "'('@@@@')' @@@@@@ 'EXT'@@@"],
 "#MASKS": [">>###-###-###", ">>##/##/####~M/D/y~"],
 "#NFORMS": ["0.00 E+00"]
 },
 "de": {
 "#BFORMS": ["[GREEN]Y;[YELLOW]Y"],
 "#DFORMS": ["D/M/Y H~N"]
 }
}

The $overridetables method has the following syntax:
· $clib.$overridetables(cJsonPath,cEntry[,&cErrorText])
Uses member cEntry in JSON table file cJsonPath to override the system tables with entries stored in member cEntry. Returns Boolean true for success, false and cErrorText for failure
Therefore, you could execute the following to load tables.json from the Studio folder:
Do $clib.$overridetables(
con(sys(115),"studio",pathsep(),"tables.json"),"en”,lErrorText) Returns bStatus
Locale-style names have been used, such as “en”, to indentify the members for which the tables are to be loaded, but the text could be anything to identify the set of tables to be loaded so long as you use the same name in the $overridetables() method.
$overridetables replaces the contents of the system tables with the members of the array, and sets any entries after the array members to empty. The corresponding system table class becomes read-only: you can open its class editor, but you cannot change it within the class editor.
Using the $clib.$prefs notation group for the table will change the table used at runtime, but a change made using the notation will not be saved to disk.
Class Types
There are several different types of class in Omnis, each one performing a particular function in your library, or your app as a whole. In general, classes are either Data classes or GUI classes, depending on whether they define the data structures or certain visual elements in your application. The types of class are:
· Schema
data class that defines a server table and its columns on your server database
· Query
data class that defines one or more server tables and their columns on your server database
· Table
data class that maps to a schema class and contains default methods for processing your server data
· Remote form
GUI class that defines the forms to be displayed on web or mobile devices using the JavaScript Client
· Remote task
class that controls JavaScript remote form instances and maintains the connection between a client and the Omnis Server in web and mobile apps
· Object
class that contains methods and variables defining your own structured data objects
· Report
GUI class that defines the reports you can print in your application (Desktop/Local apps only)
· Task
class that contains or controls other instances, and handles events in your application (Desktop/Local apps only)
· Code
class that contains methods you can use throughout a library, for example, a menu and toolbar in a desktop application could access the same methods stored in a code class
The following classes are used for Desktop/Local applications only, therefore you should not use them for web and mobile apps:
· File
data class that defines the structure of a file (the Omnis equivalent of a table) in an Omnis data file
· Search
class that filters the data stored in an Omnis data file
· Window
GUI class that defines the data entry windows for Desktop apps only (cannot be used for web and mobile apps)
· Menu
GUI class that defines standard pulldown, popup, and hierarchical menus for Desktop apps only
· Toolbar
GUI class that defines the toolbars for Desktop apps only
The following class can only be used with the Omnis Web Client plug-in (which is no longer supported in Omnis):
· Remote menu
GUI class that defines context menus for Omnis Web Client based apps only
[bookmark: _Toc318212145]Class Templates and Wizards
The Studio Browser gives you the option of creating new classes using the blank or empty class templates, or using the class wizards which let you build fully functional classes complete with data fields and methods created for you automatically. These methods of creating classes are accessed using the list of hyperlink Options in the Studio Browser.
New Class templates
The New Class option in the Studio Browser (available when a library is selected) lets you create a blank or empty class that you can build and modify from scratch. Templates are available for all the different class types in Omnis. If you are new to Omnis or you want to prototype your application quickly, you should use the class wizards. When you are more experienced or you want to create classes from scratch then you can use the class templates.
Class Wizards
The Class Wizards option in the Studio Browser (available when a library is selected) lets you create fully functioning classes based on the selections you make during the wizard, and in the case of GUI wizards, the class you are building can be linked to other classes in your library. The class wizards are good for building or prototyping your application very quickly and save you building classes from scratch. You can create a JavaScript remote form based on a schema class in your library using the SQL JavaScript Remote Form wizard.
[bookmark: _Toc318212146][bookmark: _Toc318212147]Data Classes and Wizards
Depending on the type of data you want to enter or retrieve in your client application you will need to define certain structures in your library to handle this data. These structures are stored in your library file as data classes.
This section introduces schema, query, table, file, and search classes. All these classes are covered in greater detail in the Omnis Programming manual.
Accessing SQL databases
If you want to handle data from a SQL-compliant DBMS you must create Omnis schema and/or query classes that map to the table and column structures on your server database. You can create schema classes from scratch or you can create them automatically from the tables on your database server using the SQL Browser (the Tutorial shows you how to do this).
Data type mapping
When creating schema classes you need to choose column data types that map directly to the tables or views on your server database. To do this successfully, you need to choose the data type for each column that best represents the type of data in your database server. See the chapters on client/server programming in the Omnis Programming manual for more information.
Omnis Datafiles
If you want to store and retrieve your data using a non-client/server setup, you can store it in an Omnis data file. In this case you need to design the structure for your data using Omnis file classes. In addition, you can use an Omnis search class to filter the data stored in an Omnis data file.
Omnis Data Types
This section describes in detail the standard data types you can use to represent data in Omnis. Choosing the right type for your data ensures that Omnis will do the right thing in computations requiring conversion. It also lets Omnis validate the data as you enter or retrieve it. Some of the basic data types have subtypes, or restrictions of size or other characteristics of the data that give you finer control over the kind of data you can handle. The following data types are available.
	Field or Variable Type
	Description

