

What’s New in
Omnis Studio 11

Omnis Software
March 2024

63-032024-01a

The software this document describes is furnished under a license agreement. The software may be used or copied
only in accordance with the terms of the agreement. Names of persons, corporations, or products used in the tutorials
and examples of this manual are fictitious. No part of this publication may be reproduced, transmitted, stored in a
retrieval system or translated into any language in any form by any means without the written permission of Omnis
Software.

© Omnis Software, and its licensors 2024. All rights reserved.
Portions © Copyright Microsoft Corporation.
Regular expressions Copyright (c) 1986,1993,1995 University of Toronto.

© 1999-2024 The Apache Software Foundation. All rights reserved.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
Specifically, this product uses Json-smart published under Apache License 2.0
(http://www.apache.org/licenses/LICENSE-2.0)

© 2001-2024 Python Software Foundation; All Rights Reserved.

The iOS application wrapper uses UICKeyChainStore created by http://kishikawakatsumi.com and governed by the MIT
license.

Omnis® and Omnis Studio® are registered trademarks of Omnis Software.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows Vista, Windows Mobile, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other countries.

Apple, the Apple logo, Mac OS, Macintosh, iPhone, and iPod touch are registered trademarks and iPad is a trademark
of Apple, Inc.

IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation.

ICU is Copyright © 1995-2024 International Business Machines Corporation and others.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company Ltd.

Portions Copyright (c) 1996-2024, The PostgreSQL Global Development Group
Portions Copyright (c) 1994, The Regents of the University of California

Oracle, Java, and MySQL are registered trademarks of Oracle Corporation and/or its affiliates

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc.

Acrobat is a registered trademark of Adobe Systems, Inc.

CodeWarrior is a trademark of Metrowerks, Inc.

This software is based in part on ChartDirector, copyright Advanced Software Engineering (www.advsofteng.com).

This software is based in part on the work of the Independent JPEG Group.
This software is based in part of the work of the FreeType Team.

Other products mentioned are trademarks or registered trademarks of their corporations.

http://kishikawakatsumi.com/

 Table of Contents

 3

Table of Contents
ABOUT THIS MANUAL ... 11

SOFTWARE SUPPORT, COMPATIBILITY AND CONVERSION ISSUES 12
Serial Numbers and Licensing .. 12
Library and Datafile Conversion ... 12
npm .. 12
Microsoft SQL Server in the Community Edition 12
Input Monitoring & Keystroke Receiving (macOS only) 13
Date and Time Conversion in the JavaScript Client 13
PDF Printing .. 13
Oracle DAM ... 13
Form and Report Object Limit ... 13
JavaScript Worker ... 13
macOS System Font ... 14
External Components ... 14
OLE2 Menu Options.. 14
DDE Menu Options ... 14
Web Client Form Cache .. 14

WHAT’S NEW IN OMNIS STUDIO 11 REVISION 36251 15

OMNIS STUDIO NOW .. 15
Studio Browser .. 15
Documentation .. 15

JAVASCRIPT COMPONENTS .. 16
JS Data Grid .. 16
JS Droplist ... 16
JS Combo Box .. 16
JS Rich Text Editor ... 17
JS Native List .. 17
JS Tile Grid .. 18
JS Toolbar ... 18
JS Entry Field .. 18
Custom CSS Styles... 18
Component Object Type ... 19

JAVASCRIPT REMOTE FORMS .. 19
Subform Sets... 19
Using a Promise with Client Commands 19
Client Methods .. 20
JS Theme .. 20
Vertical Text in PDF reports .. 20

WINDOW COMPONENTS ... 21
Screen Report Fields .. 21
Combo Boxes and Droplists ... 21
Picture Controls ... 21
Entry Fields ... 21
HTML Controls .. 21

THE OMNIS ENVIRONMENT ... 22
Spell Checking .. 22
Property Manager ... 22
Save Window Setup and Omnis Preferences 23

UNICODE .. 23
Import Encoding .. 23

LIBRARIES AND CLASSES .. 24

Table of Contents

4

Export JSON Options .. 24
LIST PROGRAMMING ... 24

Defining Lists ... 24
Binary Data in Lists ... 24

SERVER-SPECIFIC PROGRAMMING ... 24
PostgreSQL ... 24

DEBUGGING METHODS ... 25
Method Stack Limit.. 25

OW3 WORKER OBJECTS ... 25
Hash Worker Object .. 25
OAUTH2 Worker Object ... 25

COMMANDS .. 26
Importing Data ... 26

FUNCTIONS .. 26
FileOps Workers ... 26
FileOps.$spaceinfo() ... 26
split() .. 27
bitset() and bittest() ... 27
bitclear() .. 27
iso8601toomnis() and omnistoiso8601() 27
hexcolor() and hsla() ... 27
dpart() .. 27
truergb() ... 27

DEPLOYING YOUR WEB & MOBILE APPS ... 28
Headless Server Admin Tool .. 28

OMNIS STUDIO EXTERNAL COMPONENTS ... 28
OmnisObject and OmnisObjectContainer 28
Version Support .. 28
ToolTips ... 28

VERSION CONTROL .. 29
VCS API .. 29

WHAT’S NEW IN OMNIS STUDIO 11 REVISION 35659 30

LIBRARIES AND CLASSES .. 30
Class Locking and Library Conversion 30

JAVASCRIPT COMPONENTS .. 30
JS Camera .. 30
JS File.. 31
Native List .. 31

JAVASCRIPT REMOTE FORMS .. 32
Date and Time Conversion in SQLite ... 32

WINDOW COMPONENTS ... 32
Complex Grid .. 32
Toolbars .. 32
oBrowser ... 32

OMNIS ENVIRONMENT .. 33
Omnis Configuration ... 33

WEB AND EMAIL COMMUNICATIONS .. 33
OAUTH2 Worker Object ... 33
SMTP Worker Object .. 33

FUNCTIONS .. 34
OIMAGE.$makeqrcode ... 34
rnd() ... 34
mouseover() .. 34
FileOpsObj .. 35

ONLINE DOCUMENTATION .. 35

 Table of Contents

 5

Latest Revisions .. 35

WHAT’S NEW IN OMNIS STUDIO 11 REVISION 35439 36

JAVASCRIPT COMPONENTS .. 36
JS Camera Control.. 36
JS Data Grid .. 36
JS Native List .. 36
List Pager .. 36

JAVASCRIPT REMOTE FORMS .. 37
PDF Printing .. 37

PUSH NOTIFICATIONS ... 37
WINDOW COMPONENTS ... 37

Headed List ... 37
Popup List ... 37
oBrowser ... 37
Multibutton Control .. 38

LIBRARIES AND CLASSES .. 38
Class Data and Method Text Notation .. 38

VERSION CONTROL .. 38
Building Projects ... 38
VCS API .. 39

OPROCESS... 39
WEB AND EMAIL COMMUNICATION .. 39

Python Worker .. 39
LDAP Worker .. 39

WHAT’S NEW IN OMNIS STUDIO 11 .. 40

THE OMNIS ENVIRONMENT ... 42
Enhancements in the IDE ... 42
Studio Browser .. 42
Property Manager ... 44
Component Store .. 46
Catalog .. 58
Configuration File Editor ... 59
Spell Checking .. 61
Multi- Undo and Redo ... 64
Appearance Color Format... 65
Dark Mode ... 66
Design Window Titles ... 67
Find and Replace .. 68
Trace Log .. 68
Using Multiple Screens on macOS ... 69
Tooltips .. 69
Single Instance Preference ... 69

JAVASCRIPT COMPONENTS .. 70
JS Chart .. 70
JS Gauge .. 77
JS Camera .. 81
JS Floating Action Button.. 83
JS Tile Grid .. 86
JS Scroll Box ... 89
JS Color Picker ... 90
JS Side Panels .. 93
JS Data Grid .. 95
JS Edit Field .. 96
JS Button ... 98

Table of Contents

6

JS Droplist & Combo Box ... 99
JS Date Picker .. 99
JS File.. 101
JS Slider .. 101
JS Toolbar ... 101
JS Nav Bar .. 101
JS Map .. 102
JS Native List .. 102
JS Picture .. 103
JS Rich Text Editor ... 103
JS Radio Button Group ... 103
Icon Badges .. 103
Position Assistance ... 105
Group Selection & Object Properties .. 106
SVG Icons ... 106
Field List .. 107
Color Palette.. 108
Background Images .. 109
Inactive Appearance ... 109
Edge Float ... 109
Fonts and Semi-bold ... 109
Tab Order .. 110
Subform Events ... 110
Subform Promise .. 110
Rounded Borders .. 111
Numeric Object Names ... 111
ARIA Properties .. 111

JAVASCRIPT REMOTE FORMS .. 112
Remote Form Editor .. 112
Testing Remote Forms ... 112
Subform Palettes ... 113
Event Specific Client Methods .. 115
Layout Breakpoints ... 115
Subform Sets... 116
Add Return Method ... 117
Client Script Version Reporting ... 117
Remote Menus .. 117
PDF Printing .. 117

LIBRARIES AND CLASSES .. 118
Restoring Open Libraries & Classes .. 118
Closing All Libraries .. 119
Open/Close Library Notifications .. 119
Class Names ... 119
Library APIs ... 120
Library Internal Names .. 120
Importing Libraries .. 120
Startup Task .. 120
Library Startup & Conversion .. 120

METHOD EDITOR .. 121
Conditional Breakpoints .. 121
List Variable Search .. 121
Find Possible Calls.. 121
Debugger Debug Panel .. 122
Overriding or Inheriting multiple methods 122
Display Integers as Hex .. 122
Code Assistant .. 123

 Table of Contents

 7

Item Reference Classes .. 124
Jump to Variable Definition ... 124
Jump to Search or Error Item ... 124
Variable Names ... 124
Inherited Descriptions ... 125
Object Search ... 125
Event Parameters ... 125
Break On Event Option ... 125
Copy Method Name .. 126
Edit List Line .. 126
JavaScript Error Messages ... 126
Method Editor Focus ... 126

SYSTEM NOTIFICATIONS ... 126
Notification Object ... 126
Notification Functions .. 127
Specifying Images ... 128
Specifying Actions ... 129
Handling Notification Clicks .. 129
Removing Notifications ... 130
Badges .. 130
Enabling Notifications ... 131

POWER MANAGEMENT NOTIFICATIONS ... 132
Power Management Methods ... 132
Disabling idle sleep ... 133

WINDOW COMPONENTS ... 133
Entry Fields ... 133
Token Entry Field .. 136
List Row Buttons ... 136
List Box .. 138
Tab Strip .. 138
Round Check Boxes ... 140
Pushbuttons .. 140
Themed SVG Icons ... 141
Paged Pane Buttons ... 141
OBrowser .. 142
Headed List ... 142
Complex Grid .. 143
String Grid ... 143
Rounded Borders .. 143
Styled Text .. 144
Tree List .. 144
Rounded Rectangle and Shape Field 144
Tab Pane and Paged pane ... 144
Picture Control .. 144
Combo Box .. 145
Hyperlink ... 145
Color Palette.. 145
Window Toolbars on macOS .. 145
JavaScript Client Bridge .. 146
Calendar External Component ... 146

WINDOW PROGRAMMING .. 147
Toast Messages .. 147
Window Minimum Size .. 147
Window Animations... 147
Simple Style Windows .. 147
Window Title Colors on macOS .. 148

Table of Contents

8

Docking Areas & $screen property on macOS......................... 148
Bitmap Image Conversion... 148
Masked Entry Fields.. 148

JSON COMPONENTS ... 148
SVG Icons ... 148

SQL PROGRAMMING .. 149
Debugging Slow Queries .. 149
updatenames() List Method .. 149

OMNIS VCS ... 149
VCS API .. 149
VCS Auto Login ... 151
VCS Check in/out Options .. 152
Initial Library Check in ... 152

LIST PROGRAMMING ... 152
List Methods .. 152

REPORT PROGRAMMING .. 152
Report Fields ... 152
Page Preview Zoom Factor .. 153
Report Data Grid Column Parameters 153
Report Preview URL Prefix ... 153

OMNIS PROGRAMMING ... 153
User Constants ... 153
Adding Method Lines .. 155
Max Chain Depth .. 155
Initial Parameter Values .. 155
Item Group Methods ... 155
Collecting Performance Data .. 156
Notation Error Checks ... 156
Error Reporting for External Components 156

WEB SERVICES .. 156
HTTP Methods .. 156
Escaping String Parameters ... 156

WEB AND EMAIL COMMUNICATIONS .. 156
OW3 LDAP Worker ... 156
OW3 Python Worker ... 157
HTTP/2 support for OW3 Workers.. 158
OW3 Worker Methods .. 158
OW3 OAUTH2 Worker .. 158
OW3 HTTP Worker ... 159
OW3 FTP Worker .. 159
OW3 JavaScript Worker ... 159
OW3 IMAP Worker.. 160

MENU CLASSES ... 160
Menu Instances ... 160
Menu Shortcuts (macOS) ... 160
Menu Line Icon Colors .. 160

OBJECT ORIENTED PROGRAMMING .. 160
Window Status Bar.. 160
Subclass Editors ... 161

FUNCTIONS .. 161
Example apps ... 161
binfrombase32() .. 161
bintobase32() .. 161
charcount() .. 161
complementarycolor() ... 162
contains() ... 162

 Table of Contents

 9

endswith() .. 162
FileOps.$getfileinfo() ... 163
FileOps.$putfilename() .. 163
FileOps.$readfile() ... 163
FileOps.$writefile() .. 164
hexcolor() .. 164
hsla().. 164
iconidwithbadge() .. 165
isclient() ... 166
iseven() .. 166
isodd().. 166
isoweekstart() .. 166
join() ... 167
OIMAGE.$getdimensions() ... 167
OIMAGE.$makeqrcode() .. 167
OIMAGE.$resize() ... 168
OIMAGE.$transform() ... 169
ONOTIFY.$removebadge()... 169
ONOTIFY.$removelocal() ... 170
ONOTIFY.$sendlocal() ... 170
ONOTIFY.$setbadgecount() ... 171
ONOTIFY.$setbadgeicon() ... 171
ord() ... 172
OW3.$computername() .. 172
OW3.$parserfc3339() ... 172
OW3.$totpgenerate() .. 173
OW3.$totpvalidate() .. 173
rgba() ... 174
row() .. 174
startswith() ... 174
sys(251) and sys(252) .. 175
sys(254) and sys(255) .. 175
sys(256) and sys(257) .. 175
sys(290) ... 175
tracelog() ... 175

COMMANDS .. 175
OK Message.. 175
Set Timer Method .. 175
Create Library.. 175
Send to trace log ... 175
Working Message ... 176

DEPLOYING YOUR WEB & MOBILE APPS ... 176
Headless Server Admin Tool .. 176
Headless Server Serialization ... 177
Version and Build Number .. 177
Omnis LSP Debugging ... 177
Web Server Plug-in ini .. 177

OXML .. 177
Object References .. 177

JAVASCRIPT COMPONENT SDK.. 178
JavaScript API Reference ... 178

EXTERNAL COMPONENT SDK... 178
GDI Reference .. 178
PRI Reference ... 178

DEPLOYMENT TOOL ... 179
Deployment Tool API .. 179

Table of Contents

10

Creating config.json in the UI .. 180
Removing Items from Builds ... 180

OPROCESS... 180
Properties .. 180
Methods ... 181
Using oProcess ... 182

APPENDIX ... 184

OMNIS CONFIGURATION ITEMS ... 184
codeAssistant .. 184
complexgrid ... 186
debugger ... 186
defaults .. 186
diacriticalpopup ... 189
docview ... 189
exportimportjsonoptions .. 190
ide .. 190
java .. 194
log .. 194
macOS... 196
methodEditor ... 197
methodeditorandremotedebugger .. 198
obrowser .. 198
ocx ... 199
ole2auto ... 199
omnishttpserver ... 200
pdf .. 200
properties .. 200
server... 200
servermgmt ... 203
svg ... 203
tooltips ... 203
vcs ... 203
web .. 203
windows ... 203

 About This Manual

 11

About This Manual
This document describes the new features and enhancements in the latest revision of
Omnis Studio 11, plus all previous revisions (35659, 35439) and the original Omnis
Studio 11 release.

Please see the Readme.txt file for details of bug fixes and any release notes for Omnis
Studio 11 Revision 35659.

NOTE: Where a new feature or an enhancement relates to an Enhancement Request
or Customer reported fault, the fault reference is included to enable you to track your
own ERs and reported faults.

About This Manual

12

Software Support, Compatibility and
Conversion Issues

The following section contains issues regarding software support, compatibility and

conversion in Omnis Studio 11 or above.

See the Readme.txt accompanying this release for information about faults fixed in this
revision and for any last-minute release notes. See the Install.txt file to find out System
Requirements for running the Development and Server versions of Omnis Studio.

Serial Numbers and Licensing
You will require a new serial number to run Omnis Studio 11 or above. Contact your
local sales office to buy a license or obtain an upgrade serial number under your
current support program; go to the Contacts page on the Omnis website:
www.omnis.net

Library and Datafile Conversion
IMPORTANT NOTE:
See the section ‘Class Locking and Library Conversion’ (under the section about
Revision 35659) about converting existing Omnis Studio 11 libraries in Omnis Studio
11 Revision 35659 (or above).

Converting 10.x Libraries

All Omnis Studio 10 or earlier libraries need to be converted to run in Omnis Studio 11.

ONCE A STUDIO 10.0, 10.1 or 10.2 LIBRARY HAS BEEN OPENED WITH
OMNIS STUDIO 11 IT CANNOT BE OPENED WITH STUDIO 10.x – THE
CONVERSION PROCESS IS IRREVERSIBLE.

Converting 8.x or earlier Libraries

OMNIS STUDIO 11 WILL CONVERT EXISTING VERSION 8.1.X, 8.0.X, 6.1.X,
6.0.X AND 5.X LIBRARIES – THE CONVERSION PROCESS IS
IRREVERSIBLE.

DISCLAIMER: OMNIS SOFTWARE LTD. DISCLAIMS ANY RESPONSIBILITY FOR, OR LIABILITY

RELATED TO, SOFTWARE OBTAINED THROUGH ANY CHANNEL. IN NO EVENT WILL OMNIS

SOFTWARE BE LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES HOWEVER THEY MAY ARISE AND EVEN IF WE HAVE BEEN

PREVIOUSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

npm
npm 9.5.1 is now provided alongside Node.js. (Revision 35759, ST/EC/1755)

To launch npm you can run index.js inside the npm folder, e.g. ./node npm/index.js.

Microsoft SQL Server in the Community Edition
The ODBC DAM can now be used to connect to Microsoft SQL Server Express Edition

in the Omnis Studio Community Edition. (Revision 35878, ST/*B/154)

http://www.omnis.net/

 About This Manual

 13

Input Monitoring & Keystroke Receiving (macOS only)
In previous revisions of Omnis Studio 11, access to Chromium Safe Storage and Input
Monitoring is requested on launch with no explanation. To address this, a new item
called monitorDockKeyEventsInfoPrompt has been added to the Configuration file
(config.json). (ST/IN/286)

When monitorDockKeyEventsInfoPrompt is set to true, Omnis provides a one-time
prompt to give more information if Studio needs access to input monitoring; this is false
by default. The text of the prompt can be altered by editing resource 19003. The config
entry is automatically disabled once Omnis has been run.

More information is provided below (under Revision 35659), under the

Omnis Environment and oBrowser sections.

Date and Time Conversion in the JavaScript Client
When converting Date and Time data in a SQLite database to dates on the JavaScript
client, the subtype of any Date/Time data is now taken into consideration. (ST/*L/055)

Date/Time data fetched from a SQLite database were previously sent to the client as
full datetimes. However, now 'Short Date...' data subtypes will return a date only (no
time component), and 'Time' data subtypes will return a time only (no date component).

PDF Printing
PDF Printing now uses Node.js to print reports, rather than Python (reportlab), as in
previous versions. Note you do not need to adjust your application code or interface for
this enhancement to take effect. (ST/EC/1635)

Since Python is no longer used for PDF printing, the python.zip file has been removed
from the Omnis development tree.

Note: Node.js is used for PDF printing in Omnis subject to the MIT license from PDFKit:
https://github.com/foliojs/pdfkit/blob/master/LICENSE

Oracle DAM
The Oracle8 DAM has been renamed to Oracle DAM. (ST/*O/201)

The DAM and session names ORACLE8DAM and ORACLE8SESS have been
renamed to ORACLEDAM and ORACLESESS respectively. In addition, the Oracle
DAM object "damora8" is now called "damoracle". The SQL Browser and VCS have
been updated accordingly, as well as the oracledam.ini.

Omnis will map the old name including 8 to the new name without an 8 automatically,

for example, when opening the Select Object dialog, and when creating the object.

Form and Report Object Limit
You cannot place an unlimited number of objects on a Remote form class (or a Window
or Report class). (ST/HE/1766)

The following form or window object limits apply:

❑ 8191
object limit for a Remote form (or Window class), including objects on subforms,
although in practice the limit is likely to be less due to platform limitations.

❑ 3000

The object limit for a Report class.

JavaScript Worker
The omnis_zip.js file has been moved into its own folder ‘omnis_zip’. (ST/EC/1752)

https://github.com/foliojs/pdfkit/blob/master/LICENSE

About This Manual

14

macOS System Font
The "Geneva" font entry in the font system classes has been replaced (in new libraries)
with a new font labelled "Omnis macOS System" which is analogous to "Omnis
Windows System" and represents the system font for the current platform.

External Components
On all platforms, external components are now loaded from the relevant sub-directory
(xcomps, jscomps and logcomps folders) of both the Omnis data folder and the Omnis

program / Application folder. (ST/*A/163)

If there is a component (.dll, .u_... or .so, depending on platform) with the same case-
sensitive name in both relevant sub-directories of the data and program folders, the
component in the data folder is loaded.

If you are upgrading to the latest version of Omnis Studio, and you have created your
own external components for a previous version, then these components will need to
be recompiled for the new version of Omnis Studio using the latest external component
source files, which can be downloaded from the Omnis website.

FLDeditState

The FLDeditState structure has been modified, therefore all external components that
use the WM_FLD_SETMENU message will need to be rebuilt when moving from
Studio 10.2.x (and earlier) to Studio 11.

OLE2 Menu Options
The OLE2 menu options Links, Object and Insert Object have been removed from
the Edit menu under Windows (these were used by OOLE2 which was removed in
Omnis Studio 6.1).

DDE Menu Options
The DDE menu options Paste Link and Remove DDE Link have been removed from
the Edit menu under Windows. These options can be reinstated by setting the new
configuration item ‘includeDDEEditMenuItems’ in the ‘windows’ section of config.json to
true (default value is false, i.e. the menu options are hidden). Omnis requires a restart
after editing this item.

Web Client Form Cache
The $root.$clearcachedforms() method is no longer required and has therefore been
removed from the design interface including the Property Manager (but the method will
continue to work in existing apps for backwards compatibility). (ST/JS/2700)

The $root.$clearcachedforms() method was used to clear the cached forms for the
Omnis Web Client plug-in which is no longer supported in Omnis Studio. The
JavaScript Client does not cache forms in the same way, so this method is not
required.

 Omnis Studio Now

 15

What’s New in Omnis
Studio 11 Revision 36251

The following enhancements have been added to Omnis Studio 11 Revision 36251.
See the Readme.txt accompanying this release for information about faults fixed in this
revision and for any last-minute release notes. See the Install.txt file to find out System
Requirements for running the Development and Server versions of Omnis Studio.

Omnis Studio Now
Since the last general release of Omnis Studio, we have introduced Omnis Studio Now.

Omnis Studio Now is a new service that allows you to download the most recent
revisions of Omnis Studio rather than having to wait for general releases. This allows
you to receive new features and bug fixes earlier than being outside the program.

Studio Now is available to developers on ODPP and RMA only.

The Omnis Studio Now service is available in a different version of Omnis Studio, using
a different development serial number, which will unlock additional options within the
Studio Browser. However, your customers will not require a new serial number (runtime
or client license) to use the new features in the updated revisions of Omnis Studio
available via Studio Now.

For more information about getting Omnis Studio Now, please contact your local sales
team.

Studio Browser
A new Studio Now branch will appear in the Studio Browser tree that lists the latest
Studio Now releases, including a list of enhancements and fixes for each release, plus
links to the updated online docs for any enhancements. You can select which release
to download, as well as the Platform (Windows, macOS, Linux), Architecture (64/32 bit)

and the type of installer/file package (zip) you wish to download.

Documentation
The Omnis Studio online documentation will be updated for each Studio Now release
and is available using the Omnis Online Help option in the Help menu inside
Omnis Studio, or you can navigate to the online docs here. Any new features and
enhancements, for all the latest revisions, are highlighted in yellow and marked with a
revision number showing when the item was introduced.

https://omnis.net/developers/resources/onlinedocs/index.jsp

What’s New in Omnis Studio 11 Revision 36251

16

JavaScript Components
JS Data Grid
Custom Picklists

A new client-executed method $getpicklist() has been added to the Data grid control

to allow picklist columns to be specified per row. (Revision 35680, ST/JS/3350)

The $getpicklist() client method is called for every row in the main list for the data grid,
allowing you to return a custom list for each row in a Data Grid. The method has three
parameters: pHorzCell, pVertCell and pDataColumnName to assist with generating the
required list. The return should be a single column list, with each row being an option in
the picklist. In the case of multiple column lists returned, it will only use the first column.

Note that you must still specify an instance variable list in $columnpicklist, otherwise
the column will not be set up as a picklist type column.

Resizing Columns

The $resizecolumn property has been added to the Data Grid control to specify which
column is resized to fill the control width. (Revision 35849, ST/JS/2557)

The $resizecolumn property specifies the column number of the column that is resized
when the width of a data grid changes: zero means the last column extends if
necessary to fill the control width, -1 means no column is resized. The property does
not apply if $columnwidthsarepercentage is kTrue.

For existing libraries, $resizecolumn is set to -1 (no column is resized) to maintain the
behavior of previous versions. For new data grids, the default value is 0 meaning the

last column is resized as appropriate.

JS Droplist
List line selection

The $selectonopen property has been added to the Droplist control to manage
whether the first line is selected when a droplist is opened. (Revision 35731,

ST/JS/3367)

When $selectonopen is true (the default) and no line has been set, the first line in the
droplist will be selected when it is opened, and the evClick event will be sent. The
property is set to kTrue for droplists in existing libraries, to maintain behavior from
previous versions, whereby the first line was selected and evClick was sent when no
line was set. You can set $selectonopen to false to stop the first line in the droplist
being selected when the form is opened.

List definition

The $listcolumn property of a Droplist can now be defined using a column name as well

as the column number, as in previous versions. (Revision 36169, ST/JS/3449)

JS Combo Box
List definition

The $listcolumn property of a Combo Box can now be defined using a column name as
well as the column number, as in previous versions. (Revision 36183, ST/JS/3462)

 JavaScript Components

 17

JS Rich Text Editor
Inserting text

The $insertatcursor() client-executed method has been added to the Rich Text Editor
component to allow you to insert text into the field at the current insertion point.
(Revision 35778, ST/JS/3381)

The $insertatcursor(cData) method allows you to insert the supplied text data in cData
at the position of the caret within the Rich Text Editor the last time it had focus. The
data can be plain text, HTML, or JSON (depending on the setting of $dataformat), and
like the methods $appenddata() and $prependdata(), it must be executed on the client.

Events

The standard evBefore and evAfter control events have been added to the Rich text
editor control. Note that evAfter will only be triggered if the contents have changed.

(Revision 36017, ST/JS/3419)

JS Native List
Themed SVG Icons

JS Native Lists now support themed SVGs. Therefore, the imagecol column in the data
list for a Native List can contain a URL to a themed SVG (or PNG as in previous

versions). (Revision 36075, ST/JS/3436)

Menu Icons

You can now add icons to the menus in a JS Native List. (Revision 35784, ST/JS/3379)

You can add icons to the rows in menus that are embedded in a Native List, by adding
the following columns to the list defining the menu (specified in the $menulistname

property):

❑ IconURL (Character)
the icon URL for the line

❑ IconColor (Integer)
the icon color for themed SVGs. kColorDefault means the icon will use the menu
text color

What’s New in Omnis Studio 11 Revision 36251

18

JS Tile Grid
The following properties have been added to the Tile Grid control to provide tile
shadow, grow on zoom, and image zoom capabilities. (Revision 35901 and 35876,
ST/JS/3396 and others)

Property Description Revision Fault

$tileshadow adds a shadow to the tiles in the

control
35876 ST/JS/3135

$tilegrowonhover enables tiles to grow when the user’s

pointer hovers a tile
35901 ST/JS/3396

$tileimagezoom zooms the image of a hovered tile,
specified as the percentage by which
the image expands

35901 ST/JS/3401

$horzpadding specifies the left and right padding
inside the tiles in the grid

35901 ST/JS/3402

$vertpadding specifies the top and bottom padding
inside the tiles in the grid

35901 ST/JS/3402

JS Toolbar
The $toolbariconcolor property has been added to the Toolbar control. (Revision
36016, ST/JS/3424)

The $toolbariconcolor property specifies the color of toolbar item icons. If set to
kColorDefault, the icons will match the text color in the toolbar, otherwise the specified

color is used.

JS Entry Field
evInput event

The evInput event has been added to the Entry Field to allow you to detect any
change in the field content without any key presses, such as pasting in content.
(Revision 36065, ST/JS/3426)

The evInput event is fired every time the value of the control changes as a direct result
of a user action, such as, when the user has pressed a key, or cut or pasted text in the
field. This is different from the evKeyPress event, which is triggered when the end user
has pressed a key or keys.

Label Position

The kJSLabelPosInside constant has been added to the $labelposition property for
Entry fields. When set to kJSLabelPosInside the label is positioned inside the field
border when the cursor enters the field. (Revision 35990, ST/JS/3420)

Custom CSS Styles
The classes in $cssclassname have been added to the frame element of all JavaScript

controls, with the "-frame" suffix. (Revision 35967, ST/JS/3416)

$cssclassname adds classes to the client element in all JavaScript controls, and now
adds the same classes to the frame element with the "-frame" suffix.

 JavaScript Remote Forms

 19

Component Object Type
The $objtype property for JavaScript components (and window fields) is now displayed

in Advanced mode only in the Property Manager (Revision 36160, ST/HE/1990)

For all JavaScript components $objtype is set to kComponent, but the type of object is
displayed under the name at the top of the Property Manager, such as Edit Control for
a single line edit field. Note you cannot change the type of an object.

JavaScript Remote Forms
Subform Sets
Trapping the close event

Dialog and palette style subforms in a subform set can now call the $sfscanclose()
client method. (Revision 35677, ST/JS/3362)

Dialog and Palette style subforms, created inside a subform set using the
"subformdialogshow" and "subformpaletteshow" client commands, can call into
$sfscanclose() when attempting to close via the close button (X) in a dialog subform, or
clicking the background outside the palette for a palette style subform. As with other
subforms, it would be possible to test a conditional statement in $sfscanclose() and if it

returns kFalse the close event will be cancelled.

Maximize behavior

The kSFSflagAllowOutsideOfBounds constant has been added to the
subformset_add client command flags and the SFS maximize behavior has been
improved. (Revision 35680, ST/JS/3360)

When using the subformset_add client command to create a subform set, the
kSFSflagAllowOutsideOfBounds flag can be included to allow subforms to be
positioned outside of their container boundaries, both by notation and the end user
dragging them.

In addition, the maximize behavior has been changed to only fill the viewable area of
the containing element, so there is no need for the end user to scroll to see all of the
subform. The parent element, if scrollable, temporarily has its scroll ability disabled
while a subform is in a maximized state.

Closing a subform with Esc

The kSFSflagEscToClose constant has been added to the subformset_add client
command flags. (Revision 35747, ST/JS/2620)

When kSFSflagEscToClose is included in the flags for the subformset_add client
command, the subforms in the set can be closed by pressing the Escape key.

Using a Promise with Client Commands
Various message type client commands now return a JavaScript promise when the
methods are executed on the client. (Revision 35801, ST/JS/3380 & ST/JS/3384)

The javamessage, yesnomessage, and noyesmessage client commands (executed
using the $clientcommand method), as well as the $showmessage method, now
return a JavaScript promise when the methods are executed on the client; a promise
contains a value that can be used in JavaScript code in your remote form, for example,
to initiate a specific action.

What’s New in Omnis Studio 11 Revision 36251

20

The promise's resolve function is passed a parameter whose value depends on the

message type being shown, as follows:

Method Value returned

javamessage client command The button number which was clicked (1-3)

yesnomessage client command true if 'Yes' was clicked, else false

noyesmessage client command true if 'Yes' was clicked, else false

$showmessage method true

For all these dialog functions which return a promise, the calls will only return a
promise when executed on the client. A promise will be 'resolved' when its dialog is

closed. You can add code to run at this point using JavaScript, for example:
Do $cinst.$clientcommand("yesnomessage",row("Are you sure?","Really?!"))

Returns lPromise

JavaScript:lPromise.then((lResult) => {

Do $cinst.$showmessage(con('You clicked ',lResult))

JavaScript:});

Client Methods
Debugging Client Methods

You can now use the Breakpoint command in client-executed methods to allow you to
debug them. (Revision 35949, ST/JS/3415)

The Breakpoint command can be used in client-executed methods to set a 'hard'
breakpoint in the code, but note that this will only be hit if the web browser developer
tools are open. It will then break into the browser's debugger, in the JavaScript code
which was generated from your client-executed method. The browser dev tools can
usually be opened using the F12 key.

Server Method Calls

Multiple server method calls from client methods are now allowed and are queued; in
previous versions, a client-side method could only call one server method at a time.
(Revision 36084, ST/JS/3440)

If you try to call multiple server methods from a client method, Omnis still only allows
one method to run at a time, but the others will now be queued. They will run in the
order in which you call them. If your subsequent server method calls depend on
previous server method calls, you should still take the “daisy-chain” approach of calling
the next method from the previous method's ..._return callback method.

JS Theme
You can now specify a theme when opening a remote form in a browser. (Revision

35813, ST/JS/3386)

You can pass the 'omTheme' URL query parameter when loading a remote form
(HTML page) in a browser to specify the JS theme to use for the form (and all other
forms in the application during that browser session). For example, to specify the dark

theme, use the following URL:
http://127.0.0.1:9110/jschtml/jsForm.htm?omTheme=dark

Vertical Text in PDF reports
When using the PDF Device to print reports to PDF in the JS Client, you can now print
vertical text in a PDF report using the kEscAngle text escape and the kAngle90 or
kAngle270 constants to rotate the text, for example,

con(style(kEscAngle,kAngle270),iTextLine1). (Revision 36087, ST/EC/1572)

Note kEscAngle is not a new feature but support for creating vertical text in PDF
reports has been fixed.