	Character
	standard character set sorted by ASCII value

	National
	standard character set sorted by national sort order

	Number
	multiple types for representing integers, fixed point and floating point numbers

	Boolean
	single-byte values representing true or false values, or their equivalents

	Date Time
	multiple types for representing simple dates and times, or composite date and times, between 1900 and 2099 to the nearest hundredth of a second

	Sequence
	proprietary data type for numbering Omnis data file records

	Picture
	stores color graphics of unlimited size and bit-depth in platform-specific format or in a proprietary shared picture format

	List
	structured data type that holds multiple columns and rows of data of any type

	Row
	structured data type that holds multiple columns of data in a single row

	Object
	your own structured data type based on an object class

	Binary
	stores any type of data in binary form, including BLOBs

	Item Reference
	stores the full notation of an object in your library or Omnis itself

	Field Reference
	passes a reference to a field (parameter variables only)

	Object Reference
	lets you create an object instance of local, instance, class or task variable scope

[bookmark: _Toc288381341][bookmark: _Toc289937671][bookmark: _Toc294538693][bookmark: _Toc300652986][bookmark: _Toc300720348][bookmark: _Toc300993217]Character
Character data can contain characters from any of the various single-byte standard character sets. You can define a Character column of up to 10 million (10,000,000) bytes in length. Character columns or fields generally correspond to SQL VARCHAR data and have a varying length format.
In Omnis character data is sorted according to its ASCII character set representation, not the server representation. The ASCII character set sorts any upper case letter in front of any lower case letter. For example, these character values
adder, BABOON, aSP, AARDVARK, Antelope, ANT
are sorted as
AARDVARK, ANT, Antelope, BABOON, aSP, adder
National
Like Character data, National data can contain characters from any of the various single-byte standard character sets. You can define a National column of up to 10 million (10,000,000) bytes in length. However, when you sort National data, Omnis sorts the values according to the ordering used by a particular national character set.
The ordering for the English language follows: A, a, B, b, C, c, D, and so on. For example, if the previous values were values of a national column or field, Omnis would sort them as follows:
AARDVARK, ANT, Antelope, adder, aSP, BABOON.
If you store data in an Omnis data file, Omnis stores a copy of the ordering in the file along with the data. If you use the data file on another machine, Omnis preserves the original ordering.
Number
A number variable can be an integral or floating point number having various storage and value characteristics, depending on its subtype. The following table summarises the different subtypes for numbers.
	Number type
	Storage (bytes)
	Range

	Integer
	
	

	Short integer
	1
	0 to 255

	32 bit integer
	4
	-2,000,000,000 to +2,000,000,000

	64 bit integer
	8
	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	Number
	
	

	Short 0 dp
	4
	Single-precision floating point
approx -3.4E38 to +3.4E38 *
Display format: n decimal places

	Short 2 dp
	4
	e.g. 123.50

	Floating dp
	8
	Double-precision floating point
approx. -1.8E308 to +1.8E308 *
displayed using 16 significant digits:

	Number 0 dp
	8
	Display format: n decimal places,
e.g. 123

	Number 1 dp
	8
	e.g. 123.4

	Number 2 dp
	8
	e.g. 123.45

	Number 3 dp
	8
	e.g. 123.456

	Number 4 dp
	8
	e.g. 123.4567

	Number 5 dp
	8
	e.g. 123.45678

	Number 6 dp
	8
	e.g. 123.456789

	Number 8 dp
	8
	e.g. 123.45678901

	Number 10 dp
	8
	e.g. 123.4567890123

	Number 12 dp
	8
	e.g. 123.456789012345

	Number 14 dp
	8
	e.g. 12.34567890123456

[bookmark: _Toc288381344][bookmark: _Toc289937674]*When Number fields are used to store integer values, the largest scalar value that can be stored precisely is 9007199254740992 (2^53). Values larger than this will incur rounding error proportional to their magnitude. Numeric values with precision > 16 will also incur rounding error.
File Classes and Integers
You can use 64 bit integers in file classes, provided that a field (column) is not indexed. In Integer subtype droplist in the file class editor, the 64 bit subtype is available but only when the field is not marked as indexed, otherwise if the field is indexed 64 bit is not present: the 64 bit subtype is not allowed in compound indexes either. The notation to manipulate file classes and indexes does not allow 64 bit integers to be used for indexed fields.
Floating Point Numbers
There are many pitfalls in using floating point numbers in programming. Computers do not represent these numbers exactly, only approximately within the precision of the machine. This can lead to all kinds of anomalous problems with comparison of values, particularly with equality comparisons. Two floating point numbers may differ by an infinitesimal amount depending on the technique used to generate the values, even though logically they should be the same.
In general, you should not use equality comparisons with floating point numbers. If you are working with “fixed-point” data such as money values, use scaled integers for comparison and arithmetic.
For example, instead of comparing two floating point variables F1 and F2 containing the amounts $5.00 and $10.00, compare two integer variables I1 and I2 containing 500 and 1000. Display I1 * .01 when you need a decimal value. You can also use the rnd() function to round the numbers to a certain number of decimal places before comparing them.
Boolean
The boolean data type represents single-byte values of true (yes), false (no), empty, or null. You should take care to give each Boolean column or field an initial value, because Omnis initializes boolean data to “empty”, not NO or null.
When used in a data entry field in a window, boolean data is treated as three characters in which any data entry is interpreted as a YES or NO. A `Y', 'YE' or 1 is seen as YES while an 'N' or 0 will suffice for No. If the field is a check box, you enter the boolean value by clicking on the box. If you don't initialize the field and the user does not click on the box, the field has an “empty” value.
You can use boolean values in expressions. The numeric value is 1 for Yes values and 0 for No and empty values. NULL values are treated as undefined in numeric calculations. For example, (null+1) is null and (null>1) is null.
When converted to character strings, Boolean columns or fields can take values "YES", "NO", "NULL", or empty, "". In some cases, for example when setting up search criteria, you can enter values other than these for a Boolean field: in this case, Omnis converts them and matches them with empty. Thus, for example, the value 'FALSE' is converted to empty, as are values like SAM, HAPPY, and so on.
Date time
The date and time group of data types contains three basic subtypes: a four-byte Short date, a two-byte Short time, and an eight-byte Long date and time. The following table summarizes the date and time subtypes.
	Date Time subtypes
	Storage (bytes)
	Range

	Short date
	4
	1900..1999

	Short date
	4
	1980..2079

	Short date
	4
	2000..2099

	Short time
	2
	Minute resolution

	Date time(#FDT)
	8
	Formatted #FDT, to centiseconds

	Date time(D m Y)
	8
	Formatted D m Y, to centiseconds

Note that the display of dates depends on the settings in the #DFORMS system table. Also the long date and time subtypes are identical in value, only displaying differently in window fields.
[bookmark: _Toc289937676][bookmark: _Toc294538698][bookmark: _Toc300652991][bookmark: _Toc300720353][bookmark: _Toc300993222]Short Date
The short date type spans the range JAN/1/0000 to DEC/31/9999. There are three specific built in ranges: 1900 to 1999, 1980 to 2079, and 2000 to 2099. By choosing the appropriate range, you can enter just two digits for the year and Omnis recognizes the century correctly. For example, if you select the range as 2000 to 2099, a date you enter as 7,12,57 will be read as 7,12,2057 rather than 1957. To enter a date outside the three specific year ranges, you need to set up your own date display format.
Omnis accepts dates in different formats automatically, with the exact format depending on whether your system is US or European. For example, you could enter the 7th of December, 1998, as any of the following strings.
	US system
	European system

	12-7-98
	07-12-98

	12/7/98
	7/12/98

	12%7%98
	7%12%98

	DEC 7 98
	7 DEC 98

You can use any character to delimit the day and month figures. If you don't specify the year or month and year, Omnis assumes the current year or month and year, respectively.
Omnis supports three kinds of date arithmetic in expressions.
· Addition of days:
Date + Days = Date (forward)
· Subtraction of days:
Date - Days = Date (back)
· Subtraction of dates to yield number of days between the dates:
Date1 - Date2 = Number of Days between the dates
Omnis uses the string variable #FD to define the display format of dates. There are also several date functions that let you manipulate date strings.
[bookmark: _Toc289937677][bookmark: _Toc294538699][bookmark: _Toc300652992][bookmark: _Toc300720354][bookmark: _Toc300993223]Short Time
Short time types have two-byte values in the form HH:NN. The range of possible time values is from 00:00 to 23:59.
You can use time in expressions. Omnis automatically converts the time into numeric values using the conversion HH*60+NN, giving the total number of minutes. The #FT string variable controls conversions between time and string types.
[bookmark: _Toc300652993][bookmark: _Toc300720355][bookmark: _Toc300993224]Long Date and Time
The combined Date Time type can hold a complete date and time to 1/100th second. It has various subtypes depending on the display format you select (stored in #FDT) and uses 8 bytes when stored in a data file.
[bookmark: _Toc289937679][bookmark: _Toc294538701][bookmark: _Toc300652995][bookmark: _Toc300720357][bookmark: _Toc300993226]Date and Time Calculations
The numeric value of a date or time variable in an expression depends on the format string for that variable. So, if DATE1 has date format string H:N and DATE2 has date format string H:N:S, DATE1 has a numeric value equal to the number of minutes since midnight and DATE2 has numeric value equal to the number of seconds since midnight. It follows that DATE1+1 adds 1 minute to DATE1 and DATE2+60 adds 1 minute to DATE2.
Addition and subtraction involving two date/times cause the numeric value of each to adjust so that they are both based on a common denominator. Thus DATE1-DATE2 returns a numeric value equal to the correct difference between the two times in seconds. However, DATE1*1-DATE2*1 loses the information that DATE1 and DATE2 represent date times and returns a meaningless difference between the DATE1 value in minutes and the DATE2 value in seconds, for example, 500 minutes - 600 seconds.
Note that calculations involving combined dates and times do not work properly if the date part is before 1900. Comparisons between two datetimes with different date format strings work properly.
When you compare parts of dates, for example, the month part of a date, dtm('11 June 98'), Omnis compares the string representation of the month unless some calculation forces it to use the number representation of the month. Thus the expression dtm('11 Dec 98') is less than dtm('11 June 98') because 'D' is before 'J' in the alphabet. To force a correct numeric comparison, add 0. For example
If dtm('11 June 98')<(dtm('11 Dec 98')+0)
 OK message {6 is less than 12}
End If
You should try to use straight date comparisons if you are comparing full dates. Don’t try to convert them into integers or other types of data. Let Omnis do the work for you.
[bookmark: _Toc417796854]Century Ranges for Dates
When entering data into a date time field or variable without specifying the century, the date normally defaults to be within the hundred year range starting with 1st January 1980. However, you can specify the start of the hundred year default range as a library preference with the option of overriding it for individual date types.
You can use the $centuryrange library preference to set the default century range ($clib.$prefs.$centuryrange), a four digit year is specified which defaults to 1980. So if, for example, $centuryrange is set to 1998, dates for which no century is entered default to between 1st January 1998 and 31st December 2097.
In addition, the 30 date formats which are stored in the #DFORMS system table can include the century range by including a four digit year at the end of the date format. For example, date formats starting at 1st January 1998 include ‘D m Y H:N:S 1998’ and ‘YMD 1998’. This can be used to override $centuryrange for particular date types.
The same mechanism can be used to control the conversion of character values to dates using the dat() function, for example:
Do dat(charvar,’D m Y 1998’) Returns datavar
Century ranges are used when dates are entered from the keyboard or when a character string is converted to a date. If you enter a date that includes the century, the century range is ignored. Century ranges do not affect how a date value is stored or displayed, Omnis always stores the full date including the century.
Sequence
[bookmark: _Toc288381346][bookmark: _Toc289937680][bookmark: _Toc294538702][bookmark: _Toc300652996][bookmark: _Toc300720358][bookmark: _Toc300993227]Every time Omnis inserts a new record into an Omnis data file, it assigns a unique number, a record sequencing number or RSN to that record. There is a special data type, the sequence, for this type of data. Each RSN references a location in the data file. If you delete a record, Omnis does not reuse the RSN. The RSN is stored as a 32-bit integer so its maximum value is 2^32-1, which is approximately 4,295 million! The sequence type is not applicable to client/server data.