 Window Components

 21

Window Components
Screen Report Fields
The $print() method has been enhanced allowing you to print from a Screen Report
field to a PDF file. (Revision 35797, ST/RC/1425)

Two new parameters bToPDF and cPDFPath have been added to the $print() method
to allow you to print a report in a screen report field to a PDF file. When bToPDF is
kTrue and a path is specified in cPDFPath, a PDF file is created in the specified
location. For example:
Do ScreenReportField.$print([bToPDF=kTrue,cPDFPath='<path>'])

If cPDFPath is empty, a prompt is shown allowing the end user to specify a path for the
PDF file.

If the parameters are omitted or bToPDF is kFalse the method prints the report
displayed in a screen report field to the current report destination, e.g. the Screen or
Printer.

Combo Boxes and Droplists
Combo boxes and Droplists can now have border icons on the left side of the field, plus

$contentpadding has been added to these components (Revision 35835, ST/WO/2781)

Combo boxes and Droplists now have the $bordericonstyle property which allows you
to add an icon to the left side of the list. Note that border icons cannot be shown on
right side due to the drop arrow icon in the list or combo box. The $studioide property

must be set to kTrue to display border icons.

In addition, $contentpadding has been added to Combo boxes and Droplists to allow
you to add padding around the content inside the controls.

Picture Controls
Picture controls now receive evClick and evDoubleClick events regardless of enter

data mode. (Revision 35956, ST/WO/2798)

In previous versions, evClick and evDoubleClick were sent to the $event method in a
Picture control only in enter data mode, while for some other controls (e.g. Lists, Edit
fields) clicks are sent regardless of the enter data mode.

However, a click or double-click on a picture field will now receive events regardless of
enter data mode. If you previously relied on this not happening, you can set $active to
kFalse to prevent the events from triggering.

Entry Fields
Content Tips

Content tips in Entry Fields now allow styled text. (Revision 36125, ST/HE/1977)

When you enter the content tip in the Property Manager, a text editor allows you to
select various styles including bold, italic, underline, and colors for the text. You can
use the style() function to format the text when assigning a value to $contenttip, such
as con(style(kEscColor,kRed),'Enter your last name').

HTML Controls
jOmnis.mDesign has been added to HTML controls which will be true in development

mode. (Revision 36129, ST/EC/1840)

If you need to alter the behavior of your HTML control in some way in development
mode, you can check the value of jOmnis.mDesign which will be true in development
mode.

What’s New in Omnis Studio 11 Revision 36251

22

The Omnis Environment
Spell Checking
Words can now be added or removed from the custom dictionary when using spell
checking for window fields in end user apps, and when using the Code Editor during
development. (Revision 35711, ST/HE/1945)

When Spell checking is enabled for desktop apps and in the IDE ($showspellingerrors
is true), the context menu for Edit fields has the Learn Spelling menu item when the
selected word is shown as a spelling error. If this menu item is selected the word will be
added to the end user’s custom dictionary and will no longer show as a spelling error.
Conversely, if a word has been added to the custom dictionary, the context menu will
show the Unlearn Spelling menu item, which when selected will remove the word from
the custom dictionary and the word will be shown as a spelling error.

These menu items are also available in the Code Editor context menu.

Property Manager
Setting Location and Size Properties

You can now change the Location or Size of an object in the Property Manager using
the +, -, *, or / keys plus a number of pixels, for example, you can enter +20 in the $left
property in the Property Manager to move the object 20 pixels to the right. (Revision
36049, ST/HE/1972)

The location and size properties appear in the top panel of the Property Manager and
include the $left, $top, $width, and $height properties. This also works for a group of
selected objects where the property value is the same for all objects in the group (if the
value is different among the selected objects in the group, the property value is blank).

Key Description Example for $left

+n Adds n pixels to property
value(s)

+20 moves object(s) 20 pixels to the right

-n Subtracts n pixels from
property value(s)

-20 moves object(s) 20 pixels to the left

*n Multiplies property value(s)
by n

*2 doubles the value, moves object(s) to the
right

/n Divides property value(s) by
n

/2 halves the value, moves object(s) to the left

Selecting Properties

The Class Properties and Field Properties options have been added to the Remote
form class (and Window class) context menu to allow you to select the properties of the
current Class or Field as required. This replaces the single Properties option available

in previous versions. (Revision 36209, ST/HE/1987)

Changing Boolean Properties

You can double-click on a Boolean (kTrue/kFalse) property value in the Property
Manager to toggle its value (as well as clicking the switch). No other properties can
now be changed by double-clicking, as in previous versions; in this case, double-

clicking will now select the current value. (Revision 36173, ST/DB/1473)

 Unicode

 23

Save Window Setup and Omnis Preferences
The position information saved for various screens in the IDE has been moved from
omnis.cfg to a new file called positions.cfg: note you cannot edit positions.cfg or
omnis.cfg. (Revision 36199, ST/IN/294)

The positions.cfg configuration file holds the position information saved for various
screens in the IDE using the Save Window Setup option. This ensures that the IDE
screens are returned to their saved size and position when you reopen Omnis. The
information includes window positions and sizes, split bar positions, etc, for each
screen layout.

The omnis.cfg configuration file holds all the other settings saved with Save Window
Setup, e.g. Show tree for the method editor window. There is a single value stored in
omnis.cfg for all screen layouts.

In addition, some properties in the Omnis Preferences ($root.$prefs) have been
replicated in a new “prefs” group in the Omnis configuration file (config.json), which
means you can now set their values in either the Property Manager or the
Configuration Editor. The new “prefs” group has the following items:
"prefs": {

 "allowEditIfNotCheckedOut": false,

 "disableReportCopy": false,

 "disableReportWorkingMessage": false,

 "disableSystemIdleSleep": false,

 "disableSystemIdleSleepReason": "Omnis Studio is busy",

 "exportBOM": true,

 "exportEncoding": "kUniTypeUTF8",

 "helpBarOn": false,

 "importEncoding": "kUniTypeUTF8",

 "listSearchTimeout": 40,

 "mapDMLtoDAM": "Disabled",

 "maxCachedClasses": 1024,

 "mouseWheelLines": 3,

 "oldListHiliting": false,

 "oldListSearching": false,

 "promptForReorg": true,

 "reportToolbarPagePreview":

"kRBpageList+kRBprint+kRBprintPage+kRBsave+kRBsavePDF+kRBsearch+kRBzoom",

 "showToolbarTips": true,

 "showWindowTips": true,

 "useCms": true,

 "webBrowser": ""

 }

You can edit config.json using the Edit configuration option available in the Options
menu in the bottom-left corner of the Studio Browser.

Unicode
Import Encoding
The default value of the $importencoding Omnis preference has been changed to
kUniTypeUTF8, to match the value of $exportencoding; it was set to
kUniTypeNativeCharacters in previous versions. (Revision 36227, ST/NT/814)

Note that “importencoding” and “exportencoding” can also be set in the new “prefs”
group in the Omnis configuration file (config.json).

What’s New in Omnis Studio 11 Revision 36251

24

Libraries and Classes
Export JSON Options
The 'fullexportimport' option has been added to $exportimportjsonoptions to control
what is exported (or imported) when a library is exported to JSON; the same info is
stored the ‘exportimportjsonoptions’ group in config.json. (Revision 35844, ST/IE/232)

The 'fullexportimport' option in $exportimportjsonoptions defaults to true, which means
all library information is included in the JSON export (maintaining behavior in previous
revisions).

If the option is set to false, Omnis does not export certain information which is not
required to represent the library, including 'internalversion', 'omnisbuild' and 'moddate'.
A library exported with fullexportimport set to false can only be imported if
fullexportimport is set to false.

List Programming
Defining Lists
The library preference $defineresolvesfieldrefs has been added to manage how field

references behave when used for defining lists. (Revision 35747, ST/NT/811)

When $defineresolvesfieldrefs is set to kTrue (default is kFalse), if a field used to
define a list is a field reference, Omnis resolves the field reference and
defines/redefines the list using the resolved field.

In previous revisions, the Define list command and the $define method behaved
inconsistently when the variables used to define the list in a called method are field
reference parameters.

Binary Data in Lists
The limit of 100MB for Binary data in a list variable has been removed. (Revision

35692, ST/PF/1406)

Server-Specific Programming
PostgreSQL
Notification Channels

The $listenername and $cannotify properties have been added to the PostgreSQL
DAM. (Revision 35971, ST/*P/124 and Revision 35977, ST/*A/169)

Similar to the $programname session property, you can assign or change the name for
the listener session using the new $listenername property. This name will
subsequently appear in the pg_stat_activity system table.

To prevent incoming notifications from interrupting the currently executing method, you
can use the new $cannotify property. Setting this to kFalse, disables the $notify()
method and causes incoming notifications to be queued. Set $cannotify to kTrue to
receive any queued notifications.

 Debugging Methods

 25

Debugging Methods
Method Stack Limit
A new item stackLimit has been added to the “default” section of the Omnis
configuration file (config.json) that allows you to set the limit on the number of methods
allowed on the method stack. (Revision 35840, ST/PF/1409)

You can control the number of methods on the Omnis method stack by setting the
stackLimit item in the “default” section of the Omnis configuration file (config.json); the
default value is 30 which is adequate for most applications. Omnis fetches the value of
stackLimit on startup, therefore when a library is opened, the stack limit is already in
effect.

The method stack size has been increased on Windows to 8MB to accommodate more
items on the stack, bringing it into line with macOS and Linux. (Revision 35840,
ST/PF/1412)

Note the function sys(290) returns the number of methods on the method stack, while
sys(192) returns a list of methods on the method stack.

OW3 Worker Objects
Hash Worker Object
The $initverifysignature() method has been added to the Hash Worker Object to
allow you to verify the RSA signature from $initsignature (Revision 36002,
ST/EC/1790)

The $initverifysignature() method allows you to verify a signature from $initsignature.
$initverifysignature(vData,iHashType,vPublicKeyPEM,vSignature)

The method takes vData the original data, iHashType the original hash type,
vPublicKeyPEM the public key in PEM format and vSignature the signature from
$initsignature to verify the signature.

When returning to $completed, the row's errorCode will be 0 if the signature has been
verified successfully (that is, the data has not been tampered with and it matches the
signature), otherwise it will have a mbedtls or an Omnis error code if something has
gone wrong (e.g. if the signature doesn't match, it should return -17280 with error info

of "RSA - The PKCS#1 verification failed").

OAUTH2 Worker Object
The $tokentype property has been added to the OAUTH2 Worker Object to provide a
fallback when endpoints do not return a valid token_type. (Revision 36024,
ST/EC/1831)

The $tokentype property is a string with the value 'Bearer' which is used as a fallback
token type if the OAUTH2 worker object does not return token_type in its response.
This should only be used when you’re sure it's needed and as a workaround for a bad
or missing OAUTH2 endpoint.

What’s New in Omnis Studio 11 Revision 36251

26

Commands
Importing Data
The new item ‘LFonlyLineTermination’ has been added to the Omnis Configuration file

(config.json). (Revision 35879, ST/IE/234)

The ‘LFonlyLineTermination’ item in the ‘default’ section of config.json allows you to
control how carriage returns and line feeds are handled when importing data from a
file. If true, when Omnis imports a tab- or comma-separated file and the file has no
Carriage Return (CR) line separators, Omnis will then check for Line Feed (LF) line
separators and use these to break record rows.

Functions
FileOps Workers
Three new Worker Objects have been added to the FileOps external component to
allow you to Copy, Move or Delete files asynchronously if required – in essence they
work the same as their equivalent FileOps functions that can operate on a separate
thread. (Revision 35801, ST/EC/1770)

The FileOps Worker Objects, FileOpsCopyWorker, FileOpsMoveWorker, and
FileOpsDeleteWorker allow you to copy, move or delete files asynchronously, which
may be useful when operating on a large number of files.

To use the FileOps workers, you need to create an Object variable and set its subtype
to one of the FileOps worker objects via the Select Object dialog. Alternatively, you can
create an Object class and set its superclass to one of the FileOps worker objects, then
create an Object variable or Object reference variable and set its subtype to the object
class name. Having created the variable you can call its methods using
OBJECTVAR.$methodname.

The FileOps workers work exactly like the other workers, including the ability to run the
$init, $start or $run methods. They have the property $progressinterval which sets an
interval in seconds, at which progress notifications are sent to the $progress method.
$progressinterval defaults to the minimum value of 1 second.

For the $init method, the parameters are the same as used in the static methods of the
FileOps object to copyfile, movefile or deletefile.

When $completed is called, a row is returned with the errorCode and errorText of the
action; errorCode will be 0 if there is no error, otherwise a FileOps Worker error is

returned, plus the error description in the errorText column.

When the $progress method is called (only if $callprogress is true), a row is returned
with a column name 'progress' containing an estimated number between 0 and 100
indicating the percentage progress of the file operation. Note: the Delete worker never

calls $progress, therefore progress notifications are not sent from the delete worker.

Note that if you try to cancel a FileOps worker while it is running, the main thread will
be blocked until the worker finishes its job.

FileOps.$spaceinfo()
The FileOps.$spaceinfo() static method has been added to return disk space

information about the specified file system. (Revision 36134, ST/FU/857)

Syntax

FileOps.$spaceinfo(cPath,&iSize,&iFree,&iAvailable)

 Functions

 27

Description

Returns disk space information about the file system specified in cPath. iSize, iFree

and iAvailable are 64-bit integers, in units of bytes.

Returns Boolean true if size information was returned.

split()
The kComma constant has been added and can now be used in the split() function to
define the delimiters instead of using ',' (the comma character). (Revision 35919,

ST/FU/877)

The kComma constant has been added to the Special Characters group of constants
that can be used to represent a comma (ASCII character 44).

The syntax for the split() function has changed replacing the parameter delimiters=',' to

delimiters=kComma. The full syntax is now:
split(string[,delimiters=kComma,stripWhite=kFalse])

bitset() and bittest()
The bitset() and bittest() functions can now be executed on the client. (Revision 36036,
ST/JS/3429)

When executing on the client, the binary argument must be a 32-bit integer variable.

As bitset() modifies the 'binary' parameter in place, this must be given a VARIABLE
directly, not a literal or the result of a calculation. If you try to do that, you will get an
error describing this.

In addition, the lastBitNumber parameter in the bitset() and bittest() functions is now
optional. If lastBitNumber is omitted, the value in the firstBitNumber parameter is used
allowing you to set/test a single bit. (Revision 35930, ST/FU/880)

bitclear()
The bitclear() function can now be executed on the client. (Revision 36036,
ST/JS/3429)

When executing on the client, the binary argument must be a 32-bit integer variable.

As bitclear() modifies the 'binary' parameter in place, this must be given a VARIABLE
directly, not a literal or the result of a calculation. If you try to do that, you will get an
error describing this.

iso8601toomnis() and omnistoiso8601()
The iso8601toomnis() and omnistoiso8601() functions can now be executed on the
client. (Revision 35925, ST/JS/3404)

hexcolor() and hsla()
The hexcolor() and hsla() functions can now be executed on the client. (Revision
35914, ST/JS/3271)

dpart()
The dpart() function can now be executed on the client. (Revision 35991, ST/JS/3418)

truergb()
The truergb() function can now be executed on the client. (Revision 36007,
ST/JS/3423)

What’s New in Omnis Studio 11 Revision 36251

28

Deploying your Web & Mobile Apps
Headless Server Admin Tool
The Upload button has been removed from the Admin Tool (osadmin) for the Headless
Omnis Server. You can configure deployment files using a Dockerfile in Docker; see
the Tech notes for more information. (Revision 35891, ST/AD/243)

Omnis Studio External Components
OmnisObject and OmnisObjectContainer
OmnisObject and OmnisObjectContainer have been moved into extcomp.he. (Revision

35680, ST/EC/1812)

OmnisObject is a base class that can be used for representing an external object that
is being implemented. OmnisObjectContainer is a container for OmnisObject objects
which could then be cast back to the external object class when needed.

These base classes provide a starting point and a container for multiple external
component classes – you could offer more object classes from one external component
project (e.g. workers and non-visual objects) and keep your classes in a
OmnisObjectContainer.

Furthermore, these track the number of references internally and delete themselves
when references reach 0, in line with other Omnis external components.

Version Support
Two new functions ECOmeetsStudioVersion and ECOisStudioNow have been
added to the External Components to check the Omnis version. (Revision 36168,

ST/DC/989)

qbool ECOmeetsStudioVersion(qshort pMajor, qshort pMinor) returns qtrue if the
current Omnis major and minor versions meet or exceed the passed pMajor and
pMinor versions, else returns qfalse.

qbool ECOisStudioNow() returns qtrue if Omnis is Studio Now, else returns qfalse.

ToolTips
Two new functions ECOsetToolTipText and ECOgetToolTipText have been added to
the External Components interface to support longer tooltips (>255 characters) in your
externals. (Revision 36112, ST/EC/1839)

If you wish to use more than 255 characters in tooltips in your Omnis externals, you
can use ECOsetToolTipText(TIPinfo* pTooltip, EXTfldval& pText). Pass in the TIPinfo*
as first parameter and a EXTfldval with the text you wish the tooltip to use.

Note ECOsetToolTipText will change the TIPinfo->mTipType to TIPinfo::eFldval and
will clear mToolTipText. Furthermore, ECOsetToolTipText will set the TIPinfo-
>mHasTip member to qtrue, therefore removing the need to do so after using
ECOsetToolTipText.

You can use ECOgetToolTipText(TIPinfo* pTooltip, EXTfldval& pOut) to get a
previously set tooltip. You need to pass a TIPinfo* as the first parameter and an emtpy
EXTfldval as the second parameter to receive your tooltip text. Note
ECOgetToolTipText is designed specifically for tooltips set with ECOsetToolTipText,
where TIPinfo->mTipType == TIPinfo::eFldval (because the fldval is held in the core,
therefore it would not be accessible after you've set it, if you wanted to check it again).

https://technotes.omnis.net/

 Version Control

 29

Version Control
VCS API
The VCS API now allows you to check out specific revisions of a class (Revision

36146, ST/VC/820)

A new method $x_listClassRevisions has been added to the VCS API to list class
revisions.
Do $root.$modes.$dotoolmethod(

kEnvToolVcs,'$x_listClassRevisions',rClassRef,lClassRevList,cToken,cErrors)

Returns bStatus

refClassRef is a reference to a class in your local library. If the call is successful, a list
of revisions will be returned in lClassRevList. The first column of this list will contain
the revision number.

If you wish to copy out a revision, use a revision number from lClassRevList in a new
parameter revID added to $x_checkOut to check out the revision. For example:
Do $root.$modes.$dotoolmethod(

kEnvToolVcs,'$x_checkOut',refClassRef,refLibRef,cToken,bCheckOrCopy,

revID,cErrors) Returns bStatus

What’s New in Omnis Studio 11 Revision 35659

30

What’s New in Omnis
Studio 11 Revision 35659

The following enhancements have been added to Omnis Studio 11 Revision 35659.
See the Readme.txt accompanying this release for information about faults fixed in this
revision and for any last-minute release notes. See the Install.txt file to find out System
Requirements for running the Development and Server versions of Omnis Studio.

Libraries and Classes
Class Locking and Library Conversion
In order to enhance the integrity and security of deployed Omnis Studio libraries, the
mechanism used to lock classes in a private library has changed in Omnis Studio
Revision 35659.

Consequently, all libraries opened in Omnis Studio 11 revision 35659 or later WILL
REQUIRE CONVERSION, INCLUDING LIBRARIES CREATED WITH ALL PRIOR
REVISIONS OF OMNIS STUDIO 11 (as well as Studio 10 or earlier libraries). THE
LIBRARY CONVERSION PROCESS IS IRREVERSIBLE.

THEREFORE, AND IN ALL CASES, YOU SHOULD MAKE A SECURE BACKUP of all
existing Omnis Studio 11 libraries BEFORE OPENING THEM in Omnis Studio 11
Revision 35659 or later.

JavaScript Components
JS Camera
All JS Camera events now have an additional pError param which reports any possible

errors. (ST/JS/3339)

The pError parameter is a row containing two columns: the errorCode column will
contain a kJSCameraError... constant, and errorDescription will contain the error
information from the browser. The error constants are:

Constant Description

kJSCameraErrorAbort An Abort error has occurred

kJSCameraErrorNotAllowed A Not allowed error has occurred

kJSCameraErrorNotFound A Not found error has occurred

kJSCameraErrorNotReadable A Not readable error has occurred

kJSCameraErrorOverconstrained An Over constrained error has occurred

kJSCameraErrorSecurity A Security error has occurred

kJSCameraErrorType A Type error has occurred

kJSCameraErrorUnknown An Unknown error has occurred

 JavaScript Components

 31

JS File
Two new properties $choosefilesbuttontextpos and $choosefilesiconid have been
added to the JS File component to allow more control over how the UI is displayed in
Upload mode of the control. (ST/JS/3322)

The $choosefilesbuttontextpos property allows you to position the text label in the
Upload UI for the File component. It can be assigned a kJSFileUploadLabelPos...
constant to specify whether the label is shown at the Top, Right, Bottom, or Left of the
icon, or it can be set to None to hide the label (the constants are
kJSFileUploadLabelPosTop, kJSFileUploadLabelPosRight,
kJSFileUploadLabelPosBottom, kJSFileUploadLabelPosLeft and

kJSFileUploadLabelPosNone).

The $choosefilesiconid property allows you to specify an icon in the Upload UI for the
File component; the default is the file_upload icon from the material iconset set to
48x48 size. If a themed SVG is used, it will take on the same color as $maincolor. Note
that if this icon is cleared, there will be no indeterminate spinner shown while uploading
files.

Native List
A new property $reordermode has been added to the JS Native List component to
allow end users to reorder rows within the list. In addition, there is a new property
$reorderbetweengroups to control whether rows can be reordered between groups.
(ST/JS/3327 and ST/JS/3341)

The $reordermode property can be set to a kJSReorderMode... constant to specify
whether rows in a Native list can be reordered. When enabled, a drag icon is added to
each row on the left or the right side of the list to allow you to drag individual rows. The
constant values are:

Constant Description

kJSReorderModeNone Reordering is disabled (draggable regions are hidden)

kJSReorderModeLeft Reordering is enabled with draggable regions on the left
side of the list

kJSReorderModeRight Reordering is enabled with draggable regions on the right
side of the list

When $reorderbetweengroups is set to kTrue (the default), end users are able to
drag a row into a different group, otherwise if kFalse, rows can only be dragged within

their own group.

The Native List component has a new event evReorder to report the old and the new
position (and group, if applicable) of the row that has been reordered:

❑ evReorder
Sent when the list is reordered, with the parameters:
pFromGroup: The old group of the moved row
pFromRow: The old position of the moved row
pToGroup: The new group of the moved row

pToRow: The new position of the moved row

What’s New in Omnis Studio 11 Revision 35659

32

JavaScript Remote Forms
Date and Time Conversion in SQLite
When converting Date and Time data in a SQLite database to dates in a remote form
(i.e. in the JavaScript client), the subtype of any Date/Time data is now taken into
consideration. (ST/*L/055)

Date/Time data fetched from a SQLite database were previously sent to the client as
full datetimes. However, now 'Short Date...' data subtypes will return a date only (no

time component), and 'Time' data subtypes will return a time only (no date component).

Window Components
Complex Grid
A new event evColumnDividerMoved has been added to the Complex Grid control to
report when a grid divider has been dragged. (ST/GR/444)

The evColumnDividerMoved event is sent to a Complex Grid when a column divider
has been dragged. The event has two parameters:

❑ pDivider
the divider column number (same ID as in $dividers)

❑ pDividerMoveBy
the number of pixels the divider was moved by; note this can be negative

You can discard the event to stop the grid divider being moved.

Toolbars
The $splitbuttonbars property has been added to Toolbar classes to allow you to split
radio button groups into individual button items – in previous versions, contiguous radio
buttons were displayed in a compact group and only the text label for the first button
was displayed. (ST/TB/340)

On macOS, if $splitbuttonbars is set to kTrue, a group of radio buttons (of
kToolRadioButton type) will be displayed as separate buttons with their respective
labels; the default is kFalse (to maintain backwards compatibility) where radio buttons
are displayed in a compact group. The property only applies to toolbars on macOS,
including main toolbars, floating toolbars and for unified window toolbars where

kTBOptionmacOSOmnisTopToolbar is true.

oBrowser
Chromium Safe Storage Prompt (macOS only)

On macOS, when first running an updated version of Omnis Studio, where a previous
version was installed, the user will be presented with a prompt when oBrowser is
loaded: “Omnis wants to use your confidential information stored in “Chromium Safe

Storage” in your keychain – To allow this, enter the “login” keychain password.”

The Chromium Safe Storage keychain item is used to grant access to the shared
Chromium encrypted data store for secure storage of cookies. It is recommended that
access is granted to allow cookies to be encrypted.

To address this, support for the “use-mock-keychain” CEF switch has been added to
the “obrowser” section of the Configuration file (config.json). (ST/IN/286).

The prompt can be disabled by adding the use-mock-keychain CEF switch to the
Omnis configuration. To do this, add the following entry to the ‘obrowser’ section of
config.json:

 Omnis Environment

 33

"obrowser": {

 "cefSwitches": [

 "use-mock-keychain"

]

}

It is important to note that if this is disabled cookies will NOT be secure.

Omnis Environment
Omnis Configuration
Keystroke Receiving Prompt (macOS only)

On macOS, when first running a new version of Omnis Studio, the end user will be
presented with a prompt: “Omnis Studio 11 would like to receive keystrokes from any
application – Grant access to this application in Privacy & Security settings, located in

System Settings.”

This is required to provide full keyboard support to Omnis Studio for monitoring events
from the macOS Dock and Mission Control. Access can be granted when prompted for
Keystroke Receiving, or you can ensure there is an entry granting access in the Input

Monitoring section of the Privacy system setting.

To address this, a new item called monitorDockKeyEventsInfoPrompt has been
added to the “macOS” section of the Configuration file (config.json). (ST/IN/286).

To show a one-time only prompt in Omnis Studio, prior to the system prompt, set the
monitorDockKeyEventsInfoPrompt config entry to true (the default is false). The
message can be customized by changing the entry for CORE_RES_19003 in
/Contents/Resources/[LOCALE].lproj/Localizable.strings

Keystroke receiving and the access prompt can be disabled by changing the

"monitorDockKeyEvents" to false in config.json.

When Omnis Studio does not have full keyboard support, the order of windows
displayed may not be correct after using Mission Control with the keyboard.

Web and Email Communications
OAUTH2 Worker Object
The $oauth2state property has been added to the OAUTH2 Worker Object to allow you

to append custom content to the state query string parameter. (ST/EC/1803)

The $oauth2state property can contain custom content to be appended to the 32-
character UUID in the state query string parameter of the request, allowing you to
identify requests sent from multiple instances of Omnis.

If you are handling this on a reverse proxy, you will have to URL-decode and look for
your value after the first 32 characters, but it is important when proxying off the request
to keep the UUID in the state, otherwise Omnis will not be able to match the callback to
the initiated request.

SMTP Worker Object
A new property $allowpathinuri has been added to the SMTP Worker Object to allow a
path in the URI. (ST/EC/1808)

When the $allowpathinuri property is true (the default is false), the SMTP Worker will
accept paths in the URI used in the $init method, e.g.

smtp://my.smtp.server:587/my.helo.address.

What’s New in Omnis Studio 11 Revision 35659

34

Functions
OIMAGE.$makeqrcode
A new parameter wCenterImg has been added to the OIMAGE.$makeqrcode function
to allow you to add an icon image to the center of the generated QR code. (ST/FU/863)

The wCenterImg parameter controls how an icon can be overlaid after a QR code has
been created; this only works for kOIMAGEfmtPNG output QR images (not for

kOIMAGEfmtSVG). The new parameter is a row variable with the following parameters:
row(cIconID,[ixSize=15,ixBorder=2,ixForeColor=kColorBlack,ixBackColor=kColorWh

ite])

By default, the row requires a single parameter, cIconID, which is the icon to be
overlaid in the center of the QR code (this can be an SVG or PNG icon image). The
second parameter ixSize controls the size of the icon, which is a percentage of the
output QR image size; this defaults to 15% with a maximum value of 30% (a value over
30% may result in an error).

A border can be added to the overlaid icon using a third parameter ixBorder which
defaults to 2 pixels. In addition, you can control the center icon area color, and icon
color using parameters ixForeColor and ixBackColor, which default to black and
white (to match the resulting QR image which is black and white).

For example, to add the account_box icon to the center of a QR code using the default
size and border, use the following command:
Do OIMAGE.$makeqrcode(

lText,iPicture,kOIMAGEfmtPNG,256,

iErrorLevel,4,errText,row('account_box’))

To set the size of the overlaid icon to 25% of the QR image size, add a 5 pixel border,
and to set the colors of the overlaid icon and border color, use the following command:
Do OIMAGE.$makeqrcode(

lText,iPicture,kOIMAGEfmtPNG,256,

iErrorLevel,4,errText,row('account_box’,25,5,kWhite,kRed))

Note the account_box icon is a themed icon so you can set the icon color (but
remember the output QR image must be a PNG, i.e. kOIMAGEfmtPNG).

rnd()
A new parameter asnumber has been added to the rnd() function to force Omnis to
return a Number, rather than a Character value, which is the default in previous
revisions. (ST/FU/864)

The syntax is now:

rnd(number,dp[,asnumber=kFalse])

When set to kTrue, the parameter asnumber specifies that the function should return a
Number, otherwise a Character value is returned when the parameter is omitted or set
to kFalse. Note that this may lose some precision if the data type cannot represent the
full floating-point value.

mouseover()
You can now return a reference to the field under the mouse in a Complex grid using a
new parameter tablefield with the mouseover() function. (ST/GR/446)

The syntax is now:

mouseover(constant[,tablefield])

A new parameter tablefield has been added to the mouseover() function, so when
used with kMItemref and tablefield is kTrue, the function will return a reference to the
field under the mouse in a Complex grid.

 Online Documentation

 35

FileOpsObj
The $filepath property has been added to the FileOps object to allow you to obtain a

path to the file associated with the object. (ST/EC/1805)

After a file has been opened, e.g. after using $createtmpfile(), the $filepath property of
the FileOps object instance will contain the path to the file. This is an alternative or
shortcut to returning the file name in the list provided by the $getfileinfo() function. If

there is no open file or the file has been closed, $filepath is empty.

Online Documentation
Latest Revisions
All the enhancements in Revision 35659 of Omnis Studio (and the previous revision
35439) are highlighted in yellow in the online documentation to show you what has

been added.

What’s New in Omnis Studio 11 Revision 35439

36

What’s New in Omnis
Studio 11 Revision 35439

The following enhancements have been added to Omnis Studio 11 Revision 35439.
See the Readme.txt accompanying this release for information about faults fixed in this
revision and for any last-minute release notes.

JavaScript Components
JS Camera Control
The $showui property has been added to the Camera control and allows you to show
the appropriate UI for using the Camera, Barcode scanner, and to switch between the
front and back camera. (ST/JS/3313)

The $showui property takes a kJSCameraUI… constant (or sum of constants) to
specify which UIs are shown in the control: kJSCameraUINone displays no UI in the
control (the default, to maintain compatibility with the previous version),
kJSCameraUICamera shows the UI for using the camera (Start Camera, Take photo
and Stop camera buttons), kJSCameraUIBarcode shows the UI for scanning
barcodes (Start and Stop Scanner buttons), and kJSCameraUISwitchCamera shows

a button to allow the end user to switch between the front and back cameras.

In addition, the $iconid property can be used to specify an icon to be shown in the
control to indicate which mode the camera is in; the icon is not shown when the camera
is in video mode. For example, you could show the photo-camera icon if the control is
in camera mode, or you could show the qr-code-scanner icon if the control is in
scanner mode; both these icons are available in the material icon set.

JS Data Grid
The pIsNewRow parameter has been added to the evCellValueChanged event for JS
Data Grid component. If pIsNewRow is true, the cell belongs to a new row.

(ST/JS/3292)

JS Native List
The $dateformat, $dateformatcustom and $numberformat properties have been
added to the JS Native List. (ST/JS/3268)

These properties work in the same way as they do in other components, such as Edit

fields, Lists, etc, and allow you to set the date and number format for the Native list.

List Pager
You can now long press on the Previous or Next arrow buttons on a List pager to jump
to the start or end of the pages displayed in the control. The timer for the long press is
hard coded to 700ms. (ST/JS/1379)

 JavaScript Remote Forms

 37

JavaScript Remote Forms
PDF Printing
The kDevOmnisSubsetNone constant has been added to the $setpdfsubset() method

in the Omnis PDF Device to unset the PDF subset. (ST/EC/1786)

You can set the PDF/A subset type for a PDF file using the $setpdfsubset() method,
which is used to create archival versions of documents. If you wish to unset the PDF
subset, you can now use the kDevOmnisSubsetNone constant with the $setpdfsubset()

method.

Push Notifications
The Push Notifications library has been updated to support Firebase HTTP API v1.
(ST/PC/591)

Firebase has deprecated their original Push Notification API, and this will stop working
from April 2024. Consequently, the Push Notifications library available for Omnis
Studio 11 has been updated to support Firebase HTTP API v1. Further information on
how to transition to the new API can be found in the Push Notifications docs, available
with the JS Wrapper download:
https://omnis.net/developers/resources/download/jswrapper.jsp

Window Components
Headed List
The $autosizecolumn() method has been added to the Headed list window control. The
$autosizecolumn(iColumn) method resizes the specified column in the headed list,
based on the maximum width of the data in the column. (ST/WO/2720)

Popup List
You can now open a Popup list with either the Space or Return key. In addition, on
macOS, you can close a popup list with the Space key. (ST/WO/2766)

When a popup list is closed, you can navigate through its values using the Up and
Down arrow keys to select a value. In this case, an evClick event will be sent as you
navigate up and down (the same as for Combo boxes).

oBrowser
The $htmlcontrolsusehttp property has been added to the OBrowser control, to force

Omnis to use the built-in web server to serve html controls over HTTP. (ST/EC/1795)

The $htmlcontrolsusehttp property controls whether html controls are served using a
file:// URL (when set to kFalse), or using the built-in HTTP server (kTrue). File URLs
are not deemed secure, so some web APIs may not be available. Therefore, it is
recommended that you set $htmlcontrolsusehttp to true. When true, html controls are
loaded from the 'html/htmlcontrols' folder in Omnis.