Omnis assigns record sequencing numbers (RSNs) according to the following rules:
· The first record in a file has RSN 1, the second record RSN 2, and so on
· An RSN is never used again, even though the record may no longer exist
A window field with sequence type provides a way for the user to see the RSN for any record in an Omnis data file, even though they cannot change it.
Omnis assigns the RSN just before saving the record in the data file, so it is not available for any calculations prior to the Update files command.
Picture
The picture data type holds color graphics with a size limited only by memory. The space each picture consumes depends on the size and resolution of the image. The internal storage of a picture is either in native format (Windows bitmap or DIB or metafile or Mac PICT) or in Omnis shared color format. Server databases store picture data as binary objects (BLOBs).
List
[bookmark: _Toc288381347][bookmark: _Toc289937681][bookmark: _Toc294538703][bookmark: _Toc300652997][bookmark: _Toc300720359][bookmark: _Toc300993228]The list is a structured data type that can hold multiple columns and rows of data. A list can hold an unlimited number of lines and can have up to 400 columns. When you create a list variable you set the type of each column. The data type of each column in your list can be any one of the other data types including Character, Number, Date, Picture, and List: Yes, you can even have lists within lists!
Omnis makes use of the list data type in many different kinds of programming tasks. Normally you would create a variable with list data type and build your list in memory from your server data or Omnis data file. Then you could use your list data as the basis for a grid or list field on a window, or you could use it to generate a report.
You can store lists in Omnis data files directly. To store a list in a SQL table on a server, you can map it to a binary field of some kind.
Row
The row is a structured data type, like a list, that can hold multiple columns and types of data, but has one row only: it is essentially a list type with a single row. A row can have up to 400 columns. When you create and define a row variable, you set the type of each column. As with lists, the data type of each column in your row can be any one of the other data types including Character, Number, Date, Picture, List, and Row.
Object
Object classes let you define your own structured data objects. Their structure, behavior, and the type of data they can hold is defined in the variables and methods that you add to the object class. A variable with object type is a variable based on an object class: the subtype of the variable is the name of an object class. For example, you can create an instance variable of Object type that contains the class and instance variables defined in an object class.
When you reference a variable based on an object class you create an instance of that object class. You can call its methods with the notation VarName.$MethodName(). For an object variable the initial value contains the parameters which are passed to $construct() for the class when the instance is constructed. The instance lasts for as long as the variable exists.
You can store object instances in a list. Each line of the list will have its own instance of the object class. You can store object variables, and hence their values, in an Omnis data file or server database which can store binary values. If an object variable is stored in a data file the value of all its instance variables are stored in binary form. When the data is read back into Omnis the instance is rebuilt with the same instance variable values.
Object reference
The Object reference data type provides non-persistent objects that you can allocate and free using notation. Non-persistent means that objects used in this way cannot be stored on disk, and restored for use later.
You can use the Object reference data type with local, instance, class and task variables. It has no subtype. To create a new Object instance, referenced by an Object reference variable, you use the methods $newref() and $newstatementref(). These are analogous to the $new() and $newstatement() methods, and they can be used wherever $new() and $newstatement() can be used.
Object references are deleted automatically when they are no longer required in order to free up memory. Object references are deleted when a variable or list column no longer contains the reference. Therefore calls to $deleteref are not required unless you want to release memory sooner than would otherwise occur under the automatic process. Object reference variables are no longer valid after the task that created the variable closes.
Binary
The binary type can store structured data of unlimited length up to your maximum available memory. Omnis does not know anything about the format and structure of the data in a binary column or field. In this type of column or field you could place, for example, desktop publishing files, MIDI system exclusive files, CAD files, and so on. You could store the definition of an Omnis class in a binary field.
Binary data corresponds to binary large objects (BLOBs) on most database servers.
Item reference
You can use a variable of type Item reference to store an alias or reference to an object in Omnis or in your library. You assign the notation for the object to the item reference variable using the Set reference command. You can use an item reference variable in calculations or expressions which saves you having to quote the full path to the object. You can also use an item reference variable with the Do command to return a reference to the object or instance created by the command.
Field reference
[bookmark: _Toc288381340][bookmark: _Toc289937670][bookmark: _Toc294538691][bookmark: _Toc300652984][bookmark: _Toc300720346][bookmark: _Toc300993215]You can pass a reference to a field using the field reference data type, available for parameter variables only. A parameter variable with the field reference type must have a valid field in the calling method. Once the field reference parameter variable is set up, a reference to the parameter is the same as using the field whose name is passed.
Nulls and empty values
A variable or column of any data type can be NULL. This means the value is unknown or irrelevant, and that there is therefore no way to operate on the column value. A null value is distinGUIshable from an empty value, which represents empty or uninitialized data.
When defining a file class, you can specify that a field Can Be Null or Cannot Be Null. This controls the handling of rows written to Omnis data files only and is irrelevant for client/server data, since it doesn’t prevent fields from getting null values in Omnis calculations. Null data from a SQL database corresponds to null values in Omnis fields and variables, and null values are sent to a server database as SQL nulls.
You can use the hash variable #NULL to represent null values in calculations. For example, to set a variable to null:
Calculate LV_Variable as #NULL
The result of arithmetic, comparison, and logical operators on null data is always null. With string functions such as con() and jst(), however, Omnis translates null to empty. The isnull() function returns kTrue if the value is null and kFalse if not.
When you use an Omnis sort on columns or variables with nulls, Omnis sorts the nulls first and separately from the empty values (or, for a descending sort, last). In a sorted report the nulls come first and do generate a break.
When exporting records in a text format, null values export as an unquoted string NULL, unless a particular format doesn’t support nulls. In this case, Omnis translates the null to empty. Occurrences of this unquoted string in an import file import as nulls.
Formatting strings and input masks
You can further structure the display of Character, Number, Date, and Boolean data using Masked Entry (window class) fields and the $formatmode and $formatstring properties.
Current Record Buffer
The Current Record Buffer, or CRB, is an area of RAM, that Omnis uses to hold your current data. For example, if you are accessing a number of file classes or a SQL view, the CRB holds the current record or data for those files or view.
[bookmark: _Toc318212148]Schema classes
A schema class is a type of data class that represents a table or view on your server database. A schema class contains the name of the server table or view on your server, and a list of column names and Omnis data types that map directly to the columns in your server table or view. The Omnis data types defined in a schema class should map to the equivalent server types, and the column names must conform to any conventions about case used by the server. For example, if the server column names are case sensitive, the column names in your schema class must be in the correct case.
Schema classes do not contain methods, and you cannot create instances of them. You can however use a schema class as the definition for an Omnis list using the $definefromsqlclass() method, which lets you process your server data using the SQL methods against your list.
To create a new schema class
· Select your library in the Studio Browser
· Click on the New Class option, then click on the Schema option
· Name the new class and press Return
· To edit the class, double-click the class in the Studio Browser
The schema editor lets you enter the name of the server table or view and the column definitions You can move from column to column in the editor either using the Tab key, by clicking in the column, or with the keyboard Up and Down arrows.
Having created a schema (or query) class, you can use the SQL Form Wizard to create a SQL form based on the class to view and enter data into your server database.
Creating schema classes automatically
You can create a new schema class from scratch, as described above, or you can create one based on a table on your SQL server database. To do this, you can drag the server table from an open session in the SQL Browser onto your library in the Studio Browser. This process creates a schema class that maps to your server table (or view) automatically, and ensures that the data classes in your Omnis library map to the data on your server exactly. You can then use the SQL Form Wizard (described in the GUI wizard chapter) to create a form based on the automatically generated schema class.
[bookmark: _Toc318212149]Query Classes
A query class is a type of data class that lets you combine one or more schema classes or individual columns from one or more schemas, to give you an application view of your server database. A query class contains references to schema classes or individual schema columns.
Query classes do not contain methods, and you cannot create instances of them. You can however use a query class as the definition for an Omnis list using the $definefromsqlclass() method, which lets you process your server data using the SQL methods against your list.
To create a new query class
· Select your library in the Studio Browser
· Click on the New Class option, then click on the Query option
· Name the new class and press Return
· To edit the class, double-click the class in the Studio Browser
· Enter the names of the schema classes or schema columns
When you open the query class editor the Catalog pops up which lets you double-click on schema class or column names to enter them into the query editor. Alternatively, you can drag schema class or column names into the query editor. Furthermore, you can reorder columns by dragging and dropping in the fixed-left column of the query editor, and you can drag columns from one query class onto another. You can also drag a column from the schema editor to the query editor.
[bookmark: _Toc318212150]Table Classes
A table class provides the interface to the data modeled by a schema or query class. When you create a list based on a schema or query class, a table instance is created automatically which contains the default SQL methods. You should only need to create a table class when you want to override the default methods in a table instance, or you want to add methods to a table. A table class contains the name of the schema or query class it uses, and your own custom methods that override or add to the default table instance methods.
To create a new table class
· Select your library in the Studio Browser
· Click on the New Class option, then click on the Table option
· Name the new class and double-click on it to edit it
You add methods to a table class in the method editor, and change its properties in the Property Manager. To associate a table class with a schema or query class, you need to set its $sqlclassname property to the name of a schema or query class.
Like Schema and Table classes, you can use a table class as the definition for an Omnis list using the $definefromsqlclass() method, which lets you process your server data using the methods you added to the table class. See the Omnis Programming manual for further details about the SQL lists and their methods.
[bookmark: _Toc484785958]Exporting Libraries to JSON
You can export an Omnis library to a directory tree containing a number of text files in JSON format representing your library. Additionally, you can import an Omnis library from a JSON tree previously exported from Omnis. Exporting and Importing libraries is done in the Studio Browser, but there are a number of methods you can use to create your own library export and import tools.