The config options "htmlcontrolsFolder" and "defaultHtmlcontrolsFolderInDataFolder"
only apply when $htmlcontrolsusehttp is false.

https://omnis.net/developers/resources/download/jswrapper.jsp

What’s New in Omnis Studio 11 Revision 35439

38

Multibutton Control
When specifying the icons to be used with the Multibutton control using the $iconstr

property, you can now include the icon size. (ST/IF/357)

In general, you should use SVG images for button icons, including the Multibutton
control and all other controls, to achieve good scaling of icon images. This
enhancement applies when using PNG images and allows you to choose the best size

PNG icons for your Multibutton control.

The $iconstr property is a comma separated list of icon ids that are displayed when the
Multibutton control is opened, that also specifies the number of button options in the
control. The icon id for PNG icons can now use the form <id>x<size> where size is one
of the available standard icon image sizes, that is, 16, 32, or 48. For example, 2033x48
can be used to specify the bitmap icon with ID 2033 and its 48x48 version. If no size is
specified, then the default icon size is used.

Libraries and Classes
Class Data and Method Text Notation
Two new library preferences, $disableclassdatanotation and
$disablemethodtextnotation have been added to stop other Omnis libraries
accessing class data and/or method code within the library. They can be set using the
Property Manager or via the VCS when building a library. They are defined as:

Property Description

$disableclassdatanotation If true, $classdata for all classes in the library will not
be accessible. Setting this property is an irreversible
operation.

$disablemethodtextnotation If true, $methodtext and $methodlines will not be
accessible. Setting this property is an irreversible

operation.

When $disableclassdatanotation is kTrue for a library, you will no longer be able to
read or write $classdata from any Omnis class using Omnis code. In addition, JSON
export of the library is disabled as the class data is disabled. IMPORTANT: future
access to this library in the Omnis VCS will no longer be possible.

When $disablemethodtextnotation is kTrue for a library, you will no longer be able to
read or write $methodtext or $methodlines from Omnis code or via the Property
Manager. In addition, method text will not be exported during a JSON export of the
library.

Version Control
Building Projects
When building a library, you can now block access to the class data and/or method text
in the library by setting the new options ‘Disable Class Data Notation’ and ‘Disable
Method Text Notation’ (these options set the new $disableclassdatanotation and
$disablemethodtextnotation library preferences: see the previous section for more

information about these new properties).

IMPORTANT: Setting either of these properties is irreversible in the built library and
future access to this library in the Omnis VCS will no longer be possible.

 oProcess

 39

VCS API
The $x_listProjectClasses method has been added to the VCS API to return a list of

classes in the specified project. (ST/VC/803)

The $x_listProjectClasses method returns a list of classes in the specified project, and
has the following syntax:
Do $root.$modes.$dotoolmethod(

kEnvToolVcs,'$x_listProjectClasses',cLIBNAME,lClassList,cToken,cErrors)

Returns bStatus

cLibName is the name of the project in the VCS from which you want to return the

class list.

If the call is successful, lClassList will return a list containing the following information:

className, classType, classVersion, classRevision, status (0 - checked in, 1 -
checked out), checkedOutDate, checkedOutBy, checkOutNotes, checkedInDate,

checkedInBy, checkedInNotes.

oProcess
The oProcess external no longer attempts to execute the special callbacks $stdout,
$stderr or $started when launched via $run. These are now used only when launched

via $start. (ST/EC/1784)

When using oProcess with $run, you can use either $readlines or $readtail to get the
stdout or stderr results in the $completed callback.

Web and Email Communication
Python Worker
$init method

The $init method of the OW3 Python worker now accepts a second optional
parameter, cExecutable, which is a character variable containing the path to the Python
executable to use, overriding the default location of the Python executable. Without the
new parameter the Python worker looks in /usr/bin/python3 for the Python executable.

(ST/EC/1794)

Example app

A Python Worker example app has been added to the Samples section in the Hub in
the Studio Browser.

LDAP Worker
An example app called LDAP Client Worker Object has been added to the Samples
section in the Hub in the Studio Browser.

What’s New in Omnis Studio 11

40

What’s New in
Omnis Studio 11

The IDE in Omnis Studio 11 has been greatly enhanced and updated, including the
Studio Browser, Property Manager, Component Store, Catalog, Remote Form editor,
as well as many of the other tools and class editors. Taken together, we believe these
new enhancements make it quicker and easier to create web and mobile applications
using Omnis Studio 11.

The following enhancements have been added to Omnis Studio 11.

❑ Enhancements in the IDE
the layout and overall appearance of the Studio Browser has been dramatically
improved making it easier to use and to navigate; the layout of the Property
Manager has also been improved, with the common properties for an object
appearing in a new top panel; the Component Store has been completely
redesigned with the components grouped in a vertical panel; an extra column has
been added to the Catalog window to show the values in the currently selected tab;
there is a new editor for the Omnis Configuration file; Omnis now checks spelling
in design mode, and in end user desktop forms (not JS remote forms); Omnis now
supports multiple Undo and Redo operations; and IDE themes and colors have
been adapted to support Dark Mode in Windows and macOS.

❑ JavaScript Components
there are several new JavaScript components including: Chart, Gauge, Camera,
Floating Action Button, Tile Grid, Scroll Box and Color Picker, plus many of the
JS controls have been enhanced including Data grids, Edit fields, buttons and the
File control; support for Side Panels has been added to some JS controls; you can
add Icon Badges to some JS controls to show notifications; plus there are many
new sample apps in the Hub in the Studio Browser showing the new JS controls
and other enhancements (check the New filter option).

❑ JavaScript Remote Forms
the Design bar on the Remote Form editor now has a Methods button and a Test
button; a new option allows you to select which web browser to use to test a remote
form; you can now open a remote form as a Subform Palette, which will pop out
next to a specified control; the $eventclient method has been added to support
client-executed methods for specific named events; and Remote Forms can now
have only one layout breakpoint if required.

❑ Libraries and Classes
Omnis now opens any libraries that were open at shutdown when it next starts up;
the File menu in the Runtime and Server versions of Omnis has a new option to
Close all Libraries; there is a new task message sent after a library or libraries have
been opened or closed; extra validation when naming an Omnis class has been
added to prevent certain characters from being used; and there is a new method to
expose the methods in one library to be used in another library.

❑ Method Editor
you can now add conditions or a hit count to Breakpoints, plus Breakpoints are
restored the next time you open a library; a search panel has been added to the
List variable window to allow you to search in the contents of a large list; and a new
option Find Possible Calls... allows you to locate all possible calls to a method.

❑ System Notifications
Omnis can now send notifications to the operating system on the end user’s

 Web and Email Communication

 41

computer, on both Windows 10/11 and macOS; notifications will pop up on the end

user’s screen and are added to the Notification Center for the current OS.

❑ Power Management Notifications
Omnis Studio can now receive sleep and wake notifications from the operating
system to indicate power management changes, so requests from the system to go

into idle sleep can be denied on macOS or disabled.

❑ Windows Components
you can add icons to the left and right border of entry fields to provide a visual hint
to the end user; Content tips now animate above an entry field as the field gets the
focus; you can add a set of buttons to each row in a list or headed list; you can now
define Tab Groups in a vertical tab strip; and you can use Themed SVG icons for
window controls including icons from the material iconset.

❑ Omnis VCS API
some functions in the Omnis VCS have been exposed via API calls, to allow you to
interact with the VCS or its contents programmatically.

❑ Report Programming
you can now specify a Zoom factor for reports sent to Page preview; the Report list
component calculation properties are now tokenized so that they work with the
current function parameter separator; and PDF Printing now uses Node.js to print
reports, rather than Python

❑ User Constants
a new User Constants class allows you to define your own constants for use in your
methods and expressions. A user constant is a named value, where the value
cannot be changed during execution.

❑ OW3 Workers
New LDAP and Python Workers have been added to the OW3 group of worker
objects; plus support for HTTP/2 has been added for the OW3 Workers which is
more secure as it uses binary protocols instead of plaintext, and is generally faster
and more efficient for web communication.

❑ Functions: OIMAGE, TOTP
there is a new external called OIMAGE that contains a set of static functions that
allow you to resize JPG and PNG image files or perform various transformations on
the images including rotation and flipping; plus two new functions have been added
to the OW3 package to generate and validate Time-based One-Time Passwords
(TOTPs); there are new sample apps in the Hub for OIMAGE and TOTPs.

❑ Deployment Tool
A number of methods have been exposed in the Deployment Tool API to allow you
manage builds in your own code, rather than via the Deployment Tool UI (the
Deployment Tool is for desktop apps only)

What’s New in Omnis Studio 11

42

The Omnis Environment
Enhancements in the IDE
The IDE in Studio 11 has been greatly enhanced and updated, including the Studio
Browser, Catalog, Property Manager, Remote Form editor, Component Store, as well
as many of the other tools and class editors.

In general, lists and text labels in the IDE have more padding, colors and text have
been softened, and all icons in the IDE have been redesigned.

Taken together, we believe these enhancements make it quicker and easier to create
web and mobile applications using Omnis Studio 11.

Studio Browser
When you start Omnis Studio 11, you’ll immediately see the enhancements we’ve
made to the Studio Browser. The mechanics of creating and managing libraries are
largely the same, but we have dramatically improved the layout and overall appearance
of the Studio Browser to make it easier to use and to navigate.

The enhancements in the Studio Browser include:

❑ The Libraries option in the Studio Browser is now called Project Libraries and this
is the default option displayed when you start Omnis Studio (you can change this
under the IDE Options in the Hub)

❑ You can create a new library using one of the options: Web and Mobile, Desktop
(hidden in the Community edition) or Blank. The ‘Web and Mobile’ option creates a
new library containing a NewRemoteForm and a Remote_Task, ready for you to
start adding JS components, while the Desktop option creates a NewWindow for

desktop use

 The Omnis Environment

 43

❑ You can open an existing library using the Open existing project library button,
plus the Create project library from JSON option allows you to import an Omnis
library stored in JSON format

❑ The Recent Project Libraries area lists the libraries you have opened recently

❑ The tree list on the left contains the same options as before including the Hub,
Remote Debug Client, the SQL Browser, the Omnis VCS, the Web Service Server,
and the Trace Log

❑ The Hub option contains the same options as before, including Applets, Samples,
Faults, and IDE Options. There are several new example apps under the Samples
section, including a new category (at the top) called ‘New’ to allow you to select all
the new example apps in the last major release

The Omnis Studio version number was at the top of the Studio Browser tree list in
previous versions, but this has been moved to the bottom left corner of the window.

The Omnis Preferences option has also been moved and it is now accessed via the
Options button, next to the Studio version number. The Preferences option opens the
Omnis root preferences ($root.$prefs) in the Property Manager.

The IDE Options option opens the IDE Options tab in the Hub, which allows you to
hide or show the main tools in the Studio Browser, as well as change the IDE theme.

The Edit Configuration option opens the new Configuration file editor; see later in this

section.

The Remote Debug Server option allows you to configure and start the Remote
debugger.

What’s New in Omnis Studio 11

44

Property Manager
The Property Manager has been redesigned to make it easier to find and set
properties. It now has a panel at the top containing the common properties for a
component or object, including its object name, its location and size, its data properties
(including $dataname), as well as the visibility and state properties ($visible and
$enabled). You can use the Search box at the top to quickly find a property or subset of
related properties, which is sometimes easier than looking under the tabs, e.g. enter
color to find all color properties.

The ‘Show All’ option has been renamed ‘Advanced’ and is now placed at the bottom-
left of the Property Manager window. The Advanced option is disabled (set to off) in
new installations of Omnis Studio, so the Property Manager displays a simpler subset
of properties for libraries, classes and components. In this mode, the tabs are hidden
but you can right-click on a property to see which tab group it belongs to (see below).
Existing users may like to enable the Advanced option to view all the properties for
objects.

 The Omnis Environment

 45

Property Tab

There is a new option on the Property Manager context menu that shows which tab the

current property belongs to. (ST/CE/230).

The new option Property Tab: <tab-name> shows which tab a property is located on
and is useful after a property search using the Search box at the top of the Property
Manager. After a property name (or partial name) is searched, a subset of properties is
shown in the Property Manager and all the tabs are hidden. You can Right-click on a
property, select the Property Tab: <tab-name> option to jump to that property on the
specified tab, ready to edit it. When there is no active search, the menu option is
disabled, but still indicates the tab for the property.

Tab and Focus Selection

A few improvements have been made to navigating tabs and changing the focus in the
Property Manager (and Catalog). (ST/HE/1451)

The Property Manager now tries to restore (by searching for name) the last tab that you
selected (this is reset when closing and re-opening the Property Manager window),

falling back to the previous behavior if the last tab selected cannot be retrieved.

In addition, you can now use the tab key to give the tabbed pane the focus, and then
use the Left and Right arrow keys to switch tabs. You can tab out of the tabbed pane
using the tab key, and in the Property Manager you can also do this using the Up or

Down arrow key.

Copy Value

The Copy Value option has been added to Property Manager context menu to allow
you to copy the value of a property, even if it is grayed out, such as when a class is not
checked out of the VCS. (ST/VC/782)

Selecting Integer Values

You can now use the Shift+Up or Shift+Down Arrow keys to cycle through integer
property values in the Property Manager, for example, when editing font sizes you can
click into the property and use the Shift+Up/Down Arrow keys to increase or decrease
the font size. (ST/HE/1763)

When increasing $fontsize in the Property Manager, labels and text objects in Remote
forms and Window classes will increase their height if necessary, in order to correctly
display a single line of text using the increased font size. (ST/HE/1764)

Check box list properties

When you click in a check list for a property, the changes are made to the property
immediately. For example, when changing the properties of $gridlinesvisible in the
check list in the Property Manager, the changes to the grid lines are seen immediately
in the design form. The only exceptions to this new behavior are for $prefs.$idetools
and $clib.$prefs.$designedscreensizes. (ST/JS/3030)

What’s New in Omnis Studio 11

46

Component Store
The Component Store has been redesigned and now appears in a vertical panel down
the left side of the Remote form editor (and the editors for window, report & toolbar
classes), with the components arranged in groups, such as Buttons, Containers,
Entry Fields, and Lists; this provides a more compact layout than in previous versions
where components were listed individually (note the old layout is no longer available

and you cannot revert to the old layout).

When you open a class to edit it, such as a Remote Form class, the Component Store
is opened automatically and, by default, it is docked to the left side of the design
window. As you move a design window, the Component Store will remain docked and
will move with it. The following screenshot shows a remote form in design mode and
the Component Store is attached to the left side showing the Buttons group expanded.

There are a number of components in each group, shown in the sub-menu that pops
out when you click on a group, such as the Buttons group, which contains the
standard Button, Check Box, Floating Action Button (a new component), Radio
Button, and other types of button components. The Component Store is displayed
using the current IDE theme, including default (light) and dark themes.

 The Omnis Environment

 47

On the Component Store context menu, the Dock to Design Window allows you to
set where the Component Store is docked, either Auto, Left (the default), Right, and No
(not docked, but floating). In Auto mode, the Component Store will dock to the left side
of a design window, but if there is insufficient space on the left, the Component Store
will dock on the right.

The contents of the Component Store is different for different classes, including
Remote Forms, Reports, Window classes, or Toolbar classes. The following images
show the Buttons group for a JavaScript Remote Form, using the default Studio IDE
theme (on the left), and the same group(s) in Dark mode (on the right).

The initial view for the Component Store is to Show Text labels for the main groups and
the components in the sub-menu popups, as shown above, but you can use its Context
menu to change the appearance, e.g. hide the text or show it with 2 columns.

What’s New in Omnis Studio 11

48

Searching for a component

You can use the Search box to locate a component or a group of similar components.
As you type a search string, the contents of the Component Store is filtered, displaying
only those components that contain the search string in their name, and the groups are
hidden while the search is active. For example, you could enter “grid” to find all the grid
components, as shown below. When the focus is on the Component Store, you can

type Ctrl/Cmnd-F to put the focus into the Search box ready to type your search string.

Adding a Component to a form

To select a component, and add it to your Remote Form (or Report, Window, or
Toolbar class), you can do one of the following:

❑ Click on the main group icon to open the sub-menu popup, then click and drag a
component icon from the sub-menu, and drop it onto the form or window; as you
drag the component out of the Component Store, the outline of the component is
shown allowing you to place it precisely in the form or window.

❑ Click and drag the icon shown in the main group to create a component of that
type; for example, you can drag the Button icon from the Buttons group to create a
button, which is initially the default icon in that group (note the group icon/default
component will change as you select different components).

❑ Double-click an icon in the main group or any sub-menu popup to add a component
of that type; in this case, the component is added to the center of the form or
window (double-clicking is not supported for report classes).

❑ Press Return to add the currently selected component to the design window (not

supported for report classes).

Alternatively, you can use the keyboard to select a component:

❑ To use the keyboard, press F3 to put the focus on the Component Store, use the
Up or Down arrow keys to select a main group, press the Space key to open the
sub-menu popup for the group, then use the Arrow keys to select a component, and
press the Return key to add the component to the center of the form or window;
you can use the Esc key to deselect/close a sub-menu popup.

The most recently selected group is highlighted in a color, while the icon for the most
recently chosen component from any sub-menu popup is shown as the initial/default
icon for the group; therefore, as you select different components from different groups,
the initial or default icons will change. For example, if you previously chose a Combo
box from the Lists group, the Combo box icon is shown in the main Lists group, and
you can then drag or double-click the Combo box icon from the Lists group without

opening the sub-menu to create a Combo box in your form.

 The Omnis Environment

 49

JavaScript Components & Groups

The following Component Groups and Sub-groups are available for JavaScript Remote
form classes in the new Component Store (Window classes and Report classes have
their own groups):

Group JavaScript Component

Favorites Right-click on a component & select
‘Favorite’ to add it to this group

Buttons Button

Check Box

Floating Action Button NEW

Radio Button Group

Split Button

Switch

Trans Button

Containers Paged Pane

Scroll Box NEW

Tab Pane (new compound object)

Entry Fields Entry Field

Rich Text Editor

Labels Label

Lists Combo Box

Complex Grid

Data Grid

Droplist

List

Tile Grid NEW

Tree List

Media Camera NEW

File Control

Html Object

Picture

Video Player

Menus Popup Menu

Native Native List

Native Slider

Native Switch

Navigation Hyperlink

Navigation Bar

Navigation Menu

Page Selector

Segmented Bar

Tab Bar

Toolbar

What’s New in Omnis Studio 11

50

Group JavaScript Component

Other Activity

Color Picker NEW

Date Picker

Device Interface

Map

Progress Bar

Slider

Timer

Shapes Background Shape

Subforms Subform

Visualization Bar Chart

Chart (Line, Area, etc) NEW

Gauge NEW

Pie Chart

Existing users should note that the Device Control has been renamed to Device
Interface and is located in the ‘Other’ group.

If you create any Compound Objects for Remote forms they will appear in their own
group in the Component Store: you can define compound objects by editing the
Component Store library; see below. For example, Remote forms have the Tab Pane in
the Containers group, and Window classes have the Labeled Fields group containing
the Labeled Entry Field and Labeled Masked Entry fields.

Window, Report & Toolbar Components

The new Component Store is used when editing a Window, Report or Toolbar class,
and will contain components or groups relevant to the class being edited; all of the
features described here apply to the Component Store for these class types.

Window class Report class Toolbar class

 The Omnis Environment

 51

Changing the Appearance

You can change the appearance or layout of the Component Store using its Context
menu. For example, you can Right-click/Ctrl-click anywhere on the Component Store
and select or deselect the Show Text or Show Popup Text option to hide or show the
text labels for the main groups or sub-menu popups, respectively.

As you hide or show the Text labels, the icons will switch between Large or Small icons
automatically (note the icons change automatically, so you cannot manually select
large or small icons, as in previous versions). When the Text labels for the main groups
or sub-groups are hidden, each icon has a tooltip that displays the component name or

group name as you hover over the icon.

Note that there is no Save Window Setup command for the Component Store, since it
saves its settings and current position automatically when it closes.

What’s New in Omnis Studio 11

52

When the Show Popup Text option
is disabled, tooltips are displayed
on the components in a sub-group

When both Show Text… options are disabled,
large icons are shown and tooltips are displayed
on the main groups and sub-groups

If the Dock To Design Window option is set to Auto, the Component Store is docked
or “attached” to the left side of the current design window, or if there is not enough
space to the left of the design window the Component Store is docked to the right side
of the design window. If this option is set to No (not docked), you can drag or “tear” the
Component Store from the design window and it will float within the Omnis application
window, plus its last position is remembered automatically. The following image shows
the Component Store floating next to a remote form:

 The Omnis Environment

 53

When the Dock To Design Window option is to Auto, Left or Right, you can
temporarily drag or “tear” the Component Store away from the design window by
dragging its title bar, but it will snap back and become docked again when you move or
reopen the design window, or when you change the docking options from the context
menu.

Two Column mode

When the Text labels are hidden on the main groups (i.e. the Show Text option is
unchecked), you can configure the main group icons in 1 or 2 columns using the
Columns options on the context menu (the sub-menu text can be enabled or disabled
in 2-column mode, as shown below). The Columns option is disabled (grayed) when
the Text labels on the main component groups are shown, and therefore you cannot
enable 2-column mode in this case. Note the Search box is hidden when the
Component Store is in single-column mode without text labels.

Single Column mode
Plus Show Text and Show Popup
Text are disabled

Two Column mode
Show Text is disabled,
Show popup text is enabled

What’s New in Omnis Studio 11

54

Favorites

You can add any single component to the Favorites group at the top of the Component
Store window (shown initially with a Star icon), To add a favorite, Right-click on the icon
for the component in a sub-menu and select the Favorite option. Adding components
to the Favorites group makes it easier or quicker for you to select any controls that you
use constantly. For example, in the following screenshot the Button and Entry fields
have been selected as favorites and are now shown together in the Favorites group at
the top of the Component Store.

Right-click a component,
Select Favorite; in this case,
Button is added to the
Favorites group

You can add components from
different groups to the Favorites group;
in this case, the Button and Entry Field have
been added to the Favorites group

To remove a component from the Favorites group, you need to right-click the
component and deselect the Favorite option.

Further Options

The options in the Exclude Group sub-menu in the Component Store context menu
are checked by default, meaning that the Deprecated and Internal component groups
are hidden or excluded by default; note that there are no Deprecated or Internal
components for Remote forms, so these groups are only relevant for Window class
controls at present. You are advised not to use the components in these groups, as
they are included for backwards compatibility only, or for internal use, and should not
be used for new applications.

The Show Component Library In Browser option allows you to change the contents
of the Component Store and its groups; when selected, this option shows the
Component Library (comps.lbs) in the Studio Browser, ready for you to edit it (as in
previous versions). In general, you do not need to edit the Component Library, unless
you want to add your own controls, compound objects, or class templates: see below.

The External Components… option opens the External Components dialog, allowing
you to load external components (as in previous versions); this is only relevant for
window and report classes, since all JavaScript components are loaded and displayed
by default when designing remote forms. Note that all external components are shown

 The Omnis Environment

 55

in the new Component Store even if they have not been marked in the External

Components dialog to be loaded.

Configuration

There are a number of options in the Omnis Configuration (config.json) and
Appearance (appearance.json) files that control the behavior or appearance of the
Component Store. The time taken for a group sub-menu to pop out can be set using
the componentStorePopupDelay item in the ‘ide' section of config.json, an integer
specifying the popup delay in milliseconds. The default is -1 meaning that Omnis
calculates the delay to be just longer than the double click time, which means you can
double click on an entry to add the corresponding default component to the design

window without the popup appearing briefly.

There is a new ‘componentStore’ group in appearance.json containing the item
colorgroupdefault that allows you to set the icon color for the default component in a
group in the Component Store.

Editing the Component Store Library

IMPORTANT: You are advised not to change the properties of any of the existing
components or class templates, but to duplicate an existing control and make any
changes to the copy. In most cases, you do not need to edit the Component Store
Library, except if you want to create your own class templates or compound objects.

The content of the new Component Store window is driven by the classes in the
Component Store library called ‘comps.lbs’ (as in previous versions). To open the
component library, select the Show Component Library In Browser option from the
Component Store context menu, or you can Right-click on the Libraries node in the
Studio Browser and select the Show Comps.lbs option (the latter is useful if you do
not have a library open). The $componenttype property for all classes and templates
that appear in the Component Store is set to kCompStoreDesignObjects.

All controls in the Component Store library now have the property $componentinfo,
which is a row of information that specifies which group the object appears under in the
new Component Store window. The $componentinfo property is visible in the Property
Manager when you are editing a component on a Remote Form, e.g. in the
JSFormComponents remote form class (also for Window, Report, or Toolbar classes).

Click on the $componentinfo property in the Property Manager to edit it: it has three
columns defining the group, icon, and default status for the object:

❑ group
The name of the group to which the object belongs. Group names are case

insensitive, for example: Lists, Buttons, Entry fields.

❑ iconid
The icon used for the object in the Component Store, which should be an SVG
image placed in the new icon set ‘componenticons’. Icons are displayed at 20x20 or

28x28 and SVG images will scale to fit the current size.

❑ default
A Boolean that indicates if the object is the initial default in its group (the default
object will change once a different object is chosen). If default is set to true for more
than one object in the same group, the initial default will be the first object
according to the case-insensitive ascending sort order of objects within the group
by their name.

What’s New in Omnis Studio 11

56

Compound Objects

A Compound Object is comprised of two or more standard objects grouped together to
make a single object that appears in the Component Store, such as the Tab Pane for
Remote forms (in the Containers group), or the Labeled Entry Field available for
Windows Classes. When you drag a compound object from the Component Store, all

objects in the grouped object are created in the remote form (or window).

You can create Compound Objects in the Component Store library, inside one of the
Remote form or Window Component Store classes (or your own class but
$componenttype must be set to kCompStoreDesignObjects). To create a Compound

Object:

• Open the Component Store Library by right-clicking on the background of the
Component Store and select the Show Component Library In Browser option;
comps.lbs will be shown in the Studio Browser

• Open the Component Store class according to the type of Compound object
(Remote form or Window class), then add the objects that will form the compound
object, e.g. copy an Entry field and Label if you want to create a Labeled field; you
are advised to create copies of the standard objects to form your compound
objects. Note you cannot include line objects in a compound object

• Assign a name to the first object; this will be the name of the Compound object in

the Component Store

For a Remote form, the first object is the object that occurs first in the field list window.
For a Window class, the first object is either the first background object in the field list
window, or if there are no background objects in the compound object, the first
foreground object.

• Select all the objects that will form the Compound object, right click, and select
Group

• Set the $componentinfo property of the group of objects, including the control
name, group name and icon id (all members of the group should have the same
value)

• Save the Component Store Library and close it

When the Component Store reloads in design mode, there will be a new Compound
object with the specified name, group and icon id. The icon of a Compound object is
shown in the Component Store with an additional … icon.

The dropped compound object has the same layout as its original objects, anchored at

the top left of where you drop it.

You can use a responsive remote form to provide different layouts of the compound
object for different breakpoints. Similarly, you can also set breakpoint-specific
properties that will be set appropriately after dropping the compound object. Note that
the Component Store Library may be using different breakpoints to your library, so the
values used for each breakpoint in your library, after dropping a compound object, are
the values for each nearest breakpoint, when comparing a Component Store
breakpoint with a library breakpoint.

Container Compound Objects

The Component Store also allows you to create compound components using a
Container field, such as a scrollbox or paged pane, with other objects inside the
container. For example, you could create a compound object comprising a Scroll box
(now available for remote forms) with a tab strip as its top toolbar component and a

paged pane as its client component.

 The Omnis Environment

 57

Class Templates

There are a number of Class Templates or Wizards that appear in the Studio Browser
that are defined in the Component Store Library (such as Net Classes available in
previous versions). You can create your own class templates, but the way you define
these has changed (although the way you created class templates in previous versions

is still supported for backwards compatibility).

Each class template in the Component Store Library has the new $componentinfo
property, but for classes it has a single column named group. This allows a group to
be specified for the class when it appears as a template or wizard in the Studio

Browser. To use new $componentinfo property to define a class template:

• Select the class and set the group in $componentinfo for the class to the template
name

• Set $componenticon to an Icon ID, preferably an SVG icon image

• Add a description for the class template in $desc

If you do not supply a group for a class template or wizard, it appears in a group named

using its class type.

What’s New in Omnis Studio 11

58

Catalog
Variable values

An extra column has been added to the Catalog window to show the values in the
currently selected tab group, which will make it much easier to see the value of
individual items or whole groups of items in one place. (ST/HE/1771)

The new values column is available for the Variables, Constants, Events, and Hash
variable group tabs. For example, you can view the values for all instance variables

under the Variables tab (assuming there is an instance open), as shown:

The values column is displayed as a third column on the right-hand side of the Catalog
window, under each tab, and will show the current value of the variables or other items.
There is a new option, Show Values, in the context menu for the Catalog that hides or
shows the values column (default is on), which is saved with the Save Window Setup
option.

Syntax Colors

Items in the right hand list of the Catalog are now shown using the relevant syntax
color, if any. There is a new item catalogUsesSyntaxColors in the ‘ide’ section of

config.json, that can be used to control this behavior; the default is true.

 The Omnis Environment

 59

Configuration File Editor
There is a new editor to allow you to edit the settings in the Omnis Configuration file
(config.json) inside Omnis Studio, rather than having to edit the file in a text editor
(although you can still do this). To edit the Omnis Configuration file using the new
editor, click on the Options button at the bottom-left of the Studio Browser, then select
the Edit Configuration option.

The Configuration Editor shows the main groups of items in the config.json file in the
left hand list, such as ‘defaults’, ‘ide’, and ‘methodEditor’, and for each selected group
the items within that group are shown on the right, for example, the ide group of items
is shown below:

Some items require a string value, in which case you can click on the item and edit it
directly in the text field, otherwise, when you click an item to edit it, a droplist may
appear containing its possible values (such as True/False values), or some other kind
of dialog will open, such as a file select dialog or a color picker.

What’s New in Omnis Studio 11

60

When an item is selected, the Help panel below the configuration items grid provides a
full description of the item. In addition, the status bar beneath the help panel indicates
whether or not a restart is required after changing the item and saving the configuration
file. The status bar is empty when the item is not relevant to the current platform.

There is a complete list of items and groups allowed in the Configuration file in the

Appendix at the end of this document.

Adding Configuration items

The + and - icons at the top of the window allows you to add or remove items, in
general however, you should not delete items, rather just change their values; for
example, for a Boolean item value which you want to disable, set the value to False to

disable it rather than deleting the item.

To add an item, click on the + icon, enter the name of the Config item, and choose the
type, which is one the following types:

❑ Boolean

a True or False value

❑ Character
a string

❑ Integer

an integer value (usually in a specific range of values), or a constant value

❑ List
For list items, enter the item name, then you can specify the list of items in a popup
window; they are displayed as a comma-separated list

In addition, you can now enter \t to mean tab, e.g. for log.conversionLogDelimiter.

There may be specific items that are included in the documentation or provided by
Technical Support, that are not included in the default Configuration file, which you can
add using the Configuration file editor.

Updated or Unsupported Items

The naming of the items in the Configuration file has been tightened up for this version,
and as a consequence a few configuration items have been renamed or changed:

❑ jvm in the java group is now jvmPath

❑ python in the windows group is now pythonPath

❑ iconsFolder in the server group is now iconsFolderName

❑ miniconid in the windows group is now a character string (to allow for SVG as well
as PNG)

❑ diacriticalpopupuseosxkeyboardlayout in the diacriticalpopup group is now

diacriticalPopupUsesMacOSKeyboardLayout

The following configuration items are no longer supported:

❑ blankLinesToAdd and maxWidthOfMethodTooltip in the methodEditor group

❑ candebug in the obrowser group

❑ autoChunkRESTfulURLs in the server group

 The Omnis Environment

 61

Configuration Editor Visibility

The Configuration file editor is available in the Development version of Omnis Studio,
as well as the Runtime and Server versions (but not the Linux Headless server). To
open the Configuration file editor in the Runtime or Server version, select the Edit
Configuration… option from the File menu. You can hide this option in the Runtime or
Server version by executing the sys(246) function, or sys(247) will show it again; the

default setting is for it to be visible.

Help Files

The contents for the Help provided for the Configuration items are stored as HTML
pages in a new folder called ‘confighelp’ in the Studio folder; this folder is not present in
the Headless Server version.

Spell Checking
Omnis now checks spelling in text in end user apps, as it is entered in desktop forms
(on the fat client), and in the Studio IDE during development; note this does not apply
to JavaScript client remote forms. Spell checking allows words to be validated, based
on the local language setting, and spelling suggestions are presented in the UI or used
automatically, including the highlighting of misspelled words, and correcting misspelled
words as they are entered.

Support for spell checking is provided by calling the Spell Checker API on the current
operating system, including under Windows and macOS. Spell checking is enabled by
default and will be used in the right context automatically, such as in Entry fields or in
the Code editor, and there are various options or settings in the Studio IDE to manage
spell checking.

Configuration

There are two options for how Omnis chooses a language to use with the system Spell
Checker APIs. Which of these two applies depends on the entry
useSystemSettingsForSpelling in the ‘defaults’ section of the Omnis Configuration
file (config.json).

If useSystemSettingsForSpelling is true (the default), Entry fields use the system
settings to identify the current language or languages. For macOS, this means the
settings in the Keyboard, Text panel in System Preferences. For Windows, this means
the System Locale.

If useSystemSettingsForSpelling is false, Entry fields use the National sort ordering

locale for the current language in the Omnis localization data file.

If Omnis fails to initialize the system Spell Checker API to use the required language it
reports this failure to the Trace log.

Window Class Controls

The following Window class (fat client) controls allow spell checking: Single- and Multi-
line Entry field, Combo box, String grid, and Data grid. These controls have the
following properties to control spell checking:

Property Description

$showspellingerrors If true, the control underlines spelling errors using a dotted line

$autocorrectspelling If true, and the user types a separator (e.g. space or comma)
when no text is selected, the control replaces a misspelled
word immediately before the selection with a correctly spelt
word. Note that Undo allows you to revert to the originally
entered text, and then continue typing without correcting it
again

These properties are kFalse in existing or converted apps to maintain previous
behavior.