Providing the ability to export and import Omnis libraries in JSON format allows you to use a third-party version control system, such as GIT or SVN, to manage Omnis application or library source code. This will allow efficient and secure application development in a team of Omnis developers, as well as the sharing of Omnis libraries and third-party tools among members of the Omnis community: we have a repository on GitHub containing many example libraries: https://github.com/OmnisStudio
Exporting Libraries
To export a library to JSON, you need to select the library under the main Libraries option in the Studio Browser. After selecting the library the Export Lib to JSON option will be visible in the library options, allowing you to export the library to JSON. (After you have exported a library to JSON, the Update and Rebuild options will appear in the Studio Browser.)
[image: Export_Library_Options1]
If you have multiple libraries open in the Studio Browser, the Export, Update and Rebuild options will apply to the currently selected library. In addition, different libraries will be exported to different JSON trees, under the export folder.
Export Lib to JSON
The Export Lib to JSON option exports the currently selected library to a new JSON tree. The location of the export folder defaults to ‘exports’ in the main Omnis tree, and the export process automatically creates and names a sub-directory in the export folder using the name of your library.
You can export multiple libraries to JSON by selecting the Libraries node in the Studio Browser tree and selecting one or more libraries in the Library pane (on the right). The ‘Export to JSON’ option will appear allowing you to export the selected library/libraries.
The old Web Client plugin or iOS client remote forms are not exported (or imported). In addition, #PASSWORDS or the old system table classes such as #MAWFONTS are not exported (or imported).
Update JSON tree
The Update JSON tree option exports the library to its associated JSON tree, which in effect will update any classes or methods that have changed, or add any new classes in your library. You should be aware that the update process deletes the existing JSON tree, and replaces it with a completely new JSON tree built from the updated library.
The update process first checks for any conflicts and reports these if any are found. For example, Omnis will report an error if a JSON file or folder is missing or has been renamed. You need to rectify these errors before you can update, or you can ignore the conflicts in the error log window and proceed with the update.
Rebuild from JSON
The Rebuild from JSON option archives the current library open in the Studio Browser to the ‘archives’ folder and replaces it with a new library built from the associated JSON tree.
Each time you use the Rebuild option, Omnis places a new copy of the current library in the archives folder and appends a number to the name of the library. The last version of the library in the archive folder is then used during the restore process as the most recent archive.
Once the Rebuild option has been run, the Restore Library option appears.
Restore Library
The Restore Library option overwrites the current library in the Studio Browser with the previously archived version.
Library and JSON mapping
The Studio Browser maintains a log of which library maps to which JSON folder, which is essential when working with multiple libraries. A file called ‘exports.json’ is created in the ‘studio’ folder that contains the mapping for all your exported libraries, so for each library there is a record of the name and path of the Omnis library file, the name and path of its associated JSON folder, and the path of the archived library, if it exists: note the name of the most recent archive library is used.
Importing Libraries
You can import a library into the Studio Browser from an existing JSON tree that was previously exported from Omnis Studio using the Export Lib to JSON option. For example, you could check out an Omnis JSON tree from a third-party VCS, such as GIT or SVN, and import it into Omnis to start a new project. For example, you can get sample Omnis libraries in JSON format from our GitHub repository at: https://github.com/OmnisStudio
Note you cannot open a library from a JSON tree using the standard Open Library option in the Studio Browser (which can only open a .LBS file). You have to import a JSON tree first to create the library before it can be opened in the Studio Browser.
New Library from JSON
To import a library from a JSON tree, you need to select the Libraries node in the Studio Browser and click on the New Lib from JSON option.
[image: Import_Library_Studio81]
The New Lib from JSON option imports a JSON tree that was previously exported from Omnis and creates a new Omnis library file (.LBS). When you have created the new library, its classes will appear in the Studio Browser.
[bookmark: _bookmark1][bookmark: _bookmark5][bookmark: _bookmark6][bookmark: _Toc484785961]Directory and JSON File Structure
The following sections describe the JSON file & folder structure of a library exported from Omnis Studio using the Export Lib to JSON option, which may help you understand how the exported JSON could be managed. Note that all text files exported from Omnis use UTF-8 encoding, including the .json and .omh files, and are formatted suitable for viewing in a text editor.
[bookmark: _bookmark2]An Omnis library is represented by a folder that contains the file called ‘library.json’: this folder has the same name as the library and is referred to as the ‘library folder’. library.json contains top-level information about the library, such as the library preferences and version number.
Within the library folder, there is a tree of class directories that represents the folder structure of the Omnis library. Each class in your library has its own directory, and if the class itself is an Omnis folder class, it contains sub-directories for the Omnis classes contained in that Omnis folder.
Each class directory has the same name as the class name (see the note on directory and file naming below). Every class directory contains a JSON file named ‘class.json’. This contains top-level information about the class, including:
· Class type
· Class properties
· For classes that support methods: definitions of class and instance variables, and for task and remote task classes, definitions of task variables.
File classes also have a file called ‘indexes.json’ within the class directory, if the file class defines any indexes.
If the class supports methods, the class directory also contains a JSON file named ‘methods.json’ provided that there are some class methods. methods.json contains an array of the class methods, where each entry contains various properties of the method and definitions for parameters and local variables.