What’s New in Omnis Studio 11

62

The dotted line used to underline spelling errors uses the new color “colorspellingerror”
in the system (and system.dark) section of appearance.json. The following screenshot
shows an Entry field containing misspelled words:

When $showspellingerrors is true, and the currently selected text in an Entry field is a
misspelled word, the default context menu for the edit field includes up to 10 spelling
suggestions, before the normal menu commands, such as Cut, Copy and Paste.
Selecting one of these suggestions from the menu replaces the currently selected
word.

Code Editor

Spell checking is also enabled in the Code Editor (Method editor); there is a new Show
Spelling Errors option in the View menu that is enabled by default.

Misspelled words in strings entered into code are underlined in the same way as edit
fields underline spelling errors when $showspellingerrors is true. In addition, misspelled
words outside Square Brackets are underlined for certain commands, including OK
message, Yes/No message, No/Yes message, Prompt for input, Text:, Line:, and Send
to trace log.

In addition, when Show Spelling Errors is enabled in the Code Editor, you can
change the spelling of a selected word (which need not be misspelled) in either of two
ways, described below (this applies to a string or outside square brackets in the
commands as listed above).

You can select a word, and from the Modify>>Selection submenu you can select the
Change Spelling… option: note that this command is only present if there are some
possible suggestions for the selected word. You can also use the keyboard shortcut
Ctrl/Cmd+B to change a word (specified in the changeSpelling key in the
methodEditorAndRemoteDebugger section of keys.json). After selecting the command,
a popup appears from which an alternative spelling can be selected to replace the
word.

 The Omnis Environment

 63

Alternatively, you can select a word, Right-click on it, and the context menu contains a
new Change Spelling hierarchical menu, with up to 10 suggestions, that can be used

to replace the selected word.

Remote Debugger

The Remote Debugger also supports spell checking, enabled using the Show Spelling
Errors option. When this is true, for an edit session, the context menu for the editor
includes up to 10 suggestions when the selected text is a misspelled word (that is, it

behaves like a normal Entry field with $showspellingerrors set to true).

What’s New in Omnis Studio 11

64

Multi- Undo and Redo
Omnis now supports multiple Undo and Redo operations in the class design editors
and the Method Editor. Omnis stores most operations on an Undo and Redo Stack
which can be accessed using the Undo or Redo commands in the Edit menu, or using
Ctrl-Z or Ctrl-Y key strokes on Windows, or Cmnd-Z or Shift-Cmnd-Z on macOS.

As you undo and redo operations in a class editor, or the method editor, the Undo and
Redo commands will update in the Edit menu to reflect the next operation that can be
undone or redone. When there are no operations that can be undone or redone the
corresponding option in the Edit menu will be grayed out.

In general, most operations that support (single) Undo support multiple Undo and
Redo, including moving and resizing objects, adding and deleting controls (including
Cut and Paste), object property changes (in the Property Manager), align menu
operations, and changing or deleting layout breakpoints in remote forms.

In effect, a separate Undo stack is kept for each editor, so as you switch from one
editor to another, e.g. between two remote forms, the Undo or Redo commands will
apply to the stack for that class editor (this does not apply when opening the Method
Editor, see below). There is currently no limit on the number of operations that can be
stored on the Undo stack.

To enable multiple Undo and Redo, Omnis saves a copy of the class data before and
after an operation. To support this, there is a new temporary folder named ‘undotemp’
created automatically in the ‘studio’ folder at startup, which contains temporary copies
of class data associated with undo stack entries; these files are deleted automatically,
but in case they are not, any stray files are deleted when Omnis starts up.

Property Manager

You can Undo a property change when the Property Manager has the focus, provided
that the current line in the Property Manager does not itself have an Undo stack (this
can apply when the edit field has the focus). When you undo a property change, Omnis
tries to select the affected property in the Property Manager. Undo works for inheriting

and overloading a property.

 The Omnis Environment

 65

Method Editor

If you open the method editor for a class, while the design editor for the class is open,
Omnis clears the undo stack of the class design editor (but only if something is
changed in the method editor). This prevents Undo or Redo in the class editor
overwriting the class and losing any method changes.

Report Editor

Undo works in the report editor for the following operations: moving a report section,
inserting or deleting a report line, and editing the page setup. Note that the report editor
does not support Undo or Redo for the sort fields dialog. When you open this dialog,
Omnis clears the report editor undo and redo stacks.

Form or Window Editor

Most operations within complex objects, such as a Complex grid or a Tab strip, support
multi- Undo and Redo, such as, setting column widths in a Complex grid using the
mouse or changing a grid line property.

Appearance Color Format
The syntax used for colors in appearance.json has been changed to make the file
easier to use and read. The syntax changes occur automatically, so if you load
appearance.json using the old syntax, Omnis replaces the content with the new syntax
(and writes the file back to disk).

Colors must now be a string, which can be either “#RRGGBB” or “kColorDefault” or
one of the 16 standard colors: kBlack, kDarkBlue, kDarkGreen, kDarkCyan, kDarkRed,
kDarkMagenta, kDarkYellow, kDarkGray, kBlue, kGreen, kCyan, kRed, kMagenta,
kYellow, kGray, or kWhite.

To see the different format, compare the old format:
"IDEgeneral": {

 "clientexeccolor": -2147483599,

 "colorpropertymanager": 16448250,

 "colorreportdesignposnsectiontext": -2147483599,

 …

 },

With the new format:
"IDEgeneral": {

 "clientexeccolor": "kColorDefault",

 "colorpropertymanager": "#FFFFFF",

 "colorreportdesignposnsectiontext": "kColorDefault",

 ...

 },

You can extract a color from appearance.json using the following code:
Calculate lAppearanceJSON as $prefs.$appearance

Calculate lColorMethodLines as lAppearanceJSON.compareTool

Calculate #S1 as lColorMethodLines.comparemethodlinescolor

If left(#S1,1)='#'

 Calculate #1 as hexcolor(mid(#S1,2))

Else

 Calculate #1 as [#S1]

End If

This assumes that the entries are either #RRGGBB or a constant such as
kColorDefault. This code could be wrapped into a method such as
$getappearancecolor(“group”,”color”) returning the resulting color.

What’s New in Omnis Studio 11

66

Dark Mode
Support for Dark Mode has been enabled on all platforms (ST/HI/1909). Dark mode is
supported on macOS 10.14 and later or Windows 10/11 or above. You can change the
system color mode via the System Preferences > General option on macOS, or the
Settings > Personalization > Colors option under Windows.

Omnis Studio supports switching between dark and light modes when using the default
Omnis design theme (studio/themes/appthemedefault.json); the theme for design mode
in Omnis is set via the Themes tab under the IDE Options option in the Studio
Browser (via the Options button at the bottom-left). The colors in the default design
theme have been updated to work with Dark mode on macOS and Windows.

Dark Mode in Themes

Support for dark mode has been enabled by adding items named “[item].dark” to any of
the theme file, as well as the main appearance file (appearance.json in the
omnis\studio folder). For example, as well as a "tree" item in appearance.json, there is
a "tree.dark" item which is used when the system is in dark mode; if there is no “.dark”
entry, the normal entry is used in dark mode.

If an appearance.json file does not contain any “.dark” entries, Omnis will use the light
system theme when determining any defaults that come from the system, although
system dialogs will display in the current mode for the system.

User Defined Colors

User defined colors can be added to the appearance.json which can be used for theme
colors for window class controls in desktop (fat client) apps.

The new colors replace the 16 basic colors at the bottom left of the standard palette of
the color picker, used when specifying the color for window class controls. They are
defined using the groups "user" and "user.dark" in the appearance.json theme file,
using the names color1 to color16. The defaults for these correspond to the 16 basic

colors in the color picker available in previous versions.

They are represented by 16 new color constants kColorUser1 to kColorUser16.

IDE Window Colors (Windows only)

You can now specify dark mode colors for some of the IDE window colors defined in
the $windowoptions Omnis preference; these only apply on Windows OS and are used

automatically when dark mode is being used. The following colors can be defined:

 The Omnis Environment

 67

titleactivecolor.dark
titleinactivecolor.dark
smalltitleactivecolor.dark
smalltitleinactivecolor.dark
borderactivecolor.dark
borderinactivecolor.dark
captionactivecolor.dark
captioninactivecolor.dark
smallcaptionactivecolor.dark
smallcaptioninactivecolor.dark
minmaxbuttonhotcolor.dark
minmaxbuttonhottrackingcolor.dark
closebuttonhotcolor.dark

closebuttonhottrackingcolor.dark

System Colors

The system colors colorqbackfill, colorqforefill and colorqframe have been
removed from appearance.json (these correspond to internal color constants that
always need to map to the same color, and therefore should not be customized).

(ST/RC/1404)

Design Window Titles
The titles displayed on class editor windows and other tools, including the Method
Editor, have been modified so that class names are visible on macOS Big Sur (or
above); in testing of this on macOS we found class names were not visible so the
format of design window titles has been redesigned. In addition, some of the debugger
commands have been moved. (ST/HE/1765)

Class design window titles now display just the class name, or for classes that have
methods, the class name followed by the word “methods” is displayed, for example, for
a remote form class named jsLabeledChart, the two titles used are “jsLabeledChart”
and “jsLabeledChart methods” (see below):

For an object class named oObject, the title used for its methods is “oObject”. Note
also that on macOS the toolbar options (View, Modify, Debug, etc) are incorporated

into the window title bar.

When more than one library is open (in the Studio Browser), the title is prefixed with the
library name, for example, “myLibrary.wWindow”. As you open and close libraries in
the Studio Browser, the titles update as necessary, to add or remove the library name
prefix. For system class editors, some useful text is displayed rather than the class
name, e.g. “Text formats” (instead of #TFORMS).

What’s New in Omnis Studio 11

68

Find and Replace
Find Matches

Find matches are now underlined in the Find and Replace log, rather than filling the
rectangle as in previous versions. This change applies to the Find and Replace log
when the Highlight Matches option in the log context menu is enabled (the default).
(ST/DB/1340)

Recent Search List

The maximum number of searches saved in the Recent Search drop list in the Find

and Replace window has been increased to 30. (ST/FR/147)

All droplists and combo boxes in the IDE now use a configuration item
maxDisplayedDropListLines in the ‘ide’ section of config.json to specify their
maximum number of displayed lines. This defaults to 30, and can be 5-50 inclusive.

Checked Out Classes

The Show Checked Out Classes In Log option has been added to Find and Replace
log context menu to allow you to show which classes in the Find and Replace log are
checked out of the VCS; the option is enabled by default and is saved in Window
Setup. Changing the option via the context menu does not cause lines already in the

log to be updated. (ST/DB/1401)

$findandreplace method

The bReturnLog parameter has been added to the $findandreplace() class method,
which provides an alternative to calling sys(241) to return the Find and Replace log.
(ST/FR/163)

The definition of the method is now:

❑ $findandreplace(cFind, cRep [,bIgnCase=kTrue, bWholeWord=kFalse,
bRegExp=kFalse, bClearLog=kFalse, bReturnLog=kFalse])

If cRep is #NULL, the method finds all instances of cFind, otherwise, replaces all

instances of cFind with cRep. Returns status row.

When bReturnLog is kTrue (the default is kFalse), the status row has an additional
column named Log that contains the Find and Replace log (this has the same structure
as the list returned by sys(241)).

Trace Log
Styled Text

The Trace log now allows text styles to be added to the logged text. (ST/DB/1410)

The Send to trace log command supports text styles, added using the style() function
inside square brackets, such as kEscColor and kEscStyle. For example, you could
apply colors to sections of the logged text when it is displayed in the trace log panel in
the browser or the trace log window; such styles are stripped when writing the trace log
line to the text log file in the logs folder.

The trace log renders the text styles if the new entry traceLogUsesStyles in the
‘defaults’ section of config.json is set to true; this replaces the ide entry

traceLogUsesSyntaxColors, which has been removed.

Note that if you use styles other than kEscColor and kEscStyle, these styles are
ignored when copying selected trace log lines to the clipboard as HTML.

For JavaScript client-executed methods, where the Send to trace log command sends

the text to the JavaScript console (if available), text styles are not supported.

 The Omnis Environment

 69

Log Font Size

The font size for the Trace log (and the Find and Replace log) is now saved in the

window setup. (ST/DB/1339)

The Save Window Setup option saves the current font size for the Trace log, and the
Find and Replace log. Note the font size of the trace log panel in the browser is not
saved.

Using Multiple Screens on macOS
A new option has been added on macOS only that allows you to move the top window
to an additional screen. (ST/HE/1603)

The Move Top To <screen> command has been added to the Window menu, on
macOS only (10.15 Catalina and later) allowing you to move the top window to the
named additional screen, including design tools such as the Property Manager and
Method Editor, or any class editor window. The new command will only appear when
there is more than one screen connected to your Mac computer.

Tooltips
There is a new entry "tooltipfontsize" in the “tooltip” section of the appearance.json
theme file to set the font size for tooltips. Set it to zero to use the system default, or 6-
32 inclusive. For macOS only, there is a new entry "ThemeTooltip" which is the font
used for tooltips.

Tooltips now use the non-system style of tooltip. There is a new entry in the “tooltip”
section of appearance.json, named “hidearrows” which defaults to false. When true, the
arrow for a non-system style tooltip is not displayed.

Single Instance Preference
There is a new option ‘singleInstance’ in the ‘windows’ section of the config.json file
that can be used to set the value of the Omnis preference $prefs.$singleinstance.
When set to true (the default is false), the value of the $prefs.$singleinstance property
is set to kTrue and only one instance of Omnis Studio is allowed.

What’s New in Omnis Studio 11

70

JavaScript Components
JS Chart
The Chart is a new JS component that allows you to create different types of chart
from list data to display in a remote form. It uses the Chart.js JavaScript library, an
open source library available under the MIT license, which you can use in your
applications (with the correct license attribution). The new JS Chart control provides
you with a wider range of chart types than the existing Bar chart and Pie chart
components, and provides a more modern interface for displaying charts, with scalable,
vector based shapes and animated transitions.

The $charttype property sets the basic chart type, a kJSChartType... constant, and the
following types of chart are available.

Chart type Description

Line

Bar

Radar

Line, Bar, and Radar type charts (or Labelled charts) use a label
(e.g. a month) for the X axis (horizontal), and a value for the Y axis
(vertical).

Pie

Doughnut

PolarArea

Pie, Doughnut, PolarArea charts (or Area type charts) use the
same list definition as the labelled charts, but each data point has a

different color and its value is represented by area.

With pie charts, the angle of a segment represents its value
(individual values are taken as a percentage of the sum of values in
the dataset).

Doughnut charts are the same as pies but have an area cutout of
the center of the circular chart.

PolarArea charts are similar to pie charts, but the radius of a
segment represents its value (in this case, each segment has the

same angle).

Scatter

Bubble

Scatter charts use X and Y values to plot points on the chart.

Bubble charts use X and Y values to plot the position of a data
point, with an additional R value used as the radius or size of the
bubble, giving a visual indication of the magnitude of the data point.

All chart types can handle multiple datasets, although in practice some chart types are
more suited to certain types of data than others. For bar charts, multiple datasets are
stacked next to each other, while in most other chart types, multiple datasets are

overlaid each other.

There is a new example called JS Charts in the Samples section of the Hub in the
Studio Browser demonstrating all the types of chart available (note there is a New
option to display the new examples only). The following image is a Labelled Bar chart

in the example app:

 JavaScript Components

 71

The following is a Labelled Line chart in the example; note the data is displayed in a

popup when you pass the pointer over a data point (e.g. Dataset 2 for April is shown).

The following is a Labelled XYR Bubble chart; in this case, each data point is plotted
using X,Y coordinates and a third value is shown as the Radius (R value) of the bubble
indicating the magnitude of the value.

What’s New in Omnis Studio 11

72

The following shows two Pie types, a Doughnut where values are represented as
percentages of the total pie (the same as a pie chart but has an area cutout of the
center), and Polar Area where the radius (area) of a segment indicates its value.

Chart Data

As with other chart types in Omnis, the JS Chart control gets its data from an Omnis list
variable, and the structure or contents of the list needs to match the type of chart you
wish to draw. The chart list should contain 2 columns, with each row in the list
representing a dataset: Column 1 is the data (a list of values for each dataset), and
Column 2 is a list of display options relating to that dataset, such as bar or segment
colors.

Chart List Variable

List line Data (Col 1) Options (Col 2)

Dataset line 1 List of Values for dataset 1 Options for dataset 1

Dataset line 2 List of Values for dataset 2 Options for dataset 2

Dataset line 3 List of Values for dataset 3 Options for dataset 3

Etc … …

The Data list for the chart (in column 1) will vary depending on the chart type as
follows:

❑ The data list variable for Labelled and Area chart types (e.g. Bar and Pie) requires
2 columns, usually with a Label and a Value:
Column 1, X axis: Label type data, such as months, exam grades, etc.
Column 2, Y axis: Value, such as average temperature, number of students, etc.

❑ The data list variable for Scatter (XY) and Bubble (XYR) charts requires 2 or 3
columns, respectively, and are in effect points (coordinates) on the chart:
Column 1, X axis value.
Column 2, Y axis value.

Column 3, R value: Bubbles have a Radius, which is given in pixel size.

In the JS Chart example library in the Hub, the chart list for the Labelled Bar chart has
the following structure; the main chart list has 2 columns, iData and iOptions. The Data
list in column 1 has 2 columns, Label and Value (Y), as shown:

 JavaScript Components

 73

The Options list in Column 2 of the main chart list must be a list of 2 columns
containing key-value pairs of Options to apply to that dataset, which are generally

display options (colors/rounding on bars/etc).

Looking at the Labelled chart in the JS Chart example library, the Options list in column
2 of the main chart list has the following structure: Key and Value, with entries for label,
backgroundColor, and borderColor:

You can examine the code in the example library to see how the chart data is
constructed, for example, look at the $getDatasetOptions class method in jsCharts.

The Data and Options data in the example library produces the following chart:

What’s New in Omnis Studio 11

74

Any options described in the Chart.js documentation should work, however the

following are the most useful:

Key Value Description

backgroundColor Valid CSS colors (e.g.
#FF0000,
rgba(255,0,0,0.5), or
theme colors can be used,
e.g.
kJSThemeColorPrimary

Multiple values can be
specified, separated by
commas.

Sets the background color of the
chart elements in that dataset, i.e.
the bars, pie segments etc. If
multiple values are supplied these
will be applied in order to each
element, i.e. 1st bar uses 1st color,
2nd bar uses 2nd color, etc. If there
are not enough colors for the data
points it will loop back through the
given colors.

borderColor As above Sets the border color of the chart
elements, same as the above.

borderWidth A number in pixels Border or line width of the chart
elements

borderRadius A number in pixels Radius of all corners of the
rectangle elements except corners

touching the axis or base of chart.

pointStyle One of: circle, cross,
crossRot, dash, line, rect,
rectRounded, rectRot,
star, triangle

Sets the style of the point in Scatter

and Line charts

More options can be found in the Chart.js documentation at:
https://www.chartjs.org/docs/latest/charts/. You can look in the Chart Types section to
find out which options apply to each chart type, e.g. under ‘Styling’

https://www.chartjs.org/docs/latest/axes/styling.html.

Any options that can accept arrays of values should be supplied as comma separated
values, for example, to have three different background colors you could assign the
following line as a value for the backgroundColor key:
'rgb(255,0,0),rgb(0,255,0),rgb(0,0,255)'

Properties

In addition to controlling the contents of a chart by setting up the list data, you can set
various properties for the different chart types. The JS Chart component has the
following properties (some properties may not apply to all chart types).

Property Description

$dataname The name of the list instance variable, as described above

$charttype Sets the basic chart type, a constant: kJSChartTypeLine,
kJSChartTypeBar, kJSChartTypeRadar, kJSChartTypePie,
kJSChartTypeDoughnut, kJSChartTypePolarArea,

kJSChartTypeScatter, kJSChartTypeBubble

$titletext

$subtitletext

The title and subtitle text for the chart

$xtitletext

$ytitletext

The X and Y title text for Scatter and Bubble (XY) charts

$titleposition The position of the title, subtitle, and legend, a constant:
kJSChartElementPositionTop,

https://www.chartjs.org/docs/latest/charts/
https://www.chartjs.org/docs/latest/axes/styling.html

 JavaScript Components

 75

$subtitleposition

$legendposition

kJSChartElementPositionRight,
kJSChartElementPositionBottom,
kJSChartElementPositionLeft

$legendalign Aligns the legend element relative to its position, a constant:
kJSChartElementAlignStart, kJSChartElementAlignCenter,

kJSChartElementAlignEnd

$showlegend If true, shows the legend

$showdatatooltips If true, shows tooltips when the pointer is hovered over chart
elements

$swapaxes If true, swaps the X and Y axes; only applies to Bar charts

$disableanimations If true, prevents the chart from animating

$legendclickhidesdata If true, the data is hidden from the chart when the user clicks
an item in the legend; clicking again will show the data

Events

The JS Chart control sends the evClick and evLegendClick events with the following
event parameters:

Event Description and Parameter

evClick Triggered when the user clicks on a data element such as a bar in
a bar chart. There are 2 parameters:
pDatasetIndex - The dataset line number in the main list
pDataIndex - The data index within the dataset. So for those
supplied in rows, it will be the column number, and those supplied

in lists, it will be the row number

evLegendClick Triggered when the user clicks on a legend item. There are 3
parameters:
pDataIndex - The data index of the data in the dataset (only for
Pie, Doughnut and Polar Area)
pDatasetIndex - The dataset line number in the main list (For all
except Pie, Doughnut and Polar Area)
pHidden - True, if the related data is now hidden

If $legendclickhidesdata is true (the default), when you click on an item in the legend it
is toggled on/off and the dataset in the chart is hidden or shown; its state is reported in
the pHidden parameter for evLegendClick.

Mixing Chart Types

In some cases you can mix chart types. A good use case of this is to show a line of
best fit on a scatter chart. You can do this by setting the 'type' on the dataset which you
wish to be different to your charts $charttype property. Here is an example of how you
could achieve this:
Do iData.$define(lTemp,lSales)

Do iOptions.$define(Key,Value)

Do iChartList.$define(iData,iOptions)

Do iData.$add(14.2,215)

Do iData.$add(16.4,325)

Do iData.$add(11.9,185)

Do iData.$add(15.2,332)

Do iData.$add(18.5,406)

Do iData.$add(22.1,522)

Do iData.$add(19.4,412)

What’s New in Omnis Studio 11

76

Do iData.$add(25.1,614)

Do iData.$add(23.4,544)

Do iData.$add(18.1,421)

Do iData.$add(22.6,445)

Do iData.$add(17.2,408)

Do iOptions.$add("backgroundColor",kJSThemeColorPrimary)

Do iChartList.$add(iData,iOptions)

Do iData.$clear()

Do iOptions.$clear()

Do iData.$add(11,150)

Do iData.$add(26,650)

Do iOptions.$add("type","line")

Do iOptions.$add("borderColor",kJSThemeColorSecondary)

Do iChartList.$add(iData,iOptions)

Note how the second dataset, used to portray a line of best fit, is calculated manually,

i.e. there is no function to calculate an actual line of best fit.

 JavaScript Components

 77

JS Gauge
The Gauge is a new JS component that provides a way to display numerical values on
a circular or linear scale, with options to customize the appearance and behavior. The
Gauge control type can be Circular, Horizontal or Vertical.

There is a new example app called JS Gauge in the Samples section of the Hub in the
Studio Browser (note there is a New option to display the new examples only)
demonstrating the types of gauge available, including the Circular and Vertical gauge
types, as shown:

A gauge consists of:

❑ A circular or linear scale with tick marks and labels that can be customized

❑ A needle or marker style pointer to indicate the current value

❑ A range or multiple ranges with customizable colors, widths and start/end points;

the range is a colored band inside or outside (above or below) of the scale

❑ A display value showing the current value in a formattable string, so you can
display units, for example

The current value shown on the gauge is stored in the $dataname, which is shown if
$alwaysshowdisplayvalue is true, otherwise if false, the value is only shown when the
end user hovers their pointer over the needle or marker, or the needle or marker is
dragged to change its value. You can format the value by setting $displayvalue using a
‘sprintf’ formatted string. If the $clicktosetvalue property is true, the end user can
change the value by clicking on the gauge, otherwise if false, the value can only be
changed by dragging the pointer.

You can set the Scale and Range for the gauge control, including the start and end
values (e.g. 0 to 100), the position of the start and end values (i.e. the angle in a
circular gauge), as well as the colors and settings for the tick marks on the scale using
various properties; see below for more details about the customizing the Scale and
Range.

What’s New in Omnis Studio 11

78

Properties

The following properties are available for the Gauge control (the range properties are

shown after this table).

Property Description

$dataname The name of the instance variable that holds the current
value. Must be of Number or Integer type

$gaugetype The type of gauge (Circular, Horizontal or Vertical),
a kJSGaugeType… constant:
kJSGaugeTypeCircular
kJSGaugeTypeHorizontal
kJSGaugeTypeVertical

$scalevaluestart The start value of the scale

$scalevalueend The end value of the scale

$scaleanglestart The angle of the start of the scale in degrees where zero is
the top. Only applies when $gaugetype is
kJSGaugeTypeCircular

$scaleangleend The angle of the end of the scale in degrees where zero is
the top. Only applies when $gaugetype is
kJSGaugeTypeCircular

$tickintervalmajor The interval between major tick lines. Zero means the
interval is calculated automatically

$tickintervalminor The interval between minor tick lines. Zero means the
interval is half of the major tick interval

$ticklineheight The height of major tick lines in pixels, which must be set
to make the tick lines visible. Minor tick lines are half of this
height

$minstep The minimum step size on the scale, e.g. set to 5 to allow
value to step in multiples of 5. If this is zero or greater than
or equal to the scale's range, the major tick interval is used
as the minimum step

$clicktosetvalue If true, the user can change the value by clicking on the
gauge. If false, the value can only be changed by dragging
the pointer

$reversedirection If true, the positive direction is reversed

$displayvalue A formatted string used to display the current value. sprintf
syntax with a single % format tag for the number, e.g. %f
km/h; use f and d for a floating and integer number
respectively, or F and D in upper case to insert a thousand

separator

$alwaysshowdisplayvalue If true, the current value is always displayed. If false, it is

only shown when the pointer is hovered or dragged

$circularpointertype The style of pointer used when $gaugetype is
kJSGaugeTypeCircular, a kJSGaugePointerType…
constant: kJSGaugePointerTypeDefault
kJSGaugePointerTypeNeedle
kJSGaugePointerTypeMarker

 JavaScript Components

 79

Property Description

$opposeaxis If true, the position of the axis is opposed, e.g. scale on
circular gauge is shown on the outside

$opposeranges If true, the position of the ranges is opposed

$padding The padding from the scale line to the edge in pixels.
1 to 4 pixel values separated by -. Possible values: [all
sides], [vertical]-[horizontal], [top]-[horizontal]-[bottom],
[top]-[right]-[bottom]-[left]

$markeroffset The offset in pixels of the marker-type pointer from its
default position

$rangeoffset The offset in pixels of the range from the scale line

$animatechanges If true, the pointer and display value will animate when the
value changes

$hidescaleline If true, the scale line is hidden

$hideticklines If true, the tick lines are hidden

$hidescalelabels If true, the scale labels are hidden

$scalelabelfontsize The font size for the scale labels

$blendrangecolors If true, the range colors are blended together, to create a
color gradient

$pointercolor The color of the pointer

$scalecolor The color of the scale and tick lines

$scalelabelcolor The color of the scale labels

$hidescaleline If true, the scale line is hidden

$hidescalelabels If true, the scale labels are hidden

Events

The evValueChange event is triggered when the value is changed by the user clicking
on the gauge area or dragging the pointer (needle or marker). The pNewValue
parameter holds the new value.

Customizing the Scale and Range

The properties under the Range tab in the Property Manager control the range values
and appearance.

Property Description

$currentrange The current range; set this to access properties for each
range section

$rangecount The number of range sections

$rangecolor The color of the current range

$rangevalueend The end value of the current range

$rangevaluestart The start value of the current range

$rangewidthend The width of the end of the current range

$rangewidthstart The width of the start of the current range

What’s New in Omnis Studio 11

80

To show how you can customize the scale and range for a gauge control, consider the

following example that displays temperature values in the range 0 to 100.

The following properties have been set:

❑ On the General tab in the Property Manger, $scalevaluestart and $scalevalueend

are set to 1 and 100, respectively.

❑ On the Appearance tab, $gaugetype is set to kJSGaugeTypeHorizontal,
$displayvalue is set to %dC, $padding is set to 100-10 (100 at the top to display
the customized range, 10 for each side), $rangeoffset is -2 (which provides a gap

between the range and scale baseline), and $tickintervalmajor is set to 20.

You can customize the range on the Range tab in the Property Manager. The range is
not shown by default, so to show a simple range you can set $rangecount to 1 and
$rangevalueend to the same value as $scalevalueend, e.g. 100. However, to specify
different colors and widths on the range, like the above example, you need to set
$rangecount to 4 and specify each range in turn by setting $currentrange (a design
property) from 1 to 4. The following property values are set for each range section:

$currentrange 1 2 3 4

$rangecolor (r,g,b) Green
(0,202,53)

Yellow
(206,202,55)

Orange
(213,131,35)

Red
(209,1,8)

$rangevaluestart 0 25 50 75

$rangevalueend 25 50 75 100

$rangewidthstart 10 20 30 40

$rangewidthend 20 30 40 50

In the example, the distinct colors for the ranges are blended automatically by setting

$blendrangecolors to kTrue, providing a smooth gradation of colors.

You can experiment with the display properties to achieve the gauge appearance you
want, including flipping the scale or range using the $opposeaxis and $opposeranges
properties. For example, the circular gauge, shown below left, has $opposeaxis set to
kTrue to display the scale and labels on the outside. For the gauge shown on the right,
its scale and tick lines are hidden, the pointer type is set to marker (a small arrow),
$markeroffset is set to the same value as the range width, while $scalevaluestart and
$scalevalueend values are 270 and 90, respectively.

 JavaScript Components

 81

JS Camera
The Camera control is a new JS component that allows the end user to capture images
or scan QR codes and barcodes. You can set the capture mode by setting the
$cameraaction property to one of the kJSCameraAction… constants. When returning
an image the $dataname property must be set to a Character or Binary type instance
variable to receive the image (not required for barcode scanning); for Character

variables, the captured image is stored as base64 encoded data.

There is a new example app called JS Camera under the Samples section of the Hub
in the Studio Browser (note there is a New option to display the new examples only).

Camera Actions

The $cameraaction property allows you to set the action or mode on the current
device for the camera to capture an image, QR code or barcode. $cameraaction is a
runtime only property that should be assigned a row with 1 to 3 columns as row(action
[,mode, deviceId]), where action is a kJSCameraAction… constant, mode is a
kJSCameraFacingMode… constant, and deviceId is a character string of the device ID.

Constant Description

kJSCameraActionGetDevices Gets a list of camera devices attached to the
user’s device, sent to evGetDevices.
Requires only action column, other values

will be ignored

kJSCameraActionStartCamera Starts the camera and shows viewfinder to
prepare to capture an image; note this is not
required for scanning codes. Requires at
least 2 columns, with column 2 (mode) set to
one of the following:
kJSCameraFacingModeDeviceId uses a
specific camera on the end user’s device,
specified by deviceId required in column 3
kJSCameraFacingModeUser selects the
user facing camera on the device
kJSCameraFacingModeEnvironment
selects the environment facing camera on
the device

kJSCameraActionCaptureImage Captures a still image from the camera after
kJSCameraActionStartCamera. It is
recommended to assign this action in
response to a client executed method for
best performance and user experience.
Resulting image data will be assigned to the
variable in $dataname. Requires only action
column, other values will be ignored

kJSCameraActionStartBarcodeScanner Starts the camera in QR code/barcode
scanner mode. evBarcodeScanned will be
fired upon detection of a code. Requires at
least 2 columns, with column 2 (mode) set to

kJSCameraFacingModeUser

kJSCameraActionStop Stops the current camera feed (both in image
capture or barcode scanning mode).
Requires only action column, other values
will be ignored

What’s New in Omnis Studio 11

82

Camera Permission and Testing

Use of the camera requires the end user to accept a prompt which is popped up
automatically when trying to access the camera for the first time. This cannot be
bypassed, so if the end user denies access to the device Camera, the actions will not
work.

In addition, camera access using a mobile device is only possible when serving over
HTTPS. Therefore, you will not be able to access the camera on a mobile device
connected to the same network, as Omnis only serves over HTTP for testing. However,
you can test a remote form that uses the Camera control locally on your development
machine. A utility to serve your localhost server over the internet using HTTPS can be

used as a workaround, such as ngrok.

Image Aspect Ratio

If specified, the $aspectratio property forces the Camera control to maintain the
aspect ratio of the image. You need to specify a number representing the aspect ratio,
such as:

$aspectratio
value

Description

0 Uses device default

1 A square ratio, 1:1

1.333334 Standard camera ratio, 4:3

1.777778 Wide ratio, 16:9

Providing a non-standard aspect ratio may lead to unexpected results, such as the
camera feed not showing at all. Note that the orientation of the camera is set by the
device, therefore a desktop/laptop camera will tend to display in landscape orientation,
while a mobile camera will show in portrait orientation.

Capture Size

The $capturesize property should be an integer and forces the size of the captured
image; if empty, the image is captured at the size specified on the device camera. The
value specifies the size of the longest edge of the image using the $aspectratio to set
the other edge. For example, if a standard ratio of 4:3 is used, and the users device
captures at 1024 x 768, a $capturesize value of 640 will produce an image of 640 x
480.

Image Type & Quality

The $imagetype property should be set to a constant to indicate the type of image to be
captured. Due to limited support across browsers, only PNG or JPEG
(kJSCameraImageTypePNG or kJSCameraImageTypeJPEG) are supported.

If $imagetype is set to JPEG, you can specify a quality level in $imagequality to reduce

the data size, on a scale of 0-100 with 100 being the maximum quality.

Events

The Camera control reports the following events:

Event Description

evGetDevices Fired in response to kJSCameraActionGetDevices being
assigned to $cameraaction. Returns pCameraList, a list
containing 2 columns, DeviceId and DeviceDescription. The
value in DeviceId can be used for specifying a specific camera
to use when starting the camera or barcode scanner

evImageCaptured Fired when an image has been captured and the instance
variable in $dataname has been updated. Returns

 JavaScript Components

 83

pImageType, the image data type as an integer

evBarccodeScanned Fired in response to scanning a valid code, with pValue
containing character data of the read code, and pCodeFormat
containing a character representation of the code format, e.g.
QR_CODE or CODE_128

Due to the web browsers required only to support PNG files we include an integer
parameter, pImageType, to state the image data type, in case the selected type was
not supported by the browser. In the case that a browser does not support the selected
type, it will always use PNG. Most modern browsers support JPEG, which is why we
have included JPEG support, but it is best to check for your own use case before using
JPEG over PNG.