[bookmark: _GoBack]There is a file in the class directory for each method defined in methods.json, named <method name>.omh (subject to the file naming rules below), that contains the method code. The ‘.omh’ file extension is proprietary to Omnis, but the file format is text like the other files.
If the class can contain objects, then there are two different structures depending on the class type:
· For file, query, schema and search classes, all objects and their properties etc. are in a single file called ‘objs.json’ in the class directory. objs.json contains an array of objects.
· For all other class types that can have objects, the class directory can have a number of sub-directories:
	- objs
	- bobjs
	- inheritedobjs
The ‘objs’ directory contains a sub-directory for each object in the class, where the directory name is the object name (subject to the directory naming rules below). Each object sub-directory contains a file named ‘object.json’ that contains object properties etc, and if the object has methods, there is an identical structure to that used for the class methods: a methods.json file, and <method name>.omh files.
The ‘bobjs’ directory is only present for window classes (JavaScript forms do not have background objects). It contains a sub-directory for each background object in the class, named using the object ident (subject to the directory naming rules below as older libraries can unfortunately contain objects with duplicate idents). Each background object sub-directory contains a file named object.json that contains object properties, etc.
The ‘inheritedobjs’ directory is only present for classes that support inheritance. It contains a sub-directory for each superclass object that either defines or overrides a method in the subclass. Each sub-directory contains methods.json and <method name>.omh files just like those used for class and object methods, representing the methods defined or overridden for the object.
[bookmark: _bookmark3]Binary Data
There are various properties which require a binary representation in the JSON library representation. These are handled in two ways:
1. If Omnis recognises a PNG, e.g. in #ICONS or a report background picture, it outputs a PNG file to the tree, and the JSON contains the name of the PNG file.
2. Otherwise, Omnis outputs the BASE 64 encoding of the binary data to the JSON file.
[bookmark: _bookmark4]Directory and File Naming
Where possible, directories and files are named using the Omnis name (class name, object name, object ident, or method name). However, there are some considerations:
1. Although it is not recommended for naming objects in Omnis, class and object names can contain characters that are not allowed in file system names, e.g. path separators for all platforms, ?, *. To cater for this, the JSON library representation escapes these characters as % followed by the 2 lower case hex characters that represent the escaped character. As a consequence, Omnis also escapes the % character.
2. Omnis libraries can contain classes where the names only differ by their case. In addition, they can contain objects with duplicate names. In these cases, the JSON library representation prefixes the name with the string %_<n>_ where <n> is an integer index (for objects this is the order value, and for classes this is a value starting at 1 and incremented for each class with the same case-insensitive name: note that Omnis always exports classes in ascending name order, meaning that the prefix for each class in a set of classes with the same case-insensitive name will be the same each time you export the classes, unless you add or remove a class with the same case-insensitive name).
[bookmark: _bookmark8][bookmark: _bookmark9][bookmark: _Toc484785962]Library Dependencies
Libraries can depend on other libraries. In many cases, the presence of the external library is not required for Omnis to successfully import or export the JSON library representation. However, there are three cases that affect tokenization, and as a consequence, mean the external library or libraries must be open when exporting or importing a library:
1. Design task. If the design task is in an external library, the external library must be open.
2. Superclass. If the superclass is in an external library, the external library must be open.
3. External file classes. If the code or tokenized properties use a variable in a file class in an external library, the external library must be open.
The export option detects the required external libraries in cases 1-3 above while it generates the JSON library representation. It adds an error to the error list when it encounters a reference to an external library that is not open, and returns kFalse. In addition, if the export succeeds, it adds an array to library.json named “includes”: this is an array of all required external libraries. The import library option will fail if any of the included libraries are not open.
[bookmark: _bookmark10][bookmark: _Toc484785963]External File classes & Tokenization
By default, Omnis tokenizes variables in external file classes using the file name and a field token. For development, you should use both file and field names (to avoid untokenization issues when the external library is not open), whereas for deployment it might be more desirable for performance to use both file and field tokens.
In Studio 8.0, the only control over these tokenization options is via the browser context menu Retokenize… option. For Studio 8.1, there are some new root preferences that you can use to control this:
· $tokenizeexternalfilenames: If true, Omnis uses tokens rather than text when tokenizing external file names
· $tokenizeexternalfieldnames: If true, Omnis uses tokens rather than text when tokenizing external field names
You can use these preferences when importing a library to control how the output library tokenizes variables in external file classes. The values of these preferences are stored in the “defaults” entry in config.json.
Export & Import JSON Notation
$exportjson
The $exportjson method can be used to export a library to a JSON tree.
· $root.$exportjson(rLib, cOutPath [,&lErrList, &lWarningList])
exports a JSON tree for the library and returns kTrue for success, or kFalse for failure. Parameters:
rLib is an item reference to the library to export.
cOutPath is the pathname of the directory into which $exportjson will generate the JSON for the library, or the pathname of a directory which already contains a previous JSON representation of library, and which $exportjson will update to reflect the current contents of the library.
lErrorList and lWarningList are lists that receive errors and warnings about the export process. $exportjson defines these lists, so there is no need to define or clear the parameters before calling $exportjson.