JS Floating Action Button
The Floating Action Button (FAB) is a new JS component that features a round
button that pops up a list of actions when tapped or hovered over, with the first option
being a default action. For example, in a form displaying a list of contacts, you could
use a FAB to provide options to add a contact (the default action), with further options

to edit, call, or email a contact.

The FAB is displayed as a circular button containing a ‘+’ icon prompting the end user
to tap it or hover over it; the default icon can be replaced by setting $iconid of the
button control. In its expanded state, the actions in the list appear to “float” on top of the
other content in the form.

Defining the data list

To create an expanded list of actions, the $dataname of the FAB can be assigned a list
instance variable with the following columns:

Column Type Description

Icon Character The URL of the image, generated by calling
iconurl(iconid); iconid is the name of an SVG image in
an icon set, such as an icon in the material icon set

Action ID Integer This should be a unique integer. This will be the value of
pActionId in the evClick event, e.g. IDs could be 1, 2, 3
etc

Label Character The label text (this is used as the accessible name of

the action if labels are hidden)

There is a new example app called JS Floating Action Button in the Samples section
of the Hub in the Studio Browser which displays a FAB in the bottom right corner of a
remote form (note there is a New option to display the new examples only). Each line
represents an action with the first line, in this case Create, representing the main button
in its expanded state.

What’s New in Omnis Studio 11

84

In the FAB example, a list instance variable iList is assigned to $dataname of the
control, which has 3 columns: Icon, ActionID, and Label. The following code is added to
$construct of the form, which creates the options shown in the expanded button:

Do iList.$define(lIcon,lActionId,lLabel)

Do iList.$add(iconurl("create"),1,"Create")

Do iList.$add(iconurl("save"),2,"Save")

Do iList.$add(iconurl("content_copy"),3,"Copy")

Do iList.$add(iconurl("print"),4,"Print")

Do iList.$add(iconurl("download"),5,"Download")

Properties

The Floating Action Button has the following properties.

Property Description

$dataname The name of the list instance variable that defines the

expanded actions

$iconid The icon on the main button in its non-expanded state
which replaces the default plus icon; no icon is shown when
$iconid is empty

$text The optional text on the main button. A FAB with text will
use the full control area. Without text, it will be circular

$textcolor The color of text and SVG icon on the main button in its
default (non-expanded) state

$textbeforeicon If true, and the control has both text and an icon, the text is
drawn before the icon

$opendirection The direction in which the expanded actions open, a
constant: kFabDirectionUp (the default) or

kFabDirectionDown

$expandedappearance The appearance of the FAB in its expanded state, a
constant:
kFabAppearanceIconOnly icons only, no labels
kFabAppearanceLabels (the default) displays the labels

 JavaScript Components

 85

for all actions in the list
kFabAppearanceHoveredLabels each label is displayed
when the action is hovered or focused with the keyboard

$labelside The side on which action labels are displayed, a constant:
kFabLabelSideLeft (the default) or kFabLabelSideRight

$expandedlabelbackground If true, expanded action labels have a background (default
is false)

$expandedmainbackcolor The background color of the main button when the FAB is
expanded. kColorDefault means use $backcolor

$expandedmaintextcolor The color of text and SVG icon on the main button when
the FAB is expanded

$actionbackcolor The background color of expanded actions

$actioniconcolor The color of SVG icons on expanded actions

$modalbackcolor The color and alpha of the modal background when the
FAB is expanded; the color picker includes a slider to set
the alpha value (0-255), or you can use rgba() at runtime*

$labelbackcolor The label background color used if

$expandedlabelbackground is kTrue

$labeltextcolor The text color of action labels

*In order to allow $modalbackcolor to be set on the client, the rgba() function can now
be executed on the client, which allows you to set the color and alpha value of the

property.

The following example FAB has the following properties set (and uses the ice JS
theme):
$expandedappearance = kFabAppearanceHoveredLabels
$expandedlabelbackground = kTrue
$labelside = kFabLabelSideRight
$opendirection = kFabDirectionDown

What’s New in Omnis Studio 11

86

Events

The Floating Action Button reports the evClick event, sent when the main button or an
expanded action icon is clicked. The pActionId parameter contains the value of the
clicked action as defined in the second column of the data list. If the main button was
clicked in its default state, the value of pActionId is null.

JS Tile Grid
The Tile Grid is a new JS component that displays a scrollable grid of “tiles” which can
be configured to show images, text and buttons. The layout of the grid and the visual
attributes for the tiles are specified in a list variable which is assigned to $dataname of
the control; each line in the list provides the definition for a single tile in the grid. At
runtime, the tiles are loaded and unloaded dynamically as the grid is scrolled, to
improve the UX and performance.

There is a new example app called JS Tile Grid in the Samples section of the Hub in
the Studio Browser (note there is a New option to display the new examples only),
which displays a number of tiles using images from the webshop example app, as
follows:

 JavaScript Components

 87

Properties

The Tile grid has the following properties.

Property Description

$dataname List instance variable defining the tiles, see below

$centertiles If true, and $tilefixedwidth is such that tiles do not use the
full width, tiles will be centered.

$tilefixedwidth The fixed width of tiles in pixels (default is 0). Takes priority
over $tileminwidth and $columncount.

$columncount The number of grid columns (default is 2); set to 0 for
column count to be set automatically. Only applied when
$tileminwidth and $tilefixedwidth are zero

$tileminwidth The minimum width of tiles in pixels (default is 0); applied
when $tilefixedwidth is zero

$tileheight The height of tiles in pixels (default is 140)

$tilegap The gap between tiles in pixels (default is 5)

$tileborderradius The border radius used for tiles (default is 4)

$titlebarposition The position of the title bar on the tile, a constant:

kJSTileGridTitleBarPositionBottom (the default)
kJSTileGridTitleBarPositionTop
kJSTileGridTitleBarPositionNone

$titlebarlayout The layout of the title bar and background image, a
constant:

kJSTileGridTitleCoversImage: Title bar covers the image
(the default)
kJSTileGridTitleBesideImage: Title bar is beside the image
kJSTileGridTitleBesideImageAndBackground: Title bar is
beside the image and background

$imagescaling The scaling type for tile images, a constant:

kJSTileGridScalingCover: Size image to cover the available
space, maintaining its aspect ratio (the default)
kJSTileGridScalingContain: Size image to fit inside the
available space, maintaining its aspect ratio
kJSTileGridScalingFill: Stretch image to fill the available
space

kJSTileGridScalingNone: Do not resize image

$titlebarheight The height of the title bar in pixels (default is 60)

$titlebarcolor The color of the title bar

$buttoncolor The color of tile action buttons

$tilecolor The default tile background color; can be overridden for
individual tiles in the data list using the BackgroundColor
parameter

$tilehotcolor The default hovered tile background color; can be
overridden for individual tiles in the data list using the
HotBackgroundColor parameter

$text1align The text alignment for the primary text field in the tiles

What’s New in Omnis Studio 11

88

Property Description

$text1color The color used for the primary text field in the tiles

$text1font The font used for the primary text field in the tiles

$text1size The point size used for the primary text field in the tiles

$text1style The font style used for the primary text field in the tiles

$text2align The text alignment for the second text field in the tiles

$text2color The color used for the second text field in the tiles

$text2font The font used for the second text field in the tiles

$text2size The point size used for the second text field in the tiles

$text2style The font style used for the second text field in the tiles

Configuring the grid layout

The tiles are arranged in the Tile Grid control from left to right across the grid, wrapping
onto successive lines according to the total number of lines in the source list and
thereby the number of tiles to be displayed. You can set $columncount to specify a
fixed number of columns across the grid, and in this case, the width of the tiles is
adjusted automatically to fit the width of the grid control. Alternatively, you can set
$columncount to zero and use $tileminwidth to specify the minimum width of the tiles
(columns), so that the number of columns is set automatically depending on the overall
width of the control, i.e. the number of columns is adjusted automatically as the control
is resized in a responsive form. If both properties are used, $tileminwidth takes priority.

Each tile in the grid can have an action button, which can be clicked by the end user,
as well as primary text (e.g. a title) and secondary text (e.g. a description), which are
placed inside a title bar positioned at the bottom or top of the tile. The tile background
also responds to end user clicks.

When the whole tile grid has the focus after being tabbed to it, pressing the Enter key
will put the focus on an element within the grid. From there, clickable elements can be
tabbed through and activated with the Enter or Space keys. Pressing Escape will return
the focus to the whole grid.

Setting the current line in the list will set the current tile and scroll the grid to that tile.
The current tile is assigned a CSS class “ctrl-tg-current” to which you can apply custom
styling in user.css, if required.

Setting the tile width

The width of the tiles in the grid can be specified by setting the $tilefixedwidth
property; if specified, this takes priority over $tileminwidth and $columncount. In this
case, the number of tiles (columns) that fit into the width of the control is calculated
automatically from the value of $tilefixedwidth.

Alternatively, when $tilefixedwidth is set to zero, you can use $tileminwidth to set a
minimum width for tiles, or when $tileminwidth and $tilefixedwidth are zero, you can
use $columncount to specify the number of columns across the grid and in this case
each tile will stretch to fit the available column width.

If $tilefixedwidth, $tileminwidth and $columncount are all zero, all tiles will fit into a

single row.

The height of the tiles is set in $tileheight (the default is 140 pixels), while the gap
between tiles is set in $tilegap (the default is 5 pixels).

Defining the data list

The list instance variable assigned to $dataname contains tile specific information, with
each row in the list representing a single tile. The order of columns does not matter,
and all columns are optional, but they must have the following names:

 JavaScript Components

 89

❑ ImagePath: The URL of the background image for the tile. If not specified or null,

the tile’s background color $tilecolor will be visible.

❑ Text1: The primary text or title to display on the title bar. Also used as the “aria-
label” accessibility attribute, and the “alt” attribute of the image.

❑ Text2: The secondary text or description to display on the title bar.

❑ ButtonPath: The URL of the image for the action button. If not specified or null, no
button will be added. iconurl() can be used to reference an icon in an icon set, e.g.
iconurl("info") to show an info icon

❑ ButtonDescription: A description of the action button. If specified, this is the tooltip

text, and “aria-label” accessibility attribute for the button.

❑ BackgroundColor: The background color of the tile.

❑ HotBackgroundColor: The background color of the tile when it is hovered.

For example, the following code from the example app (in the Hub) defines the list and

adds a number of tiles:
Do iData.$define(

ImagePath, Text1, Text2, ButtonPath, ButtonDescription, BackgroundColor)

Do iData.$add(

"images/webshop/BuffaloWings.jpg", "Chicken", "Buffalo wings",

iconurl("info"), "Info", kJSThemeColorPrimary)

Do iData.$add(

"images/webshop/Caesar_Salad.jpg", "Salad", "Caesar salad", iconurl("info"),

"Info", kJSThemeColorPrimary)

Do iData.$add(

"images/webshop/Cheesecake.jpg", "Cake", "Cheesecake", iconurl("info"),

"Info", kJSThemeColorPrimary)

etc

In addition to using bitmap images (JPG or PNG), you can add an SVG image from an
icon set to the background of a tile. In this case, you can use the iconurl() function to
reference the SVG image.

Events

The tile grid has two events: evButtonClick is sent when the action button for a tile is
clicked, while evTileClick is sent when a tile is clicked anywhere except on the action
button. The tile displays a ripple effect when it is clicked. For both events, the
pClickedTile event parameter returns the index of the tile that was clicked, starting at 1
for the first tile in the grid.

JS Scroll Box
The Scroll Box is a new JS component that allows you to group together other
controls on your remote form with the option to display a scroll bar if the content does
not fit the visible area (it is almost identical to the existing window class Scroll box).

What’s New in Omnis Studio 11

90

To enable the scrolling behavior, scroll boxes have the $autoscroll property. If true, and
the client is displayed in a desktop browser, the client displays scroll bars permanently
when the content does not fit the box area (see above left). On mobile devices, the
scroll bar will be shown automatically when the content needs to scroll or as the control
is dragged by the end user (see right).

Scroll boxes are container fields so you can access the fields inside the box in your
code using the container notation. A Scroll box can contain methods including a
$event() method to detect events, but not evClick.

A Scroll box can act as a side panel by enabling the $sidepanel property and setting
$sidepanelmode (see the section about Side Panels), or it can contain other controls
configured as side panels.

Scroll boxes have the $borderradius property, plus you can set $effect to add a border
style, such as kJSborderPlain.

Subform Sets

You can use a Scroll box as the parent of a subform set, by specifying the scroll box
name as the parent parameter when creating the subform set. In addition, you can add
a new object to a scroll box using $cinst.$objs.$add with the scroll box name as the
parent of the new control.

Group Box

You can use the $makegroupbox() method to convert a Scroll box into a Group box,
which must be executed on the client, and can be called from $init for the form.

❑ Scrollbox.$makegroupbox(cLabel[,cFont,cFontSize,cTextColor])
turns a Scroll box into a Group box with the specified cLabel.

You can specify the font, size, and color in the cFont, cFontSize and cTextColor
parameters (you can use CSS syntax). (Note the same method can currently be used
to turn a Paged pane into a Group box.)

Alternatively, you can use the new properties $label, $labelfontsize, $labeltextcolor &
$font to turn a scroll box into a group box at runtime, rather than using the
$makegroupbox() client-executed method. (ST/JS/2999)

Setting the $label property for a scrollbox adds the label inside the border at the top of
the control, effectively moving the top edge of the border down so that the label

appears within the bounds of the control.

As with other controls with the $label property, you can double-click on the label text in
design mode to edit the text.

JS Color Picker
The Color Picker is a new JS component that allows the end user to select a color
either by sliding a color slider and clicking on the color palette, or by entering a color
number in RGB, HSL, or HEX format; an alpha slider can be shown to allow the end
user to select the alpha setting (transparency) for the color.

There is a new example app called JS Color Picker in the Samples section of the
Hub in the Studio Browser showing the Color Picker control, including the different
color number formats and the predefined color swatches (note there is a New option to
display the new examples only).

You would typically open the Color Picker in a subform or palette window, to allow the
end user to select a color, then close the subform returning the selected color value to
the main form to assign to an object or property. Otherwise, you could add a color
picker to a general settings panel in your app, such as a side panel. The following
screenshot shows the color picker with the color preview swatch, alpha slider and the
format entry fields for specifying an RGBA color.

 JavaScript Components

 91

The color selected in the color picker is returned to the instance variable specified in
$dataname of the control, which must be a 64-bit integer if you want to include the
alpha channel, otherwise you can use a 32-bit integer if the alpha channel is not
required.

Properties

The Color Picker has the following properties to set up the appearance and behavior,
such as showing a color swatch preview, showing the alpha slider, or controlling which
color number formats are shown (RGB, HSL, or HEX).

Property Description

$colorformats The color formats shown in the list of color formats; if empty, the
color format list is hidden so the end user cannot enter a color
number. One or more of the constants:
kJSColorPickerFormatRGB, kJSColorPickerFormatHex,
kJSColorPickerFormatHSL (selected via a check list in the
Property Manager). If multiple formats are selected, a button is
shown allowing the end user to cycle through the color formats;
see the example app in the Hub

$currentcolorformat The initial color format displayed to the user; ignored if
$colorformats is empty or does not include the specified format

$copybutton If kTrue, a copy button is shown allowing the end user to copy
the currently displayed color to the clipboard

$previewcolor If kTrue, a swatch preview of the selected color is shown; if
$copybutton is also kTrue, the end user can click on the color

swatch to copy the color to the clipboard

$swatchlist A list instance variable containing a single column list of colors
which are added as color swatches to the bottom of the picker; if
blank no swatches are added, see below

$usealpha If kTrue (and the variable in $dataname is capable of storing a
64-bit integer), the control displays the alpha slider and value, in
the range 0 (transparent) to 1 (opaque)

Events

The evColorPicked event is triggered when the user has selected a color, that is,
when they let go of the pointer after selecting a color, or when they tab out of a color
number input field. pColor contains a 64-bit integer representing the selected color.

What’s New in Omnis Studio 11

92

The evColorChanged event is triggered each time the color is changed; pColor
contains a 64-bit integer representing the selected color. If you wish to trap this event, it
is recommended you use only a client-executed event handler since this will fire a lot of
events as the user drags on a color slider.

The example app in the Hub uses the evColorPicked and evColorChanged events and
the new $clientevent method. The $event method for the color picker control handles
the evColorPicked event as follows:
On evColorPicked

 Calculate iColorPicked as pColor

While the $clientevent method for the control (which is set to execute on the client)
handles the evColorChanged event, which changes rapidly as you click and drag

inside the color palette of the control.
On evColorChange

 Calculate iColorChange as pColor

Predefined Color Swatches

You can add a number of predefined color swatches to the color picker to allow the end
user to select a preset color; the color swatches could be colors defined in your
corporate branding or colors that are in constant use in your app. The colors are
specified in a list instance variable containing a single column list of colors which is
assigned to the $swatchlist property; if empty, no swatches are added to the picker. For
example, you could define the list in the $construct method of the form and assign the
iswatches list to $swatchlist.
Define iswatches (List), lcolor (64-bit integer)

Do iswatches.$define(lcolor)

Do iswatches.$add(rgb(0,142,214))

Do iswatches.$add(rgb(15,108,177))

Do iswatches.$add(rgb(255,155,0))

Do iswatches.$add(rgb(0,54,200))

Do iswatches.$add(rgb(225,216,29))

Do iswatches.$add(rgb(205,00,105))

The following screenshot shows the color picker with a set of predefined color
swatches displayed at the bottom, defined in the iswatches list and assigned to
$swatchlist.

 JavaScript Components

 93

JS Side Panels
Side Panels were introduced in Studio 10.2 for Window classes, but they are now

available for JavaScript Remote forms (see differences at the end of this section).

A Side Panel is a vertical panel that can be displayed down the left or right side of a
remote form (like a sidebar), containing clickable options, such as a menu of options or
other content. Side panels are a common UI element in dashboard style designs and
allow you to create a more interactive UI for your web & mobile apps. Note that there is
not a separate side panel component, instead many existing JavaScript controls can be
marked as a side panel by setting the $sidepanel property of the control to kTrue.

A Side Panel will pop out on the left or right side of a form automatically, when the end
user hovers their pointer over the left or right edge of the form. Alternatively, a side
panel can be opened and closed manually using a button. When a side panel is
opened it is animated, so when activated, it will slide in or out.

In practice, it would normally make sense to use a container object, such as a Paged
pane, Subform, or Scroll Box as a side panel since you can then add other controls
to the container which the end user can interact with. Alternatively, a Tree list could be
switched to a side panel which would function as a Navigation bar for your web app.

There is a new example app called JS Side Panels under the Samples option in the
Hub in the Studio Browser (note there is a New option to display the new examples
only), that demonstrates the basic behavior of side panels.

Panel Mode Property

The $sidepanelmode property determines the panel mode, that is, how or when the

panel is popped out; the mode is set using a kSidePanelMode… constant, as follows:

❑ kSidePanelModeNone
the default mode meaning the side panel will not pop out automatically when the
end user hovers over the edge of the form, but the $showpanel method can be

used to show the side panel (e.g. executed behind a button)

❑ kSidePanelModePush
the side panel pops out automatically when the end user hovers over the edge of
the form and “pushes” or moves the other controls and content on the remote form

either to the right or left

❑ kSidePanelModeCover
the side panel pops out automatically when the end user hovers over the edge of

What’s New in Omnis Studio 11

94

the form and “covers” the other form content, i.e. the panel is placed over the top

of the other controls and content on the remote form

Panel Mode Method

You can use the $showpanel() method to show or hide a side panel, when
$sidepanelmode = kSidePanelModeNone; the method must be executed on the client.

❑ $showpanel(iAction, [iMode=kSidePanelModeAuto])
Performs an action (iAction) on a side panel object, one of the following:
kSidePanelActionHide hides the side panel.
kSidePanelActionShow shows the side panel.
kSidePanelActionToggle either hides or shows the side panel depending on its
current state.
The panel mode (iMode) is optional and only applies when iAction is
kSidePanelActionShow; if omitted, the default is kSidePanelModeAuto which uses
the setting in the $sidepanelmode property, either kSidePanelModePush or

kSidePanelModeCover

For example, you could set the $sidepanelmode property to kSidePanelModeNone (i.e.
the panel will not pop out automatically), and use the $showpanel() method behind a
button to pop it out, as follows:
On evClick ## set to execute on client

 Do $cinst.$objs.panel.$showpanel(

 kSidePanelActionToggle,kSidePanelModePush)

Events

The following events are reported by a component when it is enabled as a side panel.

Event Description

evWillShow Sent at the start of the animation when the side panel is about to
open

evShown Sent at the end of the animation when the side panel has finished
opening

evWillHide Sent at the start of the animation when the side panel is about to
close

evHidden Sent at the end of the animation when the side panel has finished
closing

evWillShow and evWillHide can only be executed on the client. This is so the events
can be discarded, if required, which will prevent the panel from being shown or hidden.

Existing users should note: Side panels on the JS client work similarly to the fat client,
however you should note the following differences from fat client side panels:

❑ In responsive JS forms with multiple layout breakpoints, a component can be a side
panel in one breakpoint and not in another. Therefore, the $sidepanel property can
be set independently to $edgefloat, but will only behave as a side panel in
breakpoints where $edgefloat of the object is kEFposnLeftToolbar or
kEFposnRightToolbar (note in the fat client $edgefloat has to be set before the
$sidepanel property is enabled and can be set)

❑ A side panel’s state (visible or hidden) will persist between breakpoints.

❑ In responsive JS forms, push mode causes the container (which can be the form, a
subform or a Paged pane) to resize responsively. Once the container reaches its
minimum width for the current breakpoint, it becomes scrollable.

 JavaScript Components

 95

JS Data Grid
There have been a number of enhancements added to the JS Data Grid control,
including the addition of horizontal padding for grid cells, and more control over which
grid lines are displayed when setting the $gridlinesvisible property.

Enter Key Behavior

A new property $entertodoubleclick has been added to the Data grid (as well as the
JS List, JS Tree list, and JS Date picker) to force the Enter key to be interpreted as a

double-click. (ST/JS/2946)

When $entertodoubleclick is true, the double-click event is sent when the focus is on
the list and the Enter key is pressed, allowing more control from the keyboard for the
lists and grid controls.

The property is set to kFalse by default (to maintain backwards compatibility), other
than for JS Lists, which defaults to kTrue which interpreted Enter as a double-click in
previous versions.

Horizontal Padding

The $horzpadding and $columnhorzpadding properties have been added to the JS
Data Grid to allow you to set the horizontal padding for all the cells in the grid, or for
individual user-defined columns. (ST/JS/2405)

When $userdefined is kFalse for all columns in the grid, the value of $horzpadding is
applied to every cell in the grid, including the grid title, data cells, column header cells,

and footer row cells.

When $userdefined is kTrue for a column, the value in $columnhorzpadding is applied
to the relevant datas cells, header cells, and footer cells for that column.

Both properties default to 2 for existing data grids in converted libraries to minimize
appearance changes. While for new data grids, both properties default to 14 to match
the horizontal padding for Edit fields.

Grid Line Visibility

The $gridlinesvisible property now allows you to select which parts of a data grid will
display grid lines; in previous versions you could turn all lines on or off. (ST/JS/2882)

When using the Property Manager to change the $gridlinesvisible property, a checklist
is displayed allowing you to check or uncheck the kJSDataGridVisibleGridLines...
constants (see below) to specify which individual lines you want to be displayed.

Constants Description

kJSDataGridVisibleGridLinesCellHorz Horizontal cell grid lines

kJSDataGridVisibleGridLinesCellVert Vertical cell grid lines

kJSDataGridVisibleGridLinesHeader Header grid line

kJSDataGridVisibleGridLinesColumnHeaderHorz Horizontal column header grid lines

kJSDataGridVisibleGridLinesColumnHeaderVert Vertical column header grid lines

kJSDataGridVisibleGridLinesFilter Filter grid line

kJSDataGridVisibleGridLinesFooterHorz Horizontal footer grid lines

kJSDataGridVisibleGridLinesFooterVert Vertical footer grid lines

To set this property in your code, you can add the constant values together to get the
desired result, for example:
Calculate $cinst.$objs.DataGrid.$gridlinesvisible as

kJSDataGridVisibleGridLinesHeader +

kJSDataGridVisibleGridLinesColumnHeaderHorz

What’s New in Omnis Studio 11

96

For existing grids, those with $gridlinesvisible set to kTrue will have all values selected,
and those set to kFalse will have no values selected, which means existing grids
should see no change in appearance.

Column Headers

The $columnheadersbold property has been added to the JS Data grid to allow you
to display the headers in bold. (ST/JS/2684)

evCellChanged

The evCellChanged event is now triggered when the end user tabs out of the last line
of an extendable grid to create a new line, that is, when the focus is moving to the new
line. (ST/JS/2991)

When evCellChanged is triggered, pVertCell will be the next line number in the list, but
at the point when the event is triggered, pVertCell will reference a line which does not
exist yet, which may cause an issue in the code in your event method. To mitigate this,
you should check pVertCell is valid before executing the other list code.

Formatting cells

The $formatcell() method is now fired when the selection state in a data grid is

changed, plus a new parameter pSelected has been added. (ST/JS/3101)

The $formatcell() client method is now fired whenever the selection state of a row in a
data grid changes. A new Boolean parameter, pSelected, has been added to allow you
to style cell values depending on whether the line is selected or not.

Column Properties in Field Styles

Field styles can no longer have multi-value column properties, such as where you can
set a different value for each column in a data grid. (ST/EC/1738)

The Property Manager and the interface for the #STYLES system class no longer allow
multi-value column properties to be assigned as custom styles. In this case, the
Property Manager context menu item "Add To Style As Custom Property..." will be
disabled, and attempting to drag to the #STYLES window will now fail.

JS Edit Field
Dynamic Labels

You can now add a dynamic or “floating” label to Edit fields, Droplists, or the editable
part of Combo Boxes. This enhancement means you can choose not to add separate
text labels for the fields in a form, and rely on these new field-based dynamic labels.
(ST/JS/2838).

A number of properties have been added to the JS Edit, Droplist, and Combo box to
support dynamic labels:

Property Description

$label The label text

$labeliscontenttip If true, the label is shown as the content tip while the control is
not focused and does not have any text content

$labelfontsize The font size for the minimized label text

$labeltextcolor The label text color. By default, this is the border color tinted

with the text color

$labelhottextcolor The label text color when the control is focused. By default,

this is the same as the focused border color

$labelposition The position of the label when not shown as the content tip
inside the field, a constant: kJSLabelPosBorder (the default),
kJSLabelPosAbove, kJSLabelPosLeft

 JavaScript Components

 97

To enable the dynamic label, you need to add the label text to the $label property for
the control. Once you have added text to the $label property, you can double-click on
the label to edit the label text (pressing Return confirms an update). By default, the text
label is inset into the top border of the control ($labelposition = kJSLabelPosBorder),
unless $labeliscontenttip is true, but $labelposition can be changed to above or left of

the control.

If $labeliscontenttip is true, and the field does not have the focus or any content, the
text in $label is displayed inside the field like a content tip (see Lastname below). In this
case, when the focus passes to the field, the label will jump from within the field area to
above the field (see Firstname below). You can use this method of adding content tips

to fields as an alternative to using the $::contenttip property.

By default, $inputborderstyle is set to kJSInputBorderStyleOutlined and the label is
displayed above the field inset into the border. However you can set $inputborderstyle
to kJSInputBorderStyleUnderline, in which case the field is displayed with underline
only (the border is hidden). When the field gets the focus the label will jump to above
the field (see Email field).

You can set the $label property for Droplists and Combo boxes in the same way; by
default the text in $label is displayed inset into the top border of the control.

Content tip text color

The $contenttiptextcolor property has been added to JS Edit fields, Droplists, and
Combo boxes to allow you to set the text color for content tips. (ST/JS/3061)

The $contenttiptextcolor property is the text color used for the content tip text, or the
label when displayed as a content tip, for an edit field, droplist, or the editable part of a
combo box. The new color property applies when using the $::contenttip property or
$labeliscontenttip in conjunction with $label.

What’s New in Omnis Studio 11

98

Date Picker

The $datepickeroptions property has been added to Entry fields and Data grids to
allow you to customize display options in a calendar style popup date picker, plus the
ability to display the isoweek number has been added. (ST/JS/2974)

$datepickeroptions (and $columndatepickeroptions in the datagrid) is an integer type
property with the ability to switch on/off the $showheading, $showmonthnav,
$showweeknumber properties in the popup date picker in Entry fields and Data grids.
There are new constants for $datepickeroptions: kJSDatePickerOptionsShowHeading,
kJSDatePickerOptionsShowMonthNav, kJSDatePickerOptionsShowWeekNumber,
which can be selected in the Property Manager or added together to set the options in
your code. The kJSDatePickerOptionsShowWeekNumber option shows the isoweek
number down the left-hand side of the calendar layout.

By default, kJSDatePickerOptionsShowHeading and
kJSDatePickerOptionsShowMonthNav are set to true and
kJSDatePickerOptionsShowWeekNumber is set to false to maintain behavior in
previous versions.

JS Button
Text Position

A number of layout properties have been added to the JS Button control to give you
greater control over the positioning of the text and icon on the button; this
enhancement also applies to the Trans button and Split button components.
(ST/JS/3013)

The new layout properties are:

Property Description

$vertalign The vertical alignment or justification of the text and icon within
the button, a constant: kJstVertTop, kJstVertMiddle and
kJstVertBottom

$vertpadding The top and bottom padding of the text and icon within the
button (default is 4 pixels); only applies when $vertalign is
kJstVertTop or kJstVertBottom

$spliticonandtext If true, the icon and text are separated so that the text can be
aligned independently (default is kFalse)

$icontextspacing The gap between the icon and the text when they are positioned
together (default is 4 pixels)

When $spliticonandtext is kTrue, the icon is positioned at the edge of the button (on the
left by default). The text can be aligned in the remaining space with the $align or

$vertalign property.

You can enter negative values for the properties requiring a number of pixels, which
may be required in some circumstances.

You can use the existing $::vertical property to arrange the icon and text vertically, and
$textbeforeicon to display the text before the icon; after setting these to kTrue, you can
use the align and padding properties to position the text.

In addition, $horzpadding has been added to the Trans button only (the other buttons
have it already) to allow you to set the left and right padding.

 JavaScript Components

 99

JS Droplist & Combo Box
Droplist Style

The $dropliststyle property has been added to the Droplist & Combo box controls.

(ST/JS/2790)

The $dropliststyle property allows you to apply a rounded style to the list part of a
Droplist or Combo box control. The style of the droplist is a kJSDropListStyle...
constant:

❑ kJSDropListStyleDefault
The default droplist style (see below left).

❑ kJSDropListStyleRounded
The $borderradius property is applied to the combined field and list part of the
control when it is dropped; if the dropped list is wider than the field, its width is
temporarily increased to match (see below right).

$dropliststyle = kJSDropListStyleDefault
(shown on Windows)

$dropliststyle = kJSDropListStyleRounded
(shown on macOS)

JS Date Picker
Disabling Dates

The calendar style Date Picker now allows you to disable specific dates and to set the
start and end dates (minimum and maximum). (ST/JS/3104)

The date picker control has the following properties to allow you to disable dates:

Property Description

$datesdisabled an instance variable containing a list with a single column of
type Date. This is to disable individual dates on the calendar

$daysofweekdisabled an integer made up from flags to specify days of the week to
disable (e.g. you might want to disable Saturdays and
Sundays). This is presented as a check list in the Property
Manager, but to assign via code there are new constants to
use, kJSWeekDaySun through to kJSWeekDaySat. Assign
kJSWeekDayNone (resolves to 0) to set this property to no
disabled days

$disableddaycolor The color used for disabled days. This defaults to kDefault so
that it just inherits the $daycolor or $otherdaycolor

$disableddaytextcolor The text color used for disabled days. This defaults to
kJSThemeColorDisabledText

In addition, disabled days have a strikethrough text appearance (equivalent to the line-
through css attribute).

The following properties allow you to set the start and end dates (minimum and
maximum):

Property Description

What’s New in Omnis Studio 11

100

$mindate Only assignable at runtime, this is a Date to set the start date
(minimum selectable limit on the calendar)

$maxdate Only assignable at runtime, this is a Date to set the end date
(maximum selectable limit on the calendar)

To allow the same functionality in a popup date picker (in the Data grid or Edit field) a
new method, $getdisableddates(), has been added to the controls that support the
popup date picker. This defaults to client-executed, however, it can also run on the
server if required. This method must return a Row containing up to 4 columns, which
should be named the same as the relevant properties which set disabled dates above
but without the $, that is, datesdisabled, daysofweekdisabled, maxdate, mindate. They
can be in any order, and not all need to be included. Their data type should be same as
the properties above, apart from datesdisabled, which should be a list of dates (i.e. not
just an instance variable name).

Week Number

You can now display the week number in the calendar view of the Date Picker control
by enabling the new property $showweeknumber and setting the associated color

properties. (ST/JS/2924)

When set to kTrue, the new $showweeknumber property displays the iso week
number on the left side of the calendar style date picker (when $datestyle is set to
kJSDatePickerStyleCalendar).

The new property $weeknumbertextcolor specifies the text color of the week
numbers, and $weeknumbercolor controls the background color of the week number
area.

Calendar View Change Event

A new evCalendarViewChanged event has been added to the Date Picker component.

(ST/JS/2925)

The evCalendarViewChange event is triggered when the view changes in the
calendar mode of the date picker; the parameters will vary depending on the current
view:

❑ pView
will be one of kJSDatePickerCalendarViewDays,
kJSDatePickerCalendarViewMonths, kJSDatePickerCalendarViewYears,
kJSDatePickerCalendarViewDecades

❑ pMonth
Integer 1-12 for the current month in view (only populated if pView =
kJSDatePickerCalendarViewDays)

❑ pYear
Integer for current year in view (only populated if pView =
kJSDatePickerCalendarViewDays or kJSDatePickerCalendarViewMonths)

❑ pStartYear
Integer for the first year in view (only populated if pView =

kJSDatePickerCalendarViewYears or kJSDatePickerCalendarViewDecades)

❑ pEndYear
Integer for the last year in view (only populated if pView =
kJSDatePickerCalendarViewYears or kJSDatePickerCalendarViewDecades)

 JavaScript Components

 101

JS File
You are now able to drop files onto the File control to upload them. (ST/JS/2689 and

ST/JS/3063)

There is a new example app called JS File Upload/Download under the Samples
section of the Hub in the Studio Browser (note there is a New option to display the
new examples only).

The input area in the File control is now larger, and allows you to drag and drop files
onto it for uploading. A generic progress spinner has been added, which replaces the
choose files icon while uploading. This may be useful if you wish to opt for a simpler
interface by switching off the progress details (see $hideuploadprogress and
$hideuploadprogressbatch below). In addition, you can use the file control as an upload
area inline on the form, and files upload automatically instead of the end user having to
click another button once the files have been chosen.

The file control can now be used as an upload control on a form when the new property
$showinline is set to true. If true, $hyperlinktext and $hyperlinkurl will be ignored, and
kJSFileActionUpload assigned to $action (used to open the file dialog) will also be
ignored.

If $autoupload is true, no Upload button will be shown, and instead files will be

uploaded as soon as they are chosen.

If $hideuploadprogress is true, the upload progress area is hidden. The uploading
spinner has been added to the upload area to simplify the control if both upload
progress areas are switched off. Plus $hideuploadprogressbatch has been added to

hide the total batch upload progress area.

The $uploadprogresstextcolor property is the color for the text in the progress
elements.

The $clearsfileselection property clears the last uploaded file. When set to true, the

current file selection is cleared automatically after an upload has completed.

In addition to the upload enhancements, the new $maincolor property is the main
color used throughout the control, including the upload area, upload button, progress
bars, completion indicators, and upload spinner.

JS Slider
The $reversescale property has been added to the JS Slider control to allow you to
reverse the scale on the slider. (ST/JS/2846)

When true, the $reversescale property swaps the $::max and $::min values on the
scale of the slider. Therefore, when $::vertical is false (the default horizontal state), the
min and max values on the slider are swapped left to right. When $reversescale and
$::vertical are true, the min value is at the bottom, the max value is at the top.

JS Toolbar
The $clippopuptocontainer property has been added to the JS Toolbar component.
(ST/JS/2956)

If true (the default), the Side menu and Overflow menu are clipped to the toolbar's
container. If false, they can extend outside its bounds.

JS Nav Bar
The evWillPop event has been added to the JS Nav bar control. (ST/JS/3048)

The evWillPop event is sent before an item is popped from the navigation bar stack, for
example, when the user clicks on a left button. It has one parameter, pPageNumber,
which is the number of the page that will be popped. It is a client-only event. For
example, this event can be used to prevent the pop from occurring by discarding the
event with:

What’s New in Omnis Studio 11

102

Quit event handler (Discard event)

JS Map
SVG marker color

You can now add a color to a custom SVG map marker when specifying the list of

markers in a JS Map. (ST/JS/3027)

When an SVG icon is used in the map markers list, you can now add an additional
column to the list to specify the color to apply to that SVG icon, which must be themed
using the JS Themer tool. The color should either be a JS Theme constant, such as

kJSThemeColorPrimary, or an RGB integer.

Border Radius

The $borderradius property has been added to the JS Map control to allow you to set
a border radius. (ST/JS/3023)

JS Native List
Menu Accessory

A new 'menu' accessory type has been added to the JS Native List. (ST/JS/2837 &

ST/JS/3097)

The new kJSNativeListAccessoryTypeMenu accessory adds a menu button to a
native list row. The menu can be defined either with the $menulistname property, or a
method of the native list called $populatemenu.

The $menulistname property can be assigned a list to define the rows in the menu,
which will be used for the menu in all rows in the native list, unless it is overridden by
$populatemenu, in which case, menus can be assigned on a per row basis. The
$populatemenu method is called when the user selects a menu button which should
return a list. The first parameter is the group ID, the second is the row ID. This method
can be client or server executed.

Menu lists should have the following columns:

❑ Text (Character): The menu line text

❑ Enabled (Boolean) [optional]: Whether the line is enabled or disabled

❑ CommandID (Integer) [optional]: The command ID

❑ BackColor (Integer) [optional]: The line's background color. Zero means use the
default color

❑ TextColor (Integer) [optional]: The line's text color. Zero means use the default
color. If lBackColor is a theme constant and lTextColor is null, the text will use the
corresponding theme text color

When the user selects a menu line, evClick is sent with
pWhat=kJSNativeListPartMenuLine. The parameters pMenuLineNumber and
pMenuCommandID can be used to identify the line that was clicked.

Vertical Scroll

The $vscroll property has been added to the JS Native List component which allows
you to dynamically scroll the list to the specified line. (ST/JS/2962)

When you set $vscroll (to an integer), a Native List will scroll to the specified row
number. For grouped lists, group headers are counted as rows, so to scroll to the 5th
row of the 2nd group, you would set $vscroll to 1 + [no. rows in group 1] + 1 + 5.

 JavaScript Components

 103

JS Picture
The $tintcolor property has been added to the Picture control to allow you to apply a

tint color to themed SVG icons. (ST/JS/2964)

The new property will only apply the tint color to SVG images that have been themed
using the JS Themer tool (available in the Tools>>Add ons menu), so for all other
image formats the tint color is ignored.

JS Rich Text Editor
The $gethtmlwithstyles() method has been added to the JS Rich Text Editor control to
provide a better representation of the html in the control. (ST/JS/3093)

The $gethtmlwithstyles() client method returns the HTML from the Rich Text Editor
control and applies some inline styles to the elements, which when viewed externally,
such as in a web browser, should better represent the styles written in the Rich Text
Editor. Note that there may be circumstances where the style is not exactly matched
due to the limitations of inline vs stylesheet styling.

JS Radio Button Group
It is now possible to include a comma in the text for a button in a JS Radio Button

Group (also applies to window class radio buttons). (ST/JS/3202 & ST/WO/2717)

JS Radio button groups now support a second comma to escape a comma when
specifying $text for a number of buttons. For example, when $text is set to: Option 1,,
extra text,Option 2,Option 3 (and $::horizontal = kFalse, $colcount = 1), the following

radio button group is displayed:

Icon Badges
You can now add notification badges or ‘Icon Badges’ to JavaScript component icons
to provide additional information, such as a number count, or to alert the end user, in
order to enhance the UI in your applications. (Note you can also apply icon badges to
window class component icons.) (ST/IF/351)

Icon badges are additional icons or notifications that can be added to any JavaScript
component icon, that is, a badge can be added to any control that supports icons, such
as push buttons, toolbar buttons, menu items, or tab bar tabs. The following screenshot
shows some examples, including button icons, toolbar icons, and tabbar icons.

When assigning to $iconid for a JavaScript component, you can use the
iconidwithbadge() function to assign an icon badge or number count notification and
its properties. Therefore, when an icon ID uses an SVG icon name, iconidwithbadge()
allows you to append additional values to the SVG name to define a badge to be added
to the main icon. The syntax is:

What’s New in Omnis Studio 11

104

iconidwithbadge(svgIcn, count_or_secondary_icon [, badge_options, backcolor,

icontextcolor])

The parameters are:

❑ svgIcn: the ID of the primary icon for the object / toolbar object

❑ count_or_secondary_icon: the count to be displayed on the badge, or the ID of a
smaller secondary icon

❑ badge_option: kIconBadgeAlignTop, kIconBadgeAlignBottom, or the default is the

position set by the OS, also kIconBadgeBackgroundHide, see below.

❑ backcolor: the color of the badge, the default is kJSThemeColorSecondary

❑ icontextcolor: the color of the count, or secondary icon, the default is
kJSThemeColorSecondaryText

For example, the following lines of code set up icon badges for buttons:
Do $cinst.$objs.button.$iconid.$assign(iconidwithbadge(‘tablet_mac’, 9))

Do $cinst.$objs.button.$iconid.$assign(iconidwithbadge(‘tablet_mac+32x32’, 9

))

Do $cinst.$objs.button.$iconid.$assign(iconidwithbadge(‘tablet_mac’, 99, 0,

kDarkGreen, kWhite))

Some Omnis objects used fixed icon sizes, such as menu items or tabbar tabs,
therefore when applying a badge to these objects you cannot supply an icon size for
the primary icon as the size will be fixed by the object, for example:
Do $imenus.NewMenu.$objs.Item.$iconid.$assign(iconidwithbadge(‘tablet_mac’, 9

))

When using iconidwithbadge() in a client-executed method, the SVG parameters must

be URLs, which can be generated with iconurl() in server-executed code.

The default icon badge background color is kJSThemeColorSecondary, while the count
or secondary icon is kJSThemeColorSecondaryText (for window class controls the
colors are the standard OS colors).

Badge Options

The constants kIconBadgeAlignTop and kIconBadgeAlignBottom can be used in
the badge_option parameter in iconidwithbadge() to specify the position of the badge.
Omitting this or passing 0, Omnis will use the default position for the OS – by default,
macOS will draw a badge at the top right of an icon, and Windows at the bottom right.

The constant kIconBadgeBackgroundHide allows you to hide the default colored
circle badge when used with a secondary icon. If the badge has a count and not an
icon, the badge background is always drawn and this option ignored. For example:
$iconid.$assign(iconidwithbadge('tablet_mac', 'star',

kBadgeIconHideBackground, kDefault, kRed))

Tab panes and Tab strips

To set an icon badge on a tab pane or tab strip, you can use a new method
$settabinfo() – this allows you to alter a tab name or icon at runtime without first
changing the current tab. The syntax is:
$settabinfo(tabnumber, caption, icon)

The parameters are:

❑ tabnumber: a valid tab from 1 to $tabcount

❑ caption: the new tab caption or empty to leave caption untouched

❑ icon: the icon for the tab; you can use iconidwithbadge()

The new iconidwithbadge() function can be used to specify the icon badge. For
example:
Do $cinst.$objs.tabpaneorstrip.$settabinfo(1, '', iconidwithbadge(

'tablet_mac', 1))

 JavaScript Components

 105

Position Assistance
The following new positioning and sizing assistance enhancements have been added
to help you add or move objects on a remote form class (or window class design
window).

Position and Size coordinates

The Position Assistance capability now provides position and size information when
you move or resize an object, or group of objects, in a remote form class (or window
class). In addition, position information is provided when you drag an object from the
Component Store and drop it onto a remote form. (ST/HI/1914)

The current Position of an object (its x,y coordinates) is displayed in a helptip or
colored box just below the object, when you move an object, or when you drag an
object from the Component Store and drop it onto a remote form (see above left); the
helptip shows the X,Y position of the top-left corner of the object relative to the top-left
corner of the remote form or window design screen.

The current Size of an object is shown (width x height) when you resize it (see above
right). When more than one object is selected, the position or size corresponds to the
area of the whole group of selected objects.

There is a new item positionAssistantShowsPositionOrSize in the ‘ide’ section of
the config.json file that allows you to enable or disable this feature (the default is true,

so the position or size is shown).

Position for dropping objects

Information about the drop destination is now shown when dragging objects on a
remote form design window into a Complex grid or Paged pane (shown in addition to
the x-y coordinates). (ST/WO/2686)

For example, as you drop a field into a Complex grid section, the position assistance
will display the section type, such as ‘Header’, ‘Horizontal header’, or ‘Row’, as shown
below.

What’s New in Omnis Studio 11

106

Group Selection & Object Properties
The following enhancements have been added to make it easier to examine the
properties of an object on a remote form when it is within a group of selected objects,
or part of a linked group or container field. (The enhancements also apply to selecting
objects in Window and Report classes).

When you select a group of objects, Omnis now shows a colored line around the group
and a single set of selection handles for the group. If the objects share any properties
these are shown in the Property Manager allowing you to set the properties for all the
objects in the group.

If you click on an object inside the group of selected objects, Omnis shows selection
handles around just this object and shows the properties of the selected object in the
Property Manager, but retains the selection line around the group, as shown below as
a gray line:

You can click on another object within the group selection, and in this case selection
handles are shown on the new selected object and its properties are shown in the
Property Manager. If you want to restore the state where the properties reflect all the
selected objects in the group, you can Shift-click on the currently selected object.

Note that when clicking, properties are not shown until you release the mouse. This
allows you to drag the selected objects without changing the properties displayed in the
Property Manager.

The color of the selection rectangle shown around a group of objects is one of two new
colors in the ‘IDEGeneral’ section of appearance.json:

❑ designselectedgroupoutlinecolor
the color of the rectangle around a selected group (when no single object is
selected)

❑ designselectedgroupoutlinesinglecolor
the color of the rectangle around a selected group when a single object is selected

inside the group

SVG Icons
Due to support for themed SVG Icons being added to window class controls, some
changes have been made to the SVG Themer Tool and the material icon set (available
in previous versions of Omnis Studio 10.2).

SVG Themer tool

The SVG Themer tool is now available on the Tools >> Add-ons menu, and is not
found in the Web Client Tools submenu, as in previous versions.

 JavaScript Components

 107

Material Icon set

The ‘material’ icon set folder has been moved into the ‘iconsets’ folder in the Studio
tree; it was in the ‘html/icons’ folder in previous versions of Omnis Studio 10.x. If you
use any icons in the ‘material’ icon set in your web or mobile apps, you need to copy
the material icon set to the ‘html/icons’ folder when deploying to a web server.

SVG Icon size

When choosing an SVG icon in the Property Manager you can now specify the icon

size, in addition to choosing the existing standard sizes. (ST/HI/2005)

When specifying $iconid in the Property Manager, the id edit field now allows you to
enter the size of an SVG icon by entering iconid+wxh, e.g. to set an alarm icon with a
width of 22 and height of 33, you can enter alarm+22x33.

Field List
The following enhancements apply to the Field List for Remote form classes, as well
as Window and Report classes.

Object Search

A Search box has been added to the Field list to allow you to locate controls or
background objects in a remote form. (ST/WC/576)

The search is useful if your remote form contains many nested objects, or you want to
search for objects with a specific prefix. The search looks for items containing the
search string. The following shows all objects in the Field list containing the string
‘prod’.

What’s New in Omnis Studio 11

108

Renaming Objects

You can now rename a JavaScript component or background object directly in the
Field List, either using the Rename option in the Context menu, or by clicking into the
selected line, or by selecting the line and pressing Return to select the existing name.
The $name property for the object in the form is updated automatically.

When you rename an object on a remote form (using the Property Manager or Field
List), Omnis searches for any properties using the old name, and replaces them with
the new name, including properties such as $arialabelledby and $linkedobject.

Opening the Field List

You can now open the Field List using the F7 key when editing a Remote Form. The
setting is stored in the ‘ide’ section of the keys.json file. (ST/HE/1498)

Color Palette
The color palette has been enhanced by adding a new tab to allow you to select colors
for components and objects on remote forms (as well as window and report classes).

(ST/HE/1820)

The updated color palette allows you to select a color from a color picker, or to enter a
color number in RGB, HSL, or HEX format. The new color picker also shows a range of

 JavaScript Components

 109

tints of the selected color, as well as its complimentary color, which may be useful for
selecting a set of colors for a remote form design. The recent selected colors are
shown at the bottom.

Background Images
You can now drop an image from the system onto a Remote Form to create a
background image. (ST/JS/2851)

You can drop an image from your system / desktop on to a Remote Form to create a
JS Background component of kJSBackImage type with the $imagepath property set to
the path of the image, which is copied automatically to the folder
‘images/libs/<libname>’ in the html folder in the Omnis tree. The image can be a PNG,

JPG, JPEG or SVG.

In addition, the $keepaspectratio property has been added to the JS Background
component, so when it is a background image ($shape is set to kJSBackImage) the
image will keep its aspect ratio; it defaults to kTrue. (ST/JS/3058)

When setting the path to a background image in the JS Background component, the
$imagepath property now has a prompt button to allow you to select an image.
(ST/JS/2868)

Inactive Appearance
The $defaultinactiveappearance property has been added to the majority of the
JavaScript components to give you more control over the inactive appearance of
controls. (ST/JS/2739)

When controls are inactive, that is, when $active=kFalse, they tend to have their own
default inactive appearance, which is often a gray overlay or background. If you set
$defaultinactiveappearance to kFalse you can override this default inactive
appearance. The default value for $defaultinactiveappearance is kTrue to maintain
backwards compatibility.

Edge Float
Some new edge-float constants have been added to the $edgefloat property for
JavaScript components allowing you more control over how objects will float or resize
in a remote form (the same constants have been added to window controls).
(ST/JS/2669, ST/WO/2458, ST/WO/2710)

❑ kEFbottomAndCenterLeftRight
the bottom edge of the object will float or move up or down, while the object stays
centered horizontally in the form (a combination of kEFbottom and
kEFcenterLeftRight)

❑ kEFrightAndCenterTopBottom
the right edge of the object will float or move to the right or left, while the object
stays centered vertically in the form (a combination of kEFright and
kEFcenterTopBottom)

❑ kEFleftRightAndCenterTopBottom
the control floats with the right edge of its container, and remains centered vertically
(a combination of kEFleftRight and kEFcenterTopBottom)

❑ kEFtopBottomAndCenterLeftRight
the control floats with the container's bottom edge, and remains centered

horizontally (a combination of kEFtopBottom and kEFcenterLeftRight)

Fonts and Semi-bold
The Roboto Flex font has been added and is now the default font for all JS
components, including Entry fields and labels in new libraries. (ST/JS/3230)

What’s New in Omnis Studio 11

110

Roboto Flex is a 'variable font' and includes many font weights and styles, including
semi-bold and extra-bold. Roboto is a Google font and included in the folder html/fonts;
its use is subject to the Apache License Version 2.0:
https://www.apache.org/licenses/LICENSE-2.0

In addition, the font named 'system-ui' has been added to JS components which uses
the Operating System's default font, so changes between platforms. This may be
useful if you are designing a mobile app to run in the wrappers, giving your app a more
native look.

Studio 11 now supports Semi-bold and Extra-bold font styles, if the font supports it.
The constant kSemiBold allows semi-bold to be set for fields and labels. Using both
kBold and kSemiBold causes an extra bold font style to be used.

Tab Order
Remove from Tab Order

The $removefromtaborder property has been added to all JavaScript components,
except for any components that can’t normally be tabbed to. (ST/JS/2751)

If $removefromtaborder is true, the control is not included in the tab order for the
remote form, except for Complex grids which cannot be removed from the tab order. If
a control does not have this property it is always excluded from the tab order, i.e. it
cannot be tabbed to.

Next Tab Object

You can now specify the row when setting the $nexttabobject property to a complex
grid child. (ST/JS/3226)

Subform Events
The evSubformLoaded event has been added to the Subform control. (ST/JS/2781)

The new evSubformLoaded event is triggered when the form instance in a subform
control changes, after the $init method in the form instance has been called. The event
is also triggered if $multipleclasses is true and an existing form is being switched back
to.

The evSubformLoaded event receives two parameters:

❑ pFormName
The name of the Remote Form class which has just loaded.

❑ pInitialLoad
True if the form instance has just been constructed. It may be false if

$multipleclasses is true, and an existing Remote Form is coming back to the front.

Subform Promise
You can now return a promise from client-side assignments to subform $classname.
The promise will be resolved when the form is loaded, after its $init has run.
(ST/JS/3231)

When assigning the $classname of a subform at runtime you can return a promise, e.g.
Do $cinst.$objs.sf1.$classname.$assign("sub2") Returns lPromise

JavaScript:lPromise.then(() => {

Do $cinst.$objs.sf1.$subinst().$whatever()

JavaScript:});

Rather than rejecting the promises when an error occurs, an error message is passed
as the first parameter to the resolve function. If this is populated, you can treat it as an
error.

https://www.apache.org/licenses/LICENSE-2.0

 JavaScript Components

 111

Rounded Borders
The $borderradius property has been added to a number of JavaScript components to
allow you to apply a more consistent style for all the JS controls in a remote form.
(ST/JS/2640 and ST/JS/2691)

A single value sets the radius for all the corners of an object, or to specify a different
radius for each corner you can use the syntax "n-n-n-n" which follows the same rules

as CSS 3 rounded border syntax, i.e. top-left, top-right, bottom-right, bottom-left.

The $borderradius property has been added to the following JavaScript controls: Tree
list, Toolbar, Progress Bar, Nav Menu, Navbar, Native List, Hyperlink, and Complex
Grid, plus the new Scroll Box.

Numeric Object Names
The allowNumericObjectNames configuration item has been added the ‘ide’ section
of config.json. When false (the default), the Property Manager does not allow all
numeric names to be assigned to $name. (ST/PC/575)

The Property Manager validates the value assigned to $name for remote form objects
(as well as remote menu, report, schema, menu, toolbar and window class objects).
The validation is applied when the name starts with a digit, and the remaining
characters cannot all be a digit or the following characters "+-.".

You are not recommended to allow numeric object names, as there can be clashes
between names and idents, and notation strings of the form ...$objs.[lName] (where
lName is a variable containing the name of an object) will fail to locate the object if
lName is an integer, since Omnis will treat lName as an ident rather than a name.

ARIA Properties
The ARIA properties $arialabelledby and $ariadescribedby now take a comma
separated list of controls, rather than using a space as a separator, as in previous
versions; this is to accommodate control names that contain spaces. (ST/JS/2596)

When converting libraries from 10.2 or earlier, or importing a library from JSON, spaces
in $arialabelledby and $ariadescribedby will be replaced with commas.

What’s New in Omnis Studio 11

112

JavaScript Remote Forms
Remote Form Editor
The Design bar in the remote form editor now contains a Methods button to open the
Method Editor for the form, and a Test button to open the form in a web browser (this is
the same as the existing Test Form or Ctrl-T option). Together with the new
Component Store (seen here on the left) and enhancements in the Property Manager,
creating Remote forms is now quicker and easier.

A similar Design bar has been added to the Window class editor to provide quick
access to the window’s Methods and to Test the window.

Testing Remote Forms
When testing a JavaScript Remote form in design mode, you can now select the web
browser in which to test the remote form. In previous versions, the default system
browser was used automatically to test a form (e.g. when using Ctrl/Cmnd-T).
(ST/HI/1905)

There is a new menu item on the Remote form design Context menu, Select Browser
And Test Form... (or you can use the shortcut Shift+Ctrl/Cmnd+T), that opens a dialog
containing a list of web browsers installed on your system, including an entry for the
System Default, allowing you to select a browser in which to test your remote form.

 JavaScript Remote Forms

 113

The new Select Web Browser dialog is useful if you want to test a remote form in
several different browsers while designing the form and testing your app, for example,
to check that some JavaScript code behaves the same in all browsers.

Note that the option is only present in the Context menu when your system has more
than one registered web browser, otherwise the option is hidden, and the default

system browser will be used via the standard Test Form option.

Subform Palettes
You can now popup a subform in a palette style window next to a specified control.
Such a Subform Palette could contain a subform to allow the end user to set an option,
or to provide some information such as a help tip. Subform palettes can be opened or
closed using two new client commands, or a subform palette can be closed by clicking
outside the subform. (ST/JS/3156)

The new client commands ($clientcommand) subformpaletteshow and
subformpaletteclose, have been added to support subform palettes.

There is a new example app called JS Subform Dialogs in the Samples section of the
Hub in the Studio Browser (note there is a New option to display the new examples
only), showing how to use the new client commands and the different settings for
palette subforms. (Note the new example app also shows how to display Subform
Dialogs using the subformdialogshow client command, which was available in
previous versions.)

subformpaletteshow

The subformpaletteshow command shows a remote form as a subform palette:
Do $cinst.$clientcommand("subformpaletteshow",row)

What’s New in Omnis Studio 11

114

Where row variable is row(cClass, cParams, cControl, iWidth, iHeight [,iPositionFlags]

[,bShowOverlay] [,cTitle] [,bPreventClose])

The row variable parameters are as follows:

cClass: (Character) the class name of the remote form to use in the palette.

cParams: (Character) parameters to pass to the remote form, e.g. you could pass a

message (text) to be displayed in the subform palette, as in the example app.

cControl: (Character) the name of the related control to pop up the palette next to.

iWidth: (Integer) the width of the subform palette.

iHeight: (Integer) the height of the subform palette.

[iPositionFlags]: (Integer) a combination of up to 2 kSFSPalette… constants to specify
the position (defaults to kSFSPalettePosFlagRight+kSFSPaletteAlignFlagCenter). See
further description of flags below.

[bShowOverlay]: (Boolean) if kTrue, shows the form overlay while the palette is open

(defaults to kFalse).

[cTitle]: (Character) the title of the subform (this is not displayed anywhere, but is used
to populate the aria-label property of the palette for screen readers).

[bPreventClose]: (Boolean) if kTrue, the user cannot close the palette by clicking
outside it (defaults to kFalse); in this case, you must use subformpaletteclose to close
the palette.

The Positioning flags should contain up to 1 Position flag (top, right, bottom, or left)
and 1 Align flag (start, center, or end) to set the position of the subform palette relative

to the control specified in cControl.

Constant Description

kSFSPalettePosFlagTop Position the palette above the related control

kSFSPalettePosFlagRight Position the palette to the right of the related control

kSFSPalettePosFlagBottom Position the palette below the related control

kSFSPalettePosFlagLeft Position the palette to the left of the related control

kSFSPaletteAlignFlagStart Aligns the palette at the start of the specified position
(top/right/bottom/left)

kSFSPaletteAlignFlagCenter Aligns the palette in the center of the specified position
(top/right/bottom/left)

kSFSPaletteAlignFlagEnd Aligns the palette at the end of the specified position
(top/right/bottom/left)

If the palette were to overlap the opposite side of the control, e.g. because of the lack
of space, Omnis will try to place the subform on a different edge automatically. If Omnis
cannot place the subform in an acceptable position, it will fallback to using the initial
state. There is also an arrow which will point to the center of the given control.
However, it is restricted by the size of the subform palette, and so will be placed
towards the edge of the palette closest to the center of the control, as appropriate.

In the example app (in the Hub), the following code is in the $event method for the
button which opens a subform palette next to the button (iPaletteMessage is populated
with a text message from the form, while iPalettePosValue and iPaletteAlignValue are
taken from droplists in the form):
Do $cinst.$clientcommand(

"subformpaletteshow",

row("jsSFDPalette",

con(kDq,iPaletteMessage,kDq),

"ShowPalette",

220,120,

iPalettePosValue+iPaletteAlignValue,

 JavaScript Remote Forms

 115

kFalse,

"MyTitle"))

subformpaletteclose

The subformpaletteclose client command closes the top most subform palette. No
row parameter is required. Note the end user can close a subform palette by clicking
outside the subform (which can be prevented using bPreventClose).

Event Specific Client Methods
The $eventclient() method has been added to support client-executed methods for
specific named events. The client will run the $eventclient method if it contains
On default or an On <event> statement for the named <event> that has been triggered,
otherwise it will run the $event method, which must be server-executed if $eventclient
is specified. (ST/JS/2842)

When specifying $eventclient, as with $event, events are still only sent when they are
present or enabled in the $events property for the control or form. Omnis calculates
the subset of $events to be handled by $eventclient as those events specified in an On
statement or On default statement in $eventclient, at any level in the inheritance
hierarchy for the control or form. In this case, if you use On default, all events are

processed by $eventclient.

Any events not present in the subset of $events to be handled by $eventclient are sent
to $event for the control or form and run on the server, unless they are one of the small
set of client-only events, e.g. $candrop and $drag.

The current event processing model, where all events go to $event, which is either
client or server executed, works as in previous versions if there is no $eventclient
method present for the control or form.

When using inheritance, you can also override $eventclient in a subclass.

Showing Built-in Methods

The Show Built-in Class Methods option in the method editor View menu, has been
renamed to Show Built-in Methods. This option defaults to on, and when enabled, the
method editor tree list shows all possible Built-in class and Control methods that can be
overridden, including $event and $eventclient (in previous versions most of these
methods were available but not listed). Note that control methods that are built-in to
JavaScript client objects cannot be overridden, meaning they are not displayed in the
method tree list when showing built-in methods. In addition, built-in methods in the tree
now have a tooltip that is displayed when the Show Method Content Tips option in

the View menu is enabled.

Layout Breakpoints
Minimum number of Breakpoints

In previous versions, the minimum number of layout breakpoints for a responsive
Remote form was two, but that restriction has been removed, meaning that a remote
form can now have only one breakpoint, if required. (ST/CE/153)

With this enhancement, you could create a layout for all devices using a single layout,
by specifying only one breakpoint, and cater to all possible display sizes or devices
using the floating edge properties of the JS controls on your remote form. This may be
useful if you create a form that will be re-used as a subform, where having more than
one breakpoint may not be necessary.

When you create a new Remote form in the Studio Browser it will contain two
breakpoints (320 and 768), but you can delete one of these and reset the width of the
remaining breakpoint, as required.

What’s New in Omnis Studio 11

116

To delete a breakpoint, click on the X button or select it and press Ctrl/Cmnd-D. To
change the value of a breakpoint, double-click on the breakpoint header and edit the

number, or drag and resize the right edge of the breakpoint header.

Component Properties in new Breakpoints

When adding a new layout breakpoint, all breakpoint-specific properties are now
copied from the nearest breakpoint – in previous versions, Omnis copied just the size
and position coordinates of the components in the existing breakpoint, but none of the

other component properties. (ST/JS/2818)

The properties that are now copied from the nearest breakpoint include the following:
layout padding for the form, edge float, align, drag border, error text pos, and ‘visible in
breakpoint’ properties are copied for all controls.

Copying Layout Breakpoints

The Copy Layout from Breakpoint option can now apply to specific selected controls.
(ST/HE/1851)

The Copy Layout from Breakpoint menu option now applies to selected objects only if
an object or multiple objects are selected. The layout properties of the selected objects
in different breakpoints are set to the same values, while the other non-selected objects
are unaffected; in this case, the menu option text changes to show 'selected fields
only'.

When no objects are selected, the Copy layout from breakpoint menu option works as

before, copying the layout (positions) of all the objects on the form.

Assigning Properties

There are some new options in the Property Manager to help you assign properties to
controls in different layout breakpoints in a responsive remote form. (ST/HE/1842)

The option 'Copy <property> To All Other Layout Breakpoints' has been added to the
Property Manager context menu to allow you to copy the property value of a control to

other instances of the control on all other breakpoints.

In addition, the option 'Copy Position To All Other Layout Breakpoints' has been added
to allow you to copy the position (meaning left, top, width, height and edgefloat) of a
control to all other breakpoints.

This is in addition to the existing option to assign a property value of a control to all
layout breakpoints when setting a value in the Property Manager.

Subform Sets
When opening Subform windows within a Subform Set, their sizing and positioning has
been improved. (ST/JS/3088)

Subform set windows now respect their container’s dimensions when opened, that is, if
subforms that are larger than the available space are opened (or are too far to the right
or bottom to fit the whole subform area), then they will be resized and repositioned
automatically. Specifically, the left and/or top values will be reduced, If these reach 0,
and there is still not enough space for the subform, the width and/or height values will
also be reduced.

 JavaScript Remote Forms

 117

Add Return Method
A new option Add Return Method has been added to the Method menu and the
Method editor tree context menu to add a “<method name>_return” method for a server
method (applies to Remote forms only). (ST/DB/1368)

A <method name>_return method is a special client executed method to handle the
return value from a server method called <method name>.

Client Script Version Reporting
If the build version of the scripts in the JavaScript Client is different to the scripts on the
server, then the mismatch is now reported as an error. (ST/JS/3127)

If there is a major version difference between client and server, an error message is
generated, and the client will not run in this situation. The error message text is
determined by a new localizable string "omn_cli_script_majorversion_mismatch" in
strings_base.js.

If there is a difference in the build revision, a warning is logged to the browser console
describing the issue. For example, if you patch the scripts only (rather than installing a

new version of Omnis Studio), then this difference will be logged in the console.

Remote Menus
Text Alignment

You can now change the text alignment in remote menus. (ST/JS/3007)

The pContextMenu event parameter in evOpenContextMenu events now has an $align
property. This can be used to specify the text alignment of a menu. For example:
Do pContextMenu.$align.$assign(kCenterJst)

Possible values are kLeftJst (default), kRightJst and kCenterJst.

Icon Colors

Remote menus now support the $iconcolor and $defaulticoncolor properties to control
the color of icons when using themed SVG icons. (ST/JS/3240)

The $iconcolor property for a remote menu line sets the icon color when using a
themed SVG icon. The $defaulticoncolor property for a remote menu class sets the
icon color when using themed SVG icons and the $iconcolor property of the item is
kColorDefault. If $defaulticoncolor is also kColorDefault, then themed icons use the text
color.

PDF Printing
PDF path names

The character limit of 255 for the path when creating a PDF has been removed.
(ST/EC/1709)

Under Windows, for very long path names, you may need to enable long paths by
setting the registry key
Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem\
LongPathsEnable to 1 and restart.

PDF Version

You can now set the PDF version and encryption used in the PDF file using the new
$setpdfversion method. (ST/RC/1390)

The $setpdfversion method can be one the kDevOmnisPDFVersion... constants
identifying the PDF version and encryption to be used when encrypting the PDF file;
the default is kDevOmnisPDFVersion13 which specifies 40-bit RC4 encryption. The
following constants are available.

What’s New in Omnis Studio 11

118

Constant Description

kDevOmnisPDFVersion13 Version 1.3, 40-bit RC4 encryption

kDevOmnisPDFVersion14 Version 1.4, 128-bit RC4 encryption

kDevOmnisPDFVersion15 Version 1.5, 128-bit RC4 encryption

kDevOmnisPDFVersion16 Version 1.6, 128-bit AES encryption

kDevOmnisPDFVersion17 Version 1.7, 128-bit AES encryption

kDevOmnisPDFVersion17ext3 Version 1.7 ExtensionLevel 3, 256-bit AES

encryption

PDF/A support

You can now set the PDF/A subset type for a PDF file, which is used to create archival
versions of documents. The standard version PDF/A-1 is supported, as well as PDF/A-
2 a/b and PDF/A-3 a/b. (ST/RC/1329 & ST/EC/1775)

A new method $setpdfsubset allows you to set the PDF/A subset type. The method

takes a constant, one of the following:

Constant Description

kDevOmnisSubsetPDFA1a PDF/A-1a - Part 1 Level A (accessible) conformance

kDevOmnisSubsetPDFA1b PDF/A-1b - Part 1 Level B (basic) conformance

kDevOmnisSubsetPDFA2a PDF/A-2a - Part 2 Level A (accessible) conformance

kDevOmnisSubsetPDFA2b PDF/A-2b - Part 2 Level B (basic) conformance

kDevOmnisSubsetPDFA3a PDF/A-3a - Part 3 Level A (accessible) conformance

kDevOmnisSubsetPDFA3b PDF/A-3b - Part 3 Level B (basic) conformance

PDF Keywords

The PDF Device now support keywords via the $setdocinfo method. (ST/FU/836)

You can now assign keywords to a PDF to be added to the file’s metadata. The
keywords are set through extra parameters added to $setdocinfo, specified as a string

of comma-separated keywords, for example:
Do Omnis PDF Device.$setdocinfo(author,title,subject,'keyword1, keyword2,

keyword3')

Libraries and Classes
Restoring Open Libraries & Classes
Omnis now opens any libraries that were open at shutdown when it next starts up; this
applies to the development version only. This is controlled by the new item
restoreOpenLibsAtStartup in the “ide” section of the config.json file, that defaults to
true.