In the case of failure, lErrorList contains error reports, and subject to the Omnis preferences discussed later $exportjson may have cleaned up by removing any partially output JSON library representation before it returned.
In the case of success, lErrorList is empty. lWarningList may contain various warnings about the export process, such as duplicate object idents or object names.
In addition, certain errors or warnings contain a note that there is an entry in the Find and Replace log, which allows you to identify the problem. Errors in the Find and Replace log are drawn in the theme red color.
The error list and warning list each contain 3 columns:
· class: Item reference to the class for which the error or warning is being reported.
· errorcode: Unique integer error code for the error or warning.
· errortext: Error text corresponding to the errorcode.
The $exportjson method displays a working message if it executes for more than a second, allowing you to cancel the export if required, in which case $exportjson returns kFalse and adds error 23433 to the error list.
If $exportjson is being used to overwrite an existing JSON library tree, and an error occurs during the export of a class, Omnis will mark the class.json file for the class in error by adding an “error” entry. This allows a subsequent export to recognise classes exported with an error, and automatically attempt to replace their content.
$importjson
The $importjson method allows you to import a JSON tree previously exported with $exportjson; the method creates an Omnis library file at the specified path.
· $root.$importjson(cJsonFolder, cLibPath [,&lErrorList, &lWarningList])
imports a JSON library representation tree, and returns kTrue for success, and kFalse for failure. Parameters:
cJsonFolder The pathname of the JSON library representation directory. $importjson validates this by checking for the presence of library.json in this directory.
cLibPath The pathname of the new library file to be created from the input JSON library representation. This file must not already exist.
lErrorList and lWarningList are lists that receive errors and warnings about the import process. $importjson defines these lists, so there is no need to define or clear the parameters before calling $importjson.
In the case of failure, lErrorList contains error reports, and $importjson has deleted a partially created output library.
In the case of success, lErrorList is empty. lWarningList may contain various warnings about the import process, such as duplicate object idents or object names.
The error list and warning list each contain 4 columns:
· pathname: The pathname of the file containing the problem.
· errorcode: Unique integer error code for the error or warning.
· errortext: Error text corresponding to the errorcode.
· lineno: For some errors, the line number (in the file with the specified pathname) where the error occurred.
The $importjson method displays a working message if it executes for more than a second, allowing you to cancel the import if required, in which case $importjson returns kFalse and adds error 23433 to the error list.
Note that $importjson ignores classes where the folder name ends in .conflict<n> (see later).
$comparejson
The $comparejson method checks the specified library against the JSON library tree stored at cOutPath, and returns wChangesRow to indicate what will occur when $exportjson runs. The method behaves identically to $exportjson, except that it builds wChangesRow.
· $root.$comparejson(rLib, cOutPath, &wChangesRow[, &lErrList, &lWarningList]) checks the specified library against the JSON library tree; returns kTrue for success.
For success (kTrue returned), wChangesRow has 4 columns, and each column is a 2 column list, where column 1 is the class name and column 2 is the path to the class representation in the JSON library tree. The columns in wChangesRow are:
1. new Each entry in the list identifies a new class, that is, a class that will be exported because it is in the library, but not the JSON library tree.
2. delete Each entry in the list identifies a class that will be deleted from the JSON library tree, because either it is no longer present in the library or it has been moved to a different folder in the library. NOTE: If a folder is to be deleted, there will not be delete entries for its content (which is implicitly deleted).
3. replace Each entry in the list identifies a class which has changed in the library since the last JSON import or export of the class.
4. conflict Each entry in the list identifies a class which has possibly been changed in the library, but more importantly, the copy of the class in the JSON library tree has definitely changed since the last JSON import or export of the class.
The $comparejson method provides you with some information before overwriting the contents of an existing JSON library tree.
There are two conditions which will cause Omnis to arbitrarily overwrite a class during export:
1. The method text file extension has been changed (see the section on Omnis preferences).
2. The copy of the class in the JSON library tree is marked to indicate that an error occurred during a previous export.
Export & Import JSON Preferences
There is a root preference $exportimportjsonoptions (a row containing parameters) that affects the behavior of $exportjson(, $importjson(), and $comparejson(). The parameters are:
· hideexportworkingmessage
Boolean (default false). If true, the working message is hidden for $exportjson and $comparejson.
· hideimportworkingmessage
Boolean (default false). If true, the working message is hidden for $importjson.
· deleteexportoutputtreeifcancelled
Boolean (default true). If true, $exportjson deletes a partially exported output tree, if the export is cancelled by the user.
· methodtextfileextension
Character (default is txt). The file extension for method text files. Note that the library.json file stores this extension, to allow $exportjson to detect if the extension has changed since the last export; if it has, $exportjson exports all classes to make sure they have the new extension.
· exportoverwritesconflicts
Boolean (default false). If true, $exportjson replaces conflicts when overwriting an existing tree (conflicts are ignored when the method text file extension has changed, or class.json contains the error marker - in other words, in these cases, the class is always replaced). If false, $exportjson does not replace the folder for a conflicting class, and before it exports the class, renames the folder for the class to be of the form name.conflict<n> where <n> is an optional integer added if the .conflict folder already exists from a previous export; this makes both the original JSON and the new JSON available in the library tree.

20
		23
image2.png

image1.png