When the development version of Omnis shuts down successfully, it saves a list of
libraries to re-open. The library list saved excludes all libraries in the startup and studio
folders, and all private libraries (these libraries will typically re-open anyway). In
addition, Omnis will only run the startup task of a library that it re-opens, if the startup
task was open when Omnis last shut down successfully. Running the startup task is
controlled by the openStartupTaskWhenRestoringOpenLibrary item in the “ide”

 Libraries and Classes

 119

section of config.json. If this is true (the default), Omnis will run the startup task of each
library that had an open startup task when Omnis closed. Set this to false if you do not
want the startup tasks of libraries to be run.

In addition to libraries, Omnis now opens any class editors that were open at
shutdown when it next starts up; this applies to the development version only. This is
controlled by the new item restoreOpenClassEditorsAtStartup in the “ide” section of
the config.json file (the value of this configuration entry is ignored, and treated as false,
if the restoreOpenLibsAtStartup entry is false). If true (the default), after completing
startup, the development version of Omnis tries to re-open class editors that were open
when Omnis last shut down successfully. Note the system table editors are not
reopened.

For class editors other than remote form and window editors (which automatically save
their last position), the restored editors open in their last screen position, provided that
the screen configuration has not changed since Omnis was shut down; if the screen
configuration has changed, then the editors open at their default position for the new
screen configuration.

The method editor attempts to restore the selection to the method line being edited.
The remote form, report and window editors attempt to restore their current selection.
These attempts will work unless the class has been changed, that is, by replacing the
library (or class) with a modified copy before restarting, e.g. from the VCS.

The restored class editors open behind any user windows opened by either startup

libraries or libraries opened due to the restoreOpenLibsAtStartup config.json entry.

Closing All Libraries
The Close All Libraries command has been added to the File menu in the Runtime
and Server versions of Omnis Studio to enable you to close all libraries in a single
command, rather than closing them individually; note this option is not available in the

Development version. (ST/BR/389)

Open/Close Library Notifications
There is a new task message $openlibschanged that is sent after a library or libraries
have been opened or closed. It is sent in a development version of Omnis only.
(ST/EM/226)

Class Names
Extra validation when naming an Omnis class has been added to prevent certain
characters from being used in class names, including the characters () [] . (that is,
parenthesis, square brackets and the period/full stop character). (ST/BR/392)

There is a new config.json entry, extraClassNameValidations in the ‘defaults’ section
of the config.json file; the default is True meaning that Omnis performs extra validations
before assigning a name to a class.

This extra validation is recommended, as using the characters it excludes in class
names can cause confusion and potentially errors. This property is present to allow
code from previous versions to continue working if the additional validations cause any
code to fail.

The characters excluded by these validations are any character with a value less than
space, a character in the string ".,;:!?)]}([{+-*/|&><=", or a single or double quote
character. In addition, the validations do not allow the name to start with the dollar
character $.

What’s New in Omnis Studio 11

120

Library APIs
A new method $getapiobject has been added to $root.$modes to return a reference of
an object in another library, allowing you to use its methods, even if the library is
private. (ST/FU/787)

You can use $root.$modes.$getapiobject("libraryA") from libraryB to call into
$getapiobject method of libraryA startup task which must return an object reference.

For example, the startup task method $getapiobject of libraryA can do:
Quit method $clib.$objects.libAPI.$newref()

Where libAPI is an object within the library which implements some methods that you
can use. If libraryA does not return an object reference, the returned value to the caller
is NULL. The startup task in the called library must be named ‘Startup_Task’ (the

default name) in order for this to work.

Library Internal Names
The internal name of a library is now prevented from being the same as a static
function group name, such as FileOps, to avoid any conflict in your code when a
function in a static function group is called. (ST/PF/1259)

Omnis now prevents the internal name of a library from being set to the name of a
static function group, by appending a digit (or digits) to the internal name that would
otherwise be used, in the same way as it does when opening a library which would
result in a duplicate internal name. So in the case of FileOps, the internal name of the
library would typically be fileops1. However it is best to avoid using a function group
name, or any other function or command name, as a library name to avoid any possible
conflicts.

Importing Libraries
The $importjson() method now allows you to replace an existing library when importing

a library from a JSON export file. (ST/AD/258)

The $importjson() method has a new parameter bReplaceExisting to import and
replace an existing library. If bReplaceExisting is true (the default is kFalse),
$importjson() closes the library if it is already open, backs it up to the import archives
folder, and imports the library to replace the backed up version; if the import fails,
$importjson() restores the original library from the archived copy. Omnis keeps the last
10 archived copies.

The archived copies are stored by default in the archives folder in the Omnis data
folder. Each library has its own sub-folder in archives, named using the library name.
You can override the archive folder by setting the archivefolder member of
$prefs.$exportimportjsonoptions Omnis preference.

Startup Task
The $external property of the Startup_Task in a new library is now marked as kTrue (in

previous versions is was initially set to kFalse). (ST/TC/041)

Library Startup & Conversion
A new parameter has been added to the $add() method for the $libs group to allow the
Omnis Runtime to convert a library or to not run the Startup_Task (ST/FU/840)

The iFlags parameter has been added to the $libs.$add() to allow different options to
be set when the Omnis Runtime opens a library. The new iFlags parameter is a sum of

one or more of the following kLibFlag... constants:

Constant Description

kLibFlagNone If specified, has no effect

 Method Editor

 121

kLibFlagDoNotOpenStartupTask If specified, do not open the Startup_Task

kLibFlagEnableConversionByRuntime The Omnis runtime version will offer to
convert the library

kLibFlagConvertWithoutUserPrompts If specified, and conversion is allowed,
Omnis will immediately perform conversion
without giving the user any prompts that
require a response; note the user cannot

cancel the conversion in this case

Any further parameters are passed to the $construct method of the Startup_Task (in

the case where the Startup_Task is allowed to run).

Method Editor
The following enhancements have been added to the Method Editor or Code Editor.

Conditional Breakpoints
You can now add conditions or a hit count to Breakpoints. To enable you to add a
condition, the Set Condition... option has been added to the Breakpoint context menu,
the Breakpoints toolbar menu and Breakpoint list context menu. (ST/DB/1177)

The Set Condition... option allows you to enter a calculation that must evaluate to true
(non-zero) for the breakpoint to be hit, and/or a number of hits that are to be ignored
before the breakpoint is hit. The calculation and/or ignore count is displayed in
parentheses in the breakpoint list.

The remote debugger displays the remote debug breakpoint, although it does not
include a hit count.

To allow conditional breakpoints to be stored, a new system table called #DEBUGGER
has been added to Omnis libraries to save current local debugger code breakpoint
locations, which means code breakpoints (and their conditions) are restored when a
library is reopened. #DEBUGGER does not appear in the Studio Browser class list, but

is included in $clib.$classes.

List Variable Search
A Search panel has been added to the List variable window in the debugger to allow
you to search the contents of a large list variable while debugging. (ST/DB/1032)

To initiate a search, click into the List variable window, press Return, and then press
the Search button, or select a previously saved search in the droplist. There is also a
button to navigate to the current line, which sounds the bell if pressed when there is no
current line.

Search results appear in a separate panel that allows you to quickly navigate to results.
The Line number and Column name for each search result is shown. If the Column
name is empty, the Column number is shown.

Find Possible Calls
A new option Find Possible Calls... has been added to the Context menu available in
the method list in the Method Editor to locate all possible calls to the method.

(ST/FR/162)

The Find Possible Calls... option attempts to locate all possible calls to the method,
from methods in the current library, or a selected set of open libraries. If there is only
one open library, it performs the search immediately, displaying a progress bar. If there
is more than one open library, the option opens a popup dialog that allows you to select

the libraries to be searched, and then performs the search, displaying a progress bar.

What’s New in Omnis Studio 11

122

The option writes results to the Find and Replace log, and then opens the Find and
Replace window when it has completed the search. Note that the option does not
search calculations stored with objects, it only searches method lines.

Calls located may not be actual calls to the method, since for example calls like
item.$method cannot be resolved, so if the call occurs in the correct class (or in the

inheritance hierarchy), the call will be treated as found.

Debugger Debug Panel
The debugger Debug Panel has been moved to the top of the code editing part of the
Method editor; in previous versions it was located in the window title bar. The new
debugger command panel contains the Go, Step in, Step Over, etc commands, but the
Remote debugger command panel does not include the “to line” command. The last
command on the panel is the “clear stack” option.

For the local debugger, there is a new menu item on the method editor View menu,
Show debug command panel to show the panel (which is enabled by default). The
old debug toolbar options are now initially hidden, but you can show them using the
Toolbar… menu item on the method editor View menu.

For the Remote debugger, the debugger command panel replaces the toolbar buttons
that previously provided commands.

Where the toolbar configuration has been saved in omnis.cfg, you need to use the
restore defaults button on the Toolbar… configuration window, to set the toolbar
buttons to their new default state.

Overriding or Inheriting multiple methods
The Method editor can now override or inherit multiple methods in a single operation.
You can multi-select the methods from the class Methods list or a single object and
then override or inherit the methods, as appropriate, from the context menu or the
Modify menu. (ST/CE/220)

If all selected methods are built-in or inherited, they can be overridden with a single

override method command on the context menu, or the Modify menu.

If all selected methods override inherited methods, they can be deleted and re-inherited
using a single inherit method command on the context menu, or the Modify menu.

If all selected methods override built-in methods, they can be deleted and set back to
built-in using a single built-in method command on the context menu, or the Modify
menu.

In addition, the options Inherit variables... and Override variables... have been added
to the Variable panel context menu to allow multiple variables to be inherited or
overridden in a single operation. These commands are only present for subclasses, for
task, instance and class variables. (ST/CE/221)

Display Integers as Hex
There is a new option in the debugger Variable panel (in both the Method Editor and
Remote debugger), to display integer variables as hex rather than decimal – the new

option is available by clicking the H icon in the panel sidebar.

 Method Editor

 123

In addition, in either display mode (decimal or hex), when modifying an integer, you can
either enter a decimal value or a hex value.

Code Assistant
Parameter list order

The ordering of variable and parameter names in the Code Assistant help list has been
improved. (ST/DB/1349)

The sorting is now in the following order: variables or names, functions, notation,
constants, events (sorted alphabetically within each set).

There is a new config item ‘oldSortOrder’ in the ‘codeAssistant’ section of config.json,
which is false by default; set this to true if you want to use the old sorting.

Do command

Code assistance for the Do command and its variants has been improved.
(ST/DB/1392)

The Code assistant now adds matching commands when entering what could be
command parameters, e.g. when entering probable parameters for Do, the Code
Assistant will also add Do method, etc, commands to the list.

Note that when typing command names, you can omit spaces and the command will be
found more easily, for example, to find Do inherited, you can type doi.

$obj and $field

Code assistance for $cinst.$obj and $cinst.$field has been improved. (ST/DB/1391 and
ST/JS/2193)

Code assistance has been added for $cinst.$field to allow code assistance to be
provided without making $cinst.$objs harder to enter; $cinst.$field is equivalent to

$cinst.$obj, but $field only works for subform and subwindow instances.

The notation $field behaves the same as $obj when used with a subform or subwindow
instance, for remote forms and windows only. This allows code assistance to be better
targeted, and also prevents $obj from taking over as the first property in the code

assistant list after typing “$cinst.$o”.

Code Assistant Width

There have been a few enhancements in the size and format of the Code Assistant
help popup window. There is a new entry width in the ‘codeAssistant’ section of the
config.json file to allow you to set the width of the code assistant window (the default is

768 pixels); the value must be between 512 and 1536 inclusive.

As a consequence of the enhancements, the items
drawTurnedOverPanelTextAtBottom, helpPanelHeight, and minWidth have been
removed from the ‘codeAssistant’ section of config.json.

What’s New in Omnis Studio 11

124

Item Reference Classes
You can now use an existing library class as an item reference class, and the Code

Assistant will show the instance notation for the selected class. (ST/BE/1419)

When creating an Item Reference variable in the Method Editor, the variable subtype
dialog (that allows you to enter the class for a variable) now has two tabs at the bottom:
Generic and Instance:

❑ Generic allows you to enter a class as previously supported.

❑ Instance allows you to enter a class of the form @classname or
@library.classname (these new classes are identified by a leading @ character).

An item reference that uses a class in this way provides code assistance for both the
built-in methods and properties of an instance of the class, as well as user methods for
instances of the class.

In addition, there is an entry field that allows additional notation to be appended, e.g.
$objs.objname (this field has code assistance; the additional notation must start with
a $). For example, if you have a field named test in window class myWindow, you can
enter $objs.test in the entry field, and select the window class from the tree. This
results in an item reference class @myWindow.$objs.test. When using the variable,
code assistance is for this field, so you get both the built-in methods and properties and

the user methods for the field.

Jump to Variable Definition
You can now jump to a variable definition in the Variables pane in the method editor
using the Variable context menu; this is useful if a method contains many variables
and saves you visually scanning the variable list to find the variable. (ST/DB/1335)

To show the definition for a variable, Right-click on the variable name in your code and
select the Variable Definition option. The focus will jump to the appropriate tab in the
Variables panel, highlighting the variable. Alternatively, you can select the <Variable-
Type> variables option to pop up a separate Variables panel highlighting the variable.

The highlighting of the current variable grid line when the variable grid has the focus
has been enhanced, so that the current line is highlighted for both inherited variables,
and all variables when the class is read-only.

Jump to Search or Error Item
When you search for an item in the Code Editor, instances of the found item are shown
on the window scroll as a green marker. Similarly, errors in the code are marked in the
scrollbar as a red marker.

On Windows, you can Ctrl-click in the scrollbar to jump to that position in the code text,
i.e. Ctrl-clicking on a find or error marker goes to the search item or error in the code

text. (ST/DB/1289)

On macOS, the general system preference for scrolling can be set to Jump to the
position that has been clicked, or you can Alt+click to achieve the same thing (this is
the case for existing versions of Omnis).

Variable Names
Renaming Inherited Variables

Renaming an inherited Class or Instance variable in the superclass now shows an
optional warning dialog (from which Find and Replace can be opened) if there are
subclasses that may be using the variable. (ST/VR/332)

 Method Editor

 125

Naming Variables

The description for reporting errors when naming a variable has been improved, to

ensure the correct naming of variables (ST/DB/1321). The description is now:

Each character in the name must either be a Unicode alpha character, a decimal digit,
or a character in the range U+80 to U+ff inclusive. The first character cannot be a
decimal digit.

Inherited Descriptions
Method description and notes are now inherited from the nearest superclass of the
current class, as long as the description or notes of the current class is empty and
there is a description in the superclass. (ST/DB/1411)

The Method Editor now shows the inherited or built-in method description/notes for a
method that is either inherited, built-in, or overridden, when the description/notes in the
current class is empty. To indicate that these are inherited, they are drawn in the
inherited color or built-in color, as appropriate. If you want to change the value for an
overridden method, you can right-click on description/notes, and select "Make
Editable", and edit the value. You can revert to the inherited value by editing and
deleting the description/notes; when the focus leaves the edit field, it shows the
inherited value.

Object Search
When you use the Search box in the Method editor (and remote debugger) the search

will now include Object names as well as class method names. (ST/WC/576)

The new search behavior allows you to locate controls and other objects in the method
tree list, such as containers or text labels, in order to display and edit their methods.
The setting for this search behavior is stored in a new item
‘includeObjectNodesInTreeSearch’ in the ‘methodEditorAndRemoteDebugger’ group in
the config.json file (true by default).

Event Parameters
Event parameter names and descriptions have been added to the tooltip for an event,
displayed when you hover the pointer over the event name. (ST/EM/230)

Break On Event Option
A new Break On option has been added to the Debug menu in the Method Editor to
allow you to select which events will stop the debugger while debugging remote form

and window instances. (ST/EM/228)

There is a new hierarchical menu item Break On in the Debug menu that opens a
window that allows you to select the events that will cause a debugger break when they
are generated in the relevant instance type. IDE windows do not cause a break.

The new option replaces the ‘Debug Next Event with Break On Selected Window

Instance Events’ and ‘Break On Selected Remote Form Instance Events’ options.

What’s New in Omnis Studio 11

126

Copy Method Name
The Copy Name command has been added to Method Editor tree context menu to

enable you to copy the name of a method. (ST/CE/165)

Edit List Line
The Edit Line In New Window option has been added to the context menu for the List
variable window (right-click in the left-most column) to allow you to open a separate
editor grid to view or edit the data for a list line. (ST/DB/1374)

JavaScript Error Messages
JavaScript code generation and JSON import-export error messages now go to the
Trace log rather than the Find and Replace log in a Runtime/Server version of Omnis.
(ST/JS/2821)

Method Editor Focus
A new option has been added to make sure the focus is on Method name list when the
Method Editor is opened via a modify command, for example, by opening the Method
Editor from the Studio Browser. (ST/DB/1419)

The option is modifyMethodsCommandSetsFocusToTree in the ‘methodEditor’
section of the config.json file. The option defaults to false, meaning the behavior of

previous versions is maintained.

System Notifications
Omnis can now send notifications to the operating system on the end user’s computer,
on both Windows 10/11 and macOS. You have control over the content of notifications
and when they are sent via your Omnis code using a new ONOTIFY object. When
sent, a notification will pop up on the end user’s screen and will be added to the
Notification Center for the current operating system. (ST/HE/1686)

The end user can click on a notification and either start Omnis, or if Omnis is already
running, bring Omnis to the front. In both of these cases, the method $localnotify() in
the Startup_Task (in the library that sent the notification) receives parameters specific
to the notification and the method can then process the click, or call another method,
for example.

As well as sending notifications, there are additional functions that allow you to add a
badge to the application icon to alert the end user about the notifications.

There are two interfaces provided to send a system notification:

❑ An object, providing a way to encapsulate notification parameters.

❑ A function, providing a simple interface to send a notification with a single line of
Omnis code.

As with many features in Omnis, these interfaces provide a single, cross-platform
method to interact with system notifications on both Windows and macOS.

Notification Object
The Notification Object provides a way to encapsulate notification parameters. To use
the object, you need to set the Subtype of an Object variable to the LocalNotify
external object. The object has the following properties:

Property Description

$action A value that specifies up to 2 optional actions that are to be included
in the notification; on Windows, this is via one or two buttons; on
macOS, this is either via a button for a single action, or via an

 System Notifications

 127

Property Description

options popup for two actions. A ‘Specifying Actions’ section

$delay The delay in seconds between the call to $sendlocal() and the
notification being delivered. Omnis can quit before the notification is
delivered, as the operating system takes care of deferred delivery

$messageimage Image(s) to be displayed with the notification. See the ‘Specifying
Images’ section

$messagetext The text of the notification. This is the main notification message,
displayed in a plain font. The operating system will truncate this if it
occupies more than 4 lines, either due to word wrapping, or the
presence of newline characters (kCr, lLf or kCr kLf)

$notifylib See section ‘Handling Notification Clicks’ for details about this
property

$title The title of the notification. Some text, displayed in bold font above
the main notification text. The operating system will truncate this if it
is too long. Windows allows this to occupy two lines, if you separate
the lines using either kCr, lLf or kCr kLf. macOS only allows a single
line

$userinfo A row containing user information that is passed to the $localnotify()
method when the user clicks on the notification or a notification
action. It must be possible to convert $userinfo to JSON. See

section ‘Handling Notification Clicks’

To send a notification, created using the current property values, use the $send()

method of the object.
Do Object.$send([&cErrorText])

Sends a local operating system notification using the current property values. The
parameters are as follows:

Parameter Description

cErrorText A character variable that receives text describing an error if $send()
fails

If the call to $send() fails, it returns the value #NULL, and sets the cErrorText
parameter if it is provided.

If the call to $send() succeeds, it returns a character string. This is a string that
uniquely identifies the notification. You can use this string to remove the notification

from the system Notification Center, if for example the notification is no longer relevant.

Notification Functions
The ONOTIFY.$sendlocal() function sends a system notification.
ONOTIFY.$sendlocal(cTitle,cMessage,vImage,iAction,wUserInfo,[iDelay=0,&cErrorT

ext])

The parameters are as follows:

Parameter Description

cTitle The title of the notification. Some text, displayed in bold font above the
main notification text. The operating system will truncate this if it is too
long. Windows allows this to occupy two lines, if you separate the lines
using either kCr, lLf or kCr kLf. macOS only allows a single line

cMessage The text of the notification. This is the main notification message,
displayed in a plain font. The operating system will truncate this if it

What’s New in Omnis Studio 11

128

Parameter Description

occupies more than 4 lines, either due to word wrapping, or the
presence of newline characters (kCr, lLf or kCr kLf)

vImage Image(s) to be displayed with the notification. See the ‘Specifying
Images’ section

iAction A value that specifies up to 2 optional actions that are to be included in
the notification; on Windows, this is via one or two buttons; on macOS,
this is either via a button for a single action, or via an options popup for
two actions. A ‘Specifying Actions’ section

wUserInfo A row containing user information that is passed to the $localnotify()
method when the user clicks on the notification or a notification action.
It must be possible to convert $userinfo to JSON. See section ‘Handling
Notification Clicks’

iDelay The delay in seconds between the call to $sendlocal() and the
notification being delivered (optional). Omnis can quit before the
notification is delivered, as the operating system takes care of deferred
delivery

cErrorText A character variable that receives text describing an error if
$sendlocal() fails

If the call to $sendlocal() fails, it returns #NULL, and sets the cErrorText parameter if it
is provided.

If the call to $sendlocal() succeeds, it returns a character string. This is a string that
uniquely identifies the notification. You can use this string to remove the notification
from the system Notification Center, if for example the notification is no longer relevant.

Specifying Images
You can specify an image for the notification via the $messageimage property of the
object, or vImage parameter of the function. macOS only allows a single image,
whereas Windows allows up to three. The Windows images must each have an
associated type, and there can only be one image of each type. The image types are
identified by constants:

Constant Description

kONOTIFYimageTypeNormal The image is to be displayed below the notification.

kONOTIFYimageTypeLogo The image is to be used as the application logo.

kONOTIFYimageTypeHero The image is to be used as the hero image (this is
Windows terminology). This is an image displayed
across the top of the notification, and it must have the
size 364x180 (728x360 retina) to look good, otherwise
the system resizes it and crops it.

Images can be specified either using a character variable, or by using a list. To include
no image in the notification, either use an empty character variable or value, or use a

list with no lines and the correct number of columns (see below).

If you use a character variable, with a non-empty value, the notification has a single
image; the character variable must contain the full pathname of an image file (typically
PNG or JPEG), and on Windows it will have the type kONOTIFYimageTypeLogo.

If you use a list variable, then the list must have at least one column on macOS, and at
least 2 columns on Windows. The number of rows is limited to 1 on macOS, and 3 on
Windows (one for each type). Column 1 of the list contains the full pathname of an

 System Notifications

 129

image file (typically PNG or JPEG), and column 2 contains a kONOTIFYimageType…

constant.

The system is responsible for laying out the notification content (i.e. you have no
control over layout), and you should avoid using very large images in a notification.

Specifying Actions
You can specify up to 2 actions to be included with the notification. To specify no

actions, the action value can be either zero or kONOTIFYactionNone.

The actions are pre-defined, as macOS requires actions to be pre-defined. To specify
one or more actions, use the following constants, which can be added together when
specifying 2 actions:

Constant Description

kONOTIFYactionAccept The notification displays the Accept action.

kONOTIFYactionClose The notification displays the Close action.

kONOTIFYactionDecline The notification displays the Decline action.

kONOTIFYactionDelete The notification displays the Delete action.

kONOTIFYactionNo The notification displays the No action.

kONOTIFYactionOpen The notification displays the Open action.

kONOTIFYactionPrint The notification displays the Print action.

kONOTIFYactionYes The notification displays the Yes action.

Handling Notification Clicks
By default, when the user clicks on either a notification, or a notification action, Omnis
executes the method $localnotify() in the Startup_Task of the library containing the
code calling ONOTIFY.$sendlocal() or object.$send().

When using a LocalNotify object to send the notification, you can override the library
using the $notifylib property; this property is the internal name of the library whose
startup task is to receive the $localnotify() call. If you do not assign $notifylib, or set it to
empty, the default behavior applies.

If Omnis is not running when the user clicks on either a notification or a notification
action, the system starts Omnis. Omnis defers calling $localnotify() until the startup
task has completed, to allow startup libraries to be opened and their initialization to
complete.

If Omnis is running when the user clicks on either a notification or a notification action,
the system brings Omnis to the front.

When the system calls Omnis to tell it about a notification, and the library in which
$localnotify() is to be called is not open (after waiting for startup to complete if

necessary), Omnis ignores the call.

$localnotify appears in the built-in methods of a task class, so you can override it. It has
2 parameters:

Parameter Description

pAction A kONOTIFYaction… constant that identifies the action pressed by
the user. kONOTIFYactionNone (zero) if the user clicks directly on the
notification, rather than a button or popup.

pUserInfo A row. The user info value that was supplied when sending the
notification.

$localnotify() is not required to return a value.

What’s New in Omnis Studio 11

130

Removing Notifications
The notification object and function send methods (Object.$send() and
ONOTIFY.$sendlocal()) both return a unique id to identify the notification that was
sent. If you want to remove the notification from the Notification Center at some point
later (possibly after restarting Omnis), you need to save the id somewhere, e.g. in a
local SQLite database.

To remove one or more (or even all) notifications sent by Omnis, use the method:
ONOTIFY.$removelocal([vIDs,&cErrorText])

The parameters are as follows:

Parameter Description

vIDs Either a single character id, or a single column list of ids, to remove. To
remove all local notifications sent by Omnis, pass an empty character
string, a list with no lines, or omit the vIDs parameter.

cErrorText A character variable that receives text describing an error, if
$removelocal() fails.

If the call to $removelocal() fails, it returns the Boolean value false, and sets the
cErrorText parameter if it is provided. If the call to $removelocal() succeeds, it returns
the Boolean value true.

Badges
ONOTIFY provides functions that allow a badge to be added to, or removed from, the

application icon.

On Windows, this applies to the application icon in the taskbar. On macOS, this applies
to the application icon in both the dock, and the task switcher. The two operating
systems behave differently, because of the way their APIs work.

The badge is only displayed while Omnis is running.

$setbadgecount

ONOTIFY.$setbadgecount(iCount[,&cErrorText,iBadgeColor,iBadgeTextColor])

Sets the application icon badge to the specified count. The parameters are as follows:

Parameter Description

iCount The count to display as the badge. Must be greater than zero.
When running on Windows, a value greater than 99 is displayed as
99+.

cErrorText A character variable that receives text describing an error, if
$setbadgecount() fails

iBadgeColor Windows only. The background color of the count badge. Defaults
to styledbadgebackgroundcolor in the system section of
appearance.json.

iBadgeTextColor Windows only. The text color of the count badge. Defaults to
styledbadgetextcolor in the system section of appearance.json.

Note that the appearance.json items styledbadgebackgroundcolor and
styledbadgetextcolor have been moved to the ‘system’ section of appearance.json.

If the call to $setbadgecount() fails, it returns the Boolean value false, and sets the
cErrorText parameter if it is provided. If the call to $setbadgecount() succeeds, it
returns the Boolean value true.

 System Notifications

 131

$setbadgeicon

ONOTIFY.$setbadgeicon(vIconId[,&cErrorText,iBadgeColor=kColorHilight])

Note this is available on Windows only. Sets the badge on the application icon to be
the specified icon. The parameters are as follows:

Parameter Description

vIconId The icon id of the icon to display as the badge. The size

component is ignored, as badges are always 16x16.

cErrorText A character variable that receives text describing an error, if

$setbadgeicon() fails

iBadgeColor The color to be applied to the themed SVG; only applies if the icon

is a themed SVG. Default is kColorHilight.

If the call to $setbadgeicon() fails, it returns the Boolean value false, and sets the
cErrorText parameter if it is provided. If the call to $setbadgeicon() succeeds, it returns
the Boolean value true.

$removebadge

ONOTIFY.$removebadge([&cErrorText])

Removes the badge from the application icon. The parameters are as follows:

Parameter Description

cErrorText A character variable that receives text describing an error, if
$removebadge() fails.

If the call to $removebadge() fails, it returns the Boolean value false, and sets the
cErrorText parameter if it is provided. If the call to $removebadge() succeeds, it returns
the Boolean value true.

Enabling Notifications
To receive notifications from Omnis, notifications have to be enabled for Omnis in the
respective system settings. On Windows, you can enable System Notifications via the
Settings >> System dialog, then the Notifications & Actions option. On macOS, you
can use the System Preferences >> Notifications & Focus option.

The following describes how Omnis is identified by each operating system in order to
initialize system notifications.

macOS

The macOS operating system identifies applications using their application bundle
identifier, so if you install multiple versions of Omnis on the same macOS system,
notification settings, such as those in the Notifications & Focus section of System
Preferences, apply to all applications with that bundle identifier.

For Studio 11.0, the application bundle identifier now includes the version, that is,
net.omnis.omnisStudio.11.0. In addition, the Development, Server, or Runtime
versions of Omnis are identified by type. Therefore, the application bundle identifier is
net.omnis.omnisStudio.<type>.11.0 where <type> can be Dev, Server, or Run, so
these three executables can co-exist on the same macOS system. In addition, the
deployment tool caters to the different types.

Windows

For notifications to work on Windows, and in particular to allow clicks on notifications to
be passed to Omnis, Omnis needs to register an AppUserModelID and store the
AppUserModelID in a shortcut to Omnis in the system Start menu.

There are two configuration entries in the ‘windows’ section of config.json:

What’s New in Omnis Studio 11

132

Entry Description

initLocalNotifications Boolean. Default true. If true, Omnis initialises the interfaces
required to send notifications to the local Notification Center.

createShortcut Boolean. Default true. If true, and there is no shortcut to itself in
the Start menu, Omnis creates a shortcut to itself in the Start
menu. It then modifies the shortcut to contain the
AppUserModelID required for local notifications to work.

Omnis uses core resource string 9 as the template for its AppUserModelID. This
defaults to “OmnisSoftware.OmnisStudio.$.11”. To create the AppUserModelID, Omnis
replaces $ with Dev, Server or Run to identify the Development, Server or Runtime
version of Omnis.

The deployment tool (Windows only) allows you to customize resource 9. Note that if
there is no $ placeholder in the resource, the resource value is not changed by the

attempt to insert Dev, Server or Run.

Power Management Notifications

Omnis Studio can receive sleep and wake notifications from the operating system to
indicate power management changes: the following enhancements apply to macOS
and Windows.

Requests from the system to go into idle sleep, when there is no user activity, can be
denied on macOS or disabled on both macOS and Windows.

This allows the system to remain awake if Omnis Studio is busy.

Power Management Methods

Each task has a set of power management methods which can be overridden.

$systemcansleep (only sent on macOS)

All library task instances receive a call to the $systemcansleep method when the
system is requesting permission to go into idle sleep.

If all instances of this method return kTrue then sleep will be allowed to continue and
there will be a subsequent call to $systemwillsleep.

If any instance returns kFalse from this method then sleep will be aborted.

The total time taken to return from all calls to this method must not exceed 30 seconds
or the sleep will continue.

$systemwillsleep

All library task instances receive a call to the $systemwillsleep method when the
system is starting a sleep which cannot be cancelled, e.g. low battery or laptop lid is
closed. This is delivered before any hardware is powered off.

The total time taken to return from all calls to this method must not exceed 30 seconds
on macOS or 2 seconds on Windows otherwise the sleep will continue.

This call can be used by an application to save the state before the system sleeps.

Operations can be performed such as saving data to disk or disconnecting from
databases.

$systemwillwake

All library task instances receive a call to the $systemwillwake method when the
system is beginning to power on, i.e. most hardware has not been powered on.
Attempts to access disk, network, the display, etc. may result in errors or blocking the
process until those resources become available.

On Windows once user interaction is detected, e.g. mouse or keyboard input, then the
system will send $systemdidwake.

 Window Components

 133

$systemdidwake

All library task instances receive a call to the $systemdidwake method when wakeup
has completed and the system is powered on. This call can be used by an application
to resume the state which was saved when the system went to sleep. Operations can
be performed such as loading data from disk or reconnecting to databases.

Disabling idle sleep

Typically the system will be setup to sleep after a set period of inactivity. An Omnis
application can disable this by using the $disablesystemidlesleep root preference. If
set to kTrue the system will be prevented from going into idle sleep.

An application will still receive a call to the method $systemwillsleep if the system is
starting a sleep which cannot be cancelled.

On macOS the system will log a message to the system log to indicate the reason why
the system is blocked from going into idle sleep.

A Studio application can set this log message by using the
$disablesystemidlesleepreason root preference.

The default for this message is set to ‘Omnis Studio is busy’ but can be altered by
editing the string for resource number 1835.

The message should describe the name of the application and the activity blocking the
sleep, e.g. “MyApp is searching appointments“.

Window Components
Entry Fields
Field Border Icons

You can now add icons to the left and right border of Entry fields to provide a visual hint
or feedback, adding to the ease of use for the end user. For example, you could show
a check mark icon to indicate when a field has been correctly filled out. (Note that field

border icons are not available for JS Edit controls.)

There is a new example app called Field Border Icons and Content Tips in the
Samples section of the Hub in the Studio Browser (note there is a New option to
display the new examples only).

Field border icons can be added to all window class entry field types, including Single
Line Entry fields, Multi Line Entry fields, Masked Entry fields, and Token Entry fields;
the new property only applies when the field border style in $effect is set to
kBorderCtrlEdit (that is, when $fieldstyle is the default CtrlEditText), kBorderCtrlList, or
kBorderPlain. Note that the icons are for display only, and do not report any events, so
for example, you cannot add code to them to react to clicks.

What’s New in Omnis Studio 11

134

You can set the color of the icon (if using an SVG), the background color of the icon
area, and the vertical alignment. By default the background color is the same as the
control. The content area of the edit field is adjusted inside the frame to accommodate

icons if set. If the control is below 20 pixels in height the icon will scale down.

The new property $bordericonstyle stores the left and right icon configurations for an
Entry field, including the iconid of the left and right icon (which can be a SVG or PNG
specified by character or integer iconid), plus the icon color and background color (e.g.
kColorDefault or a RGB value). The single property stores the settings for the left and
right icons, which you can specify in the Property Manager:

There is a new method $setbordericonstyle that allows you to set the left or right icon
for an entry field, or clear the icon(s); the method has the following syntax:

❑ $setbordericonstyle(bLeftIcon[,cIcnIDName,iIcnTintColor,iBackTintColor])
bLeftIcon should be kTrue to enable a Left icon, or kFalse for a Right icon
cIcnIDName is the name ID of the icon (can be a string for a SVG icon)
iIcnTintColor, iBackTintColor are the colors for the icon and background

The following code for a field event method shows a warning icon on the right if no
content is added, otherwise if content is added a check mark icon is shown:
On evAfter

 If len($cobj.$contents)<=0

 Do $cobj.$setbordericonstyle(kFalse,"cancel",kDarkRed)

 Sound bell

 Quit event handler (Discard event)

 Else

 Do $cobj.$setbordericonstyle(kFalse,"check_circle",kDarkGreen)

 End If

 Window Components

 135

To clear an icon, you pass bLeftIcon as either kTrue (left icon) or kFalse (right icon)

with no value for cIcnIDName, as follows:
 Do $cinst.$objs.FIELD.$setbordericonstyle(kTrue) ## clears the left icon

Content Padding

The $contentpadding property has been added to Entry Fields to allow you to add
padding around content inside a window class Entry Field. (ST/HI/2017)

The $contentpadding property is specified in pixels, with 1 to 4 pixel values separated
by -, in the order left, top, right, bottom; if a single value is specified it is applied to all
four sides. If the bottom value is omitted, the top value is used. If the right value is
omitted, the left value is used. If the top value is omitted, the left value is used. For
example, a value of ‘3-2-1’ gives a 3 pixel gap on the left, a 2 pixel gap on the top and

bottom, and a 1 pixel gap on the right.

Animated Content Tips

Content tips for entry fields can now be animated, meaning that when enabled and the
focus enters the field, the content tip inside the field will ‘float’ or move up above the
field, which can be very useful for providing help to end users and creates a more
interactive UI. There is a new example app called Field Border Icons and Content
Tips in the Samples section of the Hub in the Studio Browser.

To allow animated content tips, the $animateui property has been added to the
window class Entry field, Multi-line Edit field, Token Entry field, and Combo box (the
entry field part). When set to kTrue for these field types, and when the focus enters the
field, the content tip will float above the field. When animated, the content tip will shrink
to 80% of the edit field font size, and use the same font colors as the edit field.

This feature is not supported for Entry fields or Combo boxes that are inside a Complex

grid.

Strip Control Characters from Edit Fields

The $pastestripscontrolcharacters property has been added to window class Edit
Fields (Single-line entry), Multi-line Edit fields, Masked Entry fields, and Token Edit
fields (as well as Combo boxes, Data grids, and String grids). The new property is also

a library preference. (ST/HI/1983)

If $pastestripscontrolcharacters is true (for a control or all controls via the library
preference) then all unused control characters are removed when pasting character
data into the edit field, or the editable part of combo boxes, data grids, or string grids.

Control characters are 0-0x1f and 0x7f. All control characters are "unused" except for
the carriage return line delimiters used by certain fields.

The library preference $clib.$prefs.$pastestripscontrolcharacters defaults to kTrue in a
new library, and kFalse in existing (converted) libraries.

Emoji and Symbols in Edit Fields

On macOS, support for the standard Emoji and Symbols menu item from the Edit menu
has been added to the window class Entry field. This will display the Character Viewer
to allow entry of emoji, symbols, accented letters and characters from other languages.
(ST/WO/2603)

The Emoji and Symbols menu item is available by default. To remove it, set the new
item useCharacterPalette in the ‘macOS’ section of the config.json file to false. Note
this does not support drag and drop from the character viewer into Studio.

What’s New in Omnis Studio 11

136

Token Entry Field
The events evTokensAdded and evTokensDeleted have been added to the Token
Entry Field. In addition, tokens can now have a tag, and the method $gettokens has a
new optional parameter. (ST/EM/231 & ST/NT/793)

Token Tags

Tokens in the Token Entry Field can now have a tag. A tag is a character string that
the application can use to identify the source of the token, or some other information

about the token. Although the tag is part of the data, it is not visible to the user.

To use tags, set the new property $tokentagseparator, which is a single character that
separates the token tag from the rest of the data for a token. The property defaults to
empty, meaning tags will not be used. You can enter \t and \f to use chr(9) and chr(12)
respectively. Using ~ as the tag separator, each token can now be one of the following,
depending on whether tags are being used:

❑ tokenValue

❑ displayText<tokenValue>

❑ tokenValue~tag

❑ displayText<tokenValue>~tag

You should ensure that the tag separator and < > characters used when including
display text are not part of the displayText or tokenValue.

The characters \t and \f can be entered in the $tokendelimiters to use chr(9) and
chr(12) respectively. Using \t or \f allows the unambiguous use of JSON syntax
characters in tags.

There is a new property $canedittokens which defaults to kTrue for compatibility.
When kFalse, the end user cannot edit a token as text (by double clicking on it, or
pressing return when it is selected); however, you can type some text to cause the
token popup menu to display. When using a tag in the token, data you would typically
set $canedittokens to kFalse, because otherwise the tag could become meaningless if

the user edits the token data.

Token Events

There is new property $sendtokenevents which defaults to kFalse. When kTrue, the
control sends the events evTokensAdded and evTokensDeleted.

❑ evTokensAdded
sent to the token entry field when one or more tokens have been added (if
$sendtokenevents is true)

❑ evTokensDeleted
sent to the token entry field when one or more tokens have been deleted (if

$sendtokenevents is true)

Both of these new events have an event parameter, pTokenChanges which is a list of
tokens that have been added or deleted, comprising two or three columns: name
(token), display (display text) and optionally the tag.

Get Tokens

The $gettokens method has a new optional parameter, bSplit (defaults to kFalse for
compatibility). When passed as kTrue, the returned list has two or three columns,
name, display and optionally the tag. The bIncludeDisplayString parameter is ignored if
bSplit is true.

List Row Buttons
You can now add a set of buttons to the left and/or right side of a row in a standard
List or Headed List control. The buttons would typically act on the data in the row, such
as opening another window to edit the row data, or deleting the row.

 Window Components

 137

There is a new example app called Row Buttons in the Samples section of the Hub in

the Studio Browser (note there is a New option to display the new examples only).

The row buttons slide out as the mouse enters the left or right side of the current row in
the list, or as the Shift+Control+Left or Right arrow keys are pressed when a line in the
list is selected. Selecting a button closes the whole row of buttons, and the name of the
selected button is sent to the event method for the list. Row buttons work best with a
larger row height (font size for the list), or when $linehtextra is set in a List or Headed
list control.

Adding Row Buttons

List controls and Headed list controls have a new property $rowbuttons which stores
the definition for the left and right buttons in the list row. When you select the property
in the Property Manager in design mode a dialog opens allowing you to specify the
buttons for the row. The button definition stored in $rowbuttons will be applied to every
row in the list.

In the edit dialog, you can add a left or right button using the left or right + icons.
Clicking on a button makes it current (shown underlined) allowing you to change its
attributes. You can move a button in the row order using the left and right arrow
buttons.

The image icon allows you to add an icon, which is an SVG image from an icon set
(PNG is not supported); the name of the icon becomes the name of the button, which is
shown in the top-left of the dialog, and used in the notation to reference the button. The
pencil icon allows you to set the background color of the button. The check icon allows
you to disable the button. You can also add a tooltip for a button.

You can delete a button by selecting it and clicking the trash icon.

Setting Row Buttons

There is a new method $setrowbuttons which allows you to specify the left or right
buttons for a list row at runtime, giving you more control over the buttons for individual
list rows; for example, you can call this on the evClick event for the list.

What’s New in Omnis Studio 11

138

The definition for $setrowbutton is as follows:

❑ $setrowbutton(bLeftIcon,[cIcnIDName, iTintColor, bDisabled, cTooltip]) adds a
row button.
bLeftIcon: kTrue for a left button, kFalse for a right button
cIcnIDName: the name of an SVG icon for the button
iTintColor: color of the button background
bDisabled: kTrue if the button is disabled
cTooltip: the tooltip for the button

You can clear the whole row of buttons by sending bLeftIcon as either kTrue or kFalse

without any further parameters.
Do $cobj.$setrowbuttons(kTrue) ## clears the left buttons

Do $cobj.$setrowbuttons(kFalse) ## clears the right buttons

The following will add a button:
adds a button only for row 2

If $cobj.$line=2

 Do $cobj.$setrowbuttons(kTrue,"language",kDarkRed)

End If

Events

The evRowButtonClicked event is sent to the list control when a row button is selected,
and pRowButton will contain the icon name of the button clicked.
On evRowButtonClicked

 If pRowButton="language"

 # discards the event for a button with the icon ‘language’

 Quit event handler (Discard event)

 End If

 # process the button click

List Box
Selected List Line Colors

The $selectiontextcolor and $selectionbackcolor properties have been added to all
window class List components, including standard List boxes, Icon arrays, Headed
lists, Checkbox lists, Complex grids, and Tree lists. (ST/GR/409)

The $selectionbackcolor property is the back color of selected lines. kColorDefault
means use the default color. When not kColorDefault the specified color only applies

when the control has the focus.

The $selectiontextcolor property is the text color of selected lines. kColorDefault means
use the default color. When not kColorDefault applies irrespective of whether the
control has the focus.

Extra Line Height

The $linehtextra property has been added to the List box control, which is the number
of extra pixels added to the height of each line (in a list box or headed list).
(ST/WO/2739)

Tab Strip
Tab Strip Groups

The Tab Strip control now supports groups, which means you can arrange the tabs
vertically into separate groups. The new group support only applies when the Tab Strip
is in vertical mode with one of the animated styles: kTabStripAnimSquare,
kTabStripAnimLine, kTabStripAnimDot, or kTabStripAnimRndSquare.

There is a new example app called Tab Groups in the Samples section of the Hub in
the Studio Browser (note there is a New option to display the new examples only).

 Window Components

 139

The individual tabs are specified as a comma-delimited list in the $tabs property, as in
previous versions. Each tab has a new property, $tabgroupname (under the Pane tab
in the Property Manager), which specifies the group the tab belongs to, and
$tabgroupcolor specifies the color used for the background of the tab group header.
When you specify a group name in $tabgroupname, the group is added to the Tab strip

and the tab is added to the group automatically.

The evTabGroupChanged event is sent with the pTabGroup parameter when the
control is about to change groups, which can be discarded if required.

Keyboard Navigation

When grouped mode is enabled and the Tab Strip has the focus, you can use the
keyboard to navigate the tabs or groups: the Up and Down keys navigate between the
tabs within the group order (the groups will open automatically as you navigate to a
tab), while the Shift Up and Down keys will jump up and down between groups,
opening the group as it gets the focus.

Animated Line and Dot Modes

The color specified in $tabcolor is now used to show the non-selected lines and dots
for Animated Line and Animated Dot modes for Tab Strips. (ST/HE/1860)

The $tabcolor property specifies the color to be used for the line path or placeholder
dots for non-selected tabs when $squaremode in a Tab Strip is set to
kTabStripAnimLine or kTabStripAnimDot. In the following example, tab 4 is selected
and the non-selected lines and dots are shown under tabs 1 to 3 since $tabcolor is set
to kColor3DShadow.

kTabStripAnimLine

kTabStripAnimDot

By default the color in $tabcolor is kColorDefault which means the line path or
placeholder dots are not shown (as in previous versions), so you need to select a color

in $tabcolor to show the non-selected lines and dots.

What’s New in Omnis Studio 11

140

Selected Tab Text Style

You can now set the font style of the selected tab in a Tab Strip window control.

(ST/HE/1861)

A new property $selectedtabtextstyle has been added to the Tab Strip window class
control that allows you to assign the font style of the currently selected tab, overriding
the font style for all tabs set in $fontstyle (this new property applies to all modes except

kTabStripOriginal).

Round Check Boxes
Check boxes can now be displayed using a Round style, rather than the standard
square box image. (ST/WO/2632)

The $buttonstyle property for Check boxes can now be set to kCheckBoxRound. The
style will create the maximum possible circle within the control's rectangle taking into
account its height and width. The style animates the fore color of the circle when
switching between true and false values (this can be turned off via $animateui).

The kCheckBoxRound button style supports a fill pattern or a transparent pattern set
using $backpattern. If filled, the circle takes the colors from $forecolor and
$secondaryforecolor for the checked (true) or unchecked (false) values, respectively. If
transparent, the circle is not drawn and only the icon for the checked or unchecked
state is displayed.

The round style uses $iconid and $secondaryiconid to control the icon displayed within
the circle for the checked (true) or unchecked (false) values, respectively. Furthermore,
when using themed SVG icons, you can use the $textcolor and $secondarytextcolor
(for the checked and unchecked values, respectively) to set the color of the icons,
which is white by default. For example, you could specify a green check icon when the
checkbox is true and a red cross icon when the checkbox is false.

The default values for fore colors and text colors are inherited from the OS, for
example, on macOS a round circle with nuanced blue is shown for true and a gray

circle for false values alongside white icons.

Pushbuttons
Button Timer

You can now add a timer to a pushbutton using the $timeout property to delay the
evClick event. (ST/HE/1779)

The $timeout property assigns a positive integer N to start a countdown timer that runs
for N seconds, appending the time left to the button text; you can assign zero to stop
the timer. When the timer expires, the button receives an evClick event with pTimeout
set to kTrue to indicate the timer has finished. When $timeout is active, the text for the
button updates once a second.

When sending evClick for the timeout, no evAfter is generated for the current field (this
ensures the timeout event is received).

This is a runtime only property, and only assignable when the button has text.

Button Area

The $buttonmode property has been added to the Button Area window control allowing
you to assign a user-defined or standard mode or action to the button area.
(ST/WO/2701)

All the actions or modes available for the Pushbutton are supported for $buttonmode in
the Button area (except for the color, linestyle, and pattern picker modes); this includes
kBMuser, kBMok, and kBMcancel, as well as the actions for entering data into an
Omnis datafile (these do not work for SQL databases). As with pushbuttons, kBMuser
is the default mode, which allows you to define your own method to execute when the
button area is clicked.

 Window Components

 141

IDE Button Style

A new button style kIDEButton has been added to $buttonstyle for window class
pushbuttons; this is intended to style buttons in the Omnis IDE, but you can use the
style in your apps if you want. (ST/WO/2723)

The appearance for the kIDEButton buttonstyle is defined in a new section, IDEbutton,
in the Appearance configuration file (appearance.json). You can override the border
and text colors set in the theme, by setting them to a color other than kColorDefault,
but note that a disabled button always uses the disabled text color.

Buttons styled with kIDEButton support hot tracking on both macOS and Windows,
which can be controlled via the “hottracking” item in the “IDEbutton” section: 1 means
buttons are hot on macOS, 2 means buttons are hot on Windows, 3 means buttons on
both macOS and Windows are hot, and zero means hot tracking is not used on any
platform.

Icon Color

Push Button controls now have the $iconcolor property which is the color when the icon
is a themed SVG icon; the default is kColorDefault. Check boxes, Radio buttons, and
Radio Group controls also have the $iconcolor property.

Themed SVG Icons
Window class controls now support SVG icons that have been “themed” using the
Omnis Themer tool (themed SVG icons were introduced for JS components in previous
versions). The ‘material’ icon set in Omnis contains themed SVG icons and is now
available automatically when you edit a Window class to allow you to add the material
icons to window components.

A themed SVG icon will use the color set in the $textcolor property of the window
class control, so it matches the color of the text for the control. For Styled text, a
themed SVG is drawn using the current text color for the text run.

A few external components have new properties to support themed SVG icons. The
Multi-button, Round button and Tile external components now have the $textcolor
property. The HTML icon link control now has the $::textcolor property. The color
specified in these properties will be applied to a themed SVG icon.

Drag Icon background

As a consequence of support for themed SVG icons for window classes, drag icons
now have a background by default on macOS, to prevent themed SVGs from becoming
invisible, and make drag icons more cross-platform. You can turn off this behavior
using the dragIconBackground item in the ‘macOS’ section of config.json (default is
true, to show the icon background).

Dark and Light Modes

You can specify different SVG icons for Dark and Light modes; this enhancement is
only intended for running desktop apps on Windows or macOS, since different system
color modes do not apply to web and mobile apps running in a web browser.

Each icon set folder can now have two sub-folders, named dark and light, into which
SVG icon files can be placed to support Dark and Light system color modes.

When you assign an icon to a control you only need to assign a single icon name or ID
and the icon for Dark or Light mode will be chosen automatically from the appropriate
sub-folder.

Paged Pane Buttons
The $showpagebuttons property has been added to the Paged pane control. When
set to kTrue, a page indicator is shown at the bottom in the center of the paged pane to
indicate which page is currently shown. The page indicator contains the same number

What’s New in Omnis Studio 11

142

of dots as there are panes in the control. The end user can change the current pane by

clicking on the page counter.

The $animatui property has also been added to Paged panes. When set to kTrue, the
pages slide to the left or right when the page changes; when set to kFalse, the page
pane will change instantly when the page button is clicked.

OBrowser
Back and Forward options

The $contextmenuremovebackforward property has been added to the OBrowser
component, to hide or show the Back and Forward navigation items from the context

menu for the component. (ST/EC/1667)

In addition, the View Page Source... item has been removed from the context menu,
since this did nothing in the context of the embedded browser in OBrowser.

HTTP headers

The $headerlist property has been added to the OBrowser component, a runtime-only
property, to set the HTTP headers tor the embedded browser in OBrowser.
(ST/BR/387)

The $headerlist property takes a two-column list of HTTP headers to be added, or
removed, for each URL request. Column 1 is the header name (without trailing colon).

Column 2 is the header value, which you can set to #NULL to remove the header.

The list is applied in line order, so you can modify an existing header by removing it
and then adding it. The list is applied to every request made after assigning
$urlorcontrolname to a URL. The referer header cannot be changed using this method.

Headed List
Progress Bar

You can now display a Progress Bar in a column inside a Headed List box control, for
example, to indicate a percentage value. (ST/GR/405)

To enable a progress bar to be displayed, there is a new text style kEscBar which can
be used with the style() function (note kEscBar is not supported in the JavaScript
client). When enabled, the progress bar sizes to the column width, so no other content
is allowed in the column.

kEscBar draws a bar with 1 or 2 segments in a headed list column. kEscBar can take 3
or 5 parameters: the background color, segment 1 width (%), segment 1 color, then

optionally segment 2 width (%), and segment 2 color.

For example, you can use the following in the calculation for a headed list column to
draw a red segment of width iPercent % of the column width over a gray bar sized to
the column width:
 style(kEscBar,kGray,iPercent,kRed)

In this example, iPercent is a column value in the list.

Ellipses in Headed Lists

Ellipses are shown when there is not enough space to display all the content in a
headed list cell (or in the text for a tree list node); this applies for headed lists with more
than one column.

The $disableellipsis property has been added to the Headed List and Tree List
window components to allow you to disable ellipses for individual list fields, if required.

 Window Components

 143

This is in addition to the existing $clib.$prefs.$disableellipsis library preference which

allows you to disable ellipses for all Headed Lists and Tree Lists.

Tooltips

The length of text in tooltips for Headed list boxes is now unlimited; in previous
versions, the length was limited to 255 characters. (ST/WO/2695)

Although there is now no limit imposed on the tooltip length, in practice the absolute

maximum would be 32000, and the longest reasonable size to use would be around 2k.

Resize Column

The $resizecolumn property has been added the Headed list. (ST/WO/2726)

The $resizecolumn property specifies the column that is resized appropriately when the
width of the control changes, such as when using $edgefloat properties to resize the
list when the window size changes. A value of zero means no column is resized, but
the last column extends if necessary.

Complex Grid
Row Height

The $getrowheight([irow]) method has been added to Complex Grids which returns
the height of the specified row. If iRow is not specified the height of the current row is

returned. (ST/GR/401)

Resizing Rows

The ‘shiftRequiredToResizeAllRows’ configuration item has been added to the
‘complexgrid’ section of config.json to control the way Complex grid rows are resized
when using the mouse and Shift key. (ST/GR/408)

If true (the default), dragging a row divider without pressing the Shift key resizes the
single row above the row divider. To make all rows have the new row height, press the
Shift key while dragging a row divider.

If false, the behavior is reversed. Press the Shift key while dragging a row divider in
order to resize the single row above the row divider. Dragging a row divider without
pressing the Shift key gives all rows the new row height.

Footer

You can now target the footer dynamically in a Complex Grid. (ST/GR/433)

To support this new feature the kGridOther constant has been renamed to

kGridColumnFooter .

String Grid
The $cellleftpadding property has been added to the String grid control (and Data grid).
This allows you to add content padding to the left of all cells in the grid. (ST/WO/2755)

Rounded Borders
You can now apply rounded borders to most Window class UI controls with the addition
of the $borderradius property. (ST/WO/2700 & ST/WO/2702)

The $borderradius property has been added to many window controls to allow you to
apply rounding to the control, including the following controls:

Single line entry Multi-line entry

Masked entry Token entry

Picture List

Tree list Headed list

What’s New in Omnis Studio 11

144

Checkbox list Dropdown list

Combo box Scroll box

Complex grid Data grid

String grid Paged pane

The $borderradius property only applies when $effect is kBorderPlain, kBorderCtrlEdit
or kBorderCtrlList.

In addition, the $borderradius property has been added to Pushbuttons, Radio buttons,

and Check boxes when $buttonstyle is set to kUserButton (ST/WO/2667).

Styled Text
The $styledtext property has been added to the Tab pane component. When set to
kTrue, the text for the tabs can now use styled text. (ST/WO/2654)

When $styledtext is kTrue, styled text can also be used for the $tabcaption and

$alltabcaptions properties to display styled text in the tab captions.

In addition, styled text can be used in the $text property for push buttons, radio buttons
and check boxes when $styledtext is kTrue.

Tree List
The $getnodetooltip method has been added to Tree List control. (ST/EM/234)

The $getnodetooltip(rNoderef) method is called (if $tooltip is empty) to get the tooltip to
display when the mouse is over the specified node rNoderef. It returns either a styled
text tooltip string, or an empty string (meaning use the default tooltip text).

To implement this method, right click on the method in the method tree, and override it.

Rounded Rectangle and Shape Field
The Rounded Rectangle background object and Shape Field now have the
$cornerradius property, which is the pixel radius of the corners of the object (assign a
value <= 0 to set this property to its default value). The maximum value of
$cornerradius is 255.

In versions prior to Studio 11, rounded rectangles were not drawn with the same
amount of rounding on Windows and macOS: when the value of $cornerradius is 0, this
difference is maintained, for compatibility, and after converting a library to Studio 11,
$cornerradius defaults to zero. When you set the value of $cornerradius to a positive

integer (1-255), both platforms now use the same amount of rounding.

Tab Pane and Paged pane
The $movetab property has been added to the Tab pane, and the $movepage
property has been added to the Paged pane. (ST/WO/2460)

The $movetab and $movepage properties allow you to move a tab or pane in design
mode, which is useful when adding new tabs or panes and you need to reorder existing
tabs or panes.

Picture Control
The $iconid and $iconcolor properties have been added to the Picture Control.
(ST/WO/2730)

The $iconid property allows you to use an icon from an iconset in the control, such as
an SVG icon, for example, to create a background image for a window. The $iconcolor
property can be used to specify a color for a themed SVG icon. Setting either
$dataname or $calculation takes precedence over $iconid.

 Window Components

 145

Combo Box
You can now use $ctarget.$assign() to set the focus on a Combo box in a window

toolbar. (ST/TB/336)

In previous versions you could not programmatically set the focus on a toolbar combo
box, but now you can using $assign() and the following code:
Do $ctarget.$assign($cinst.$toolbars.tCombo.$objs.combo) ## or

Do $ctarget.$assign($itoolbars.tCombo.$objs.combo)

In addition, $ctarget.$assign() works when the window has no current field, but this
does not work during $construct for any field. Therefore, there is another enhancement
to allow Queue set current field to work for toolbar combo boxes (and on Windows,
toolbar droplists). To do this, use the code
Queue set current field $cinst.$toolbars.t1.$objs.combo

which does work when executed during the window $construct.

Hyperlink
You can now add a separator line in the list of options in the Hyperlink control; this only
applies when $vertical is kTrue.

To include a separator line, set the text in the $dataname list to a single - (hyphen)
character; the line draws across the width of the control, inset by the left margin. The
group id (in column 1) contains the color of the line; kColorDefault means use the IDE
line color (as defined in appearance.json). For example:
 Do ihlkSubList.$add(kColorDefault,0,-)

Color Palette
The Color Palette now allows you to set the initial color, rather than using
kDefaultcolor. (ST/WO/2754)

The $colorind property has a new mode 11 which takes a color passed as parameter 3;
in this case parameter 1 is unused and should be passed as 0. If it finds the color in
either of the 3 color palettes (256, 16 users, or 16 constants) it sets the current color.
For example:
Do $cinst.$objs.colorpal.$colorind(0,11,kColorUser13), or

Do $cinst.$objs.colorpal.$colorind(0,11,rgb(255,0,0))

Window Toolbars on macOS
The $toolbaroptions property for window classes has two new constant values:
kTBOptionmacOSExpanded to provide a macOS expanded style to allow a legacy
toolbar appearance on macOS 11+, and kTBOptionmacOSCompressed to minimize
the space between toolbar items for a macOS unified toolbar. (ST/TB/335 and
ST/TB/334)

kTBOptionmacOSExpanded

When selected kTBOptionmacOSExpanded will place any toolbar displayed in the
title bar of a window on macOS Big Sur or later below the title with the title centered as
with previous versions of macOS. This setting is overridden by the global configuration
file ‘useToolbarStyleExpanded item in the ‘macOS’ group in config.json (added in
10.2). When set to true all windows on macOS will use the expanded style. By default
on macOS Big Sur and later a toolbar in the title bar will appear unified and be
positioned next to the title.

kTBOptionmacOSCompressed

When selected kTBOptionmacOSCompressed will minimize the space between
toolbar items for a macOS unified toolbar, i.e. where the toolbar title appears to the left
of the toolbar items. The text label for items are also hidden. This option only has effect
where the unified toolbar is supported (macOS Big Sur and later). For this option to be

What’s New in Omnis Studio 11

146

active the kTBOptionmacOSExpanded or kTBOptionmacOSOmnisTopToolbar option
cannot be set. Space can be added between toolbar items by using a blank
kToolSpacer toolbar component.

JavaScript Client Bridge
Due to issues sending messages to Omnis including Omnis dates inside lists/rows, any
object members whose names begin "__" (double underscore) are now stripped out

before sending to Omnis, e.g. in a 'sendControlEvent()'. (ST/EC/1774)

Calendar External Component
The UI in the Calendar external component has been enhanced to display dates using
a modern interface (it is now more like the JS Calendar control, but only displays dates
and not times). (ST/EC/1698)

The following screenshot shows the existing and the new UI for the Calendar external
component.

The new $uistyle property must be set to kCalUIstyleModern to enable the new UI;
the kCalUIstyleClassic setting maintains the existing drawing style (the default). The
following properties are only available when $uistyle is set to kCalUIstyleModern:

Property Description

$navcolor The color used for the navigation bar

$navfont The font used for the navigation bar

$navfontsize The fontsize used for the navigation bar

$navtextcolor The color of the text in the navigation section

$showmonthnav If true, if the navigator bar is shown

$weeknumbercolor The color for the background of week numbers if shown

$weeknumbertextcolor The text color for week numbers if shown

$showweeknumber If true, the week number column is shown

$setdayicon Sets the day icon

The following existing properties are ignored if $uistyle is set to kCalUIstyleModern:

$daymode
$currdaymode
$headingmode

$otherdaymode

Navigation bar

When the $showmonthnav property is set to kTrue the navigation bar is shown.
Clicking on the right or left arrow in the navigation bar will change the month view.

 Window Programming

 147

If you click on the month displayed in the navigation bar the month selector is shown in
the main calendar, and likewise selecting the year in the navigation bar the year
selector is shown in the main calendar. Selecting a cell from any selector returns the
calendar to the previous selector and eventually to the default mode.

If $allowchange is set to false, the left and right navigation buttons are removed and

various navigation selectors unavailable.

If $showweeknumbers is set to kTrue, week numbers are displayed down the left side
of the calendar; the color of the week number text and background is controlled using
the $weeknumbertextcolor and $weeknumbercolor properties, respectively.

Window Programming
Toast Messages
The $toastnotificationclicked() method has been added to startup tasks which you can
use to determine when a toast notification message has been clicked. (ST/NT/794)

The $showtoast() method has a new optional parameter pContext, which can be
passed into $toastnotificationclicked when the content of the toast is clicked, and after
querying pContext your code could take some specific action, such as opening a
window.

If you return kTrue from $toastnotificationclicked, the toast is closed immediately.

$toastnotificationclicked is not called if clicking the toast close box.

Window Minimum Size
The $minwidth and $minheight properties have been added to the window class to
allow you to set a minimum width and height for a window. This can be useful if you
want to stop the end user making a window containing many floating fields too small, to

preserve its layout, for example. (ST/WC/569)

$minwidth and $minheight are the minimum values to which the $width or $height
properties of a window can be set, either programmatically or by the user resizing the
window. A value of zero (the default) means that no minimum is specified.

Window Animations
Certain properties of window instances can now be animated using the
$beginanimations() and $commitanimations() methods, including $alpha, $left, $top,
$width, and $height. So for example, when closing a window you could fade it out by
setting $alpha under animation before closing it, or similarly you could enlarge a

window under animation as you open it to create more impact.

Simple Style Windows
The $growbox property is now assignable for simple style windows ($style = kSimple),
as this controls whether the window has a sizing border. This will allow you to make
simple style windows look more alike on macOS and wWindows. (ST/WC/580)

For a window with $style set to kSimple, irrespective of the setting of $growbox, you
can always resize the design window. On Windows, there is a wider sizing border in
design mode, even if $growbox is kFalse. When you open the window, the open
window is only resizable if $growbox is true, and on Windows it only has a wider sizing

border in this case.

The net effect is that for kSimple style windows with $growbox kFalse, there is no wide
sizing border on either platform for the open window, making them appear more alike.

What’s New in Omnis Studio 11

148

Window Title Colors on macOS
The colors for window title bars on macOS can be set using new settings in the

appearance.json file. (ST/HE/1778)

macOS now uses the coloractivecaption and colorinactivecaption items in the
‘system’ section of appearance.json to provide the colors for window title bars. If either
of these is set to kColorDefault, the system default colors are used.

In addition, there is a new entry macoscaptiontextappearance in the ‘system’ section
of appearance.json that specifies the text color for captions (the window title); this is an
integer: 0 system default, 1 dark text, 2 light text.

Docking Areas & $screen property on macOS
On macOS, the $screen property (a property of $toplevelhwnd) now excludes a visible

macOS dock from its coordinates. (ST/HE/1625)

There is a new item excludeDockFrom$screen in the ‘macos’ section of config.json,
which is true by default. A reference to $screen can be obtained using the following
code:
Set reference lItem to $cinst.$toplevelhwnd.$ref

Set reference lItem to lItem.$screen.$ref

Bitmap Image Conversion
On macOS, the pictconvto() function now supports conversion from all supported
bitmap data formats, i.e. TIFF, BMP, JPEG, GIF, etc. (ST/WO/2669)

Where a source data format is empty, an attempt will be made to convert from any
supported bitmap image representation, e.g. TIFF, BMP, JPEG, GIF, etc. The data

must be in raw format with no Omnis header.

Masked Entry Fields
The $formatstring property in Masked Entry Fields has been enhanced to allow you to
display floating Decimal Point numbers. (ST/FU/825)

When defining an input mask in $formatstring, you can now use D (or d) in place of . in
a number format section, forcing Omnis to add at most the decimal places specified in
the format, with no trailing zeroes and no trailing decimal point.

For example, you can use #,##0D000 to format numbers to include a thousands
separator and up to 3 decimal places. The formatted result will not contain any trailing

zeroes or a trailing decimal point.

The popup for defining numeric formats in $formatstring now includes a button for D.

JSON Components
SVG Icons
The icon for a JSON defined control can now be SVG and it can be themed.
(ST/JS/2787)

The SVG image file must be placed in the folder with control.json, and the JSON
control will use it as the control icon in the Component Store.

 SQL Programming

 149

SQL Programming
Debugging Slow Queries
A new property $trackslowqueries has been added to the Omnis DAMs to allow you

to track and debug slow queries. (ST/*A/162)

The value of $trackslowqueries represents the number of seconds that an EXECUTE
or FETCH from the database has to reach before being considered slow. The default is
0 which means the query tracking is off.

For example, if the value of $trackslowqueries is 2 and a query takes 3347 milliseconds
to finish, the query will be reported to the trace log alongside its execution time. If
$debuglevel is set to 2 and a $debugfile is set, the slow query will be reported in both
trace log and file specified in $debugfile.

Part of the SQL executed will be included in the message, up to 80 characters, in order
to keep the logs clean; this should be enough to identify the query in the code.

updatenames() List Method
Three new parameters have been added to the $updatenames() method for a list with
a table instance that allow the Where clause to be omitted and the updated columns to

be determined from the data that has changed. (ST/NT/789)

The definition for $updatenames() is now:

❑ list.$updatenames([cOldrowName] [,cRowName='', bExcludeWhere=kFalse,
wOldrow=#NULL, wRow=#NULL])

Pass bExcludeWhere as kTrue to exclude the Where clause. This is false by default. If
wOldRow is supplied, then wRow can also be supplied, or if not, the current line of the
list will be used (so if wRow is omitted and there is no current line, $updatenames fails
and returns #NULL).

When wOldRow is supplied, in addition to the usual behavior of omitting columns
marked as $excludefromupdate, $updatenames also excludes columns where the
value in wOldRow equals the value in wRow (or the current list line if wRow is not
supplied).

Omnis VCS
VCS API
Some of the functions of the Omnis VCS have been exposed to allow you to interact
with the VCS or the contents of a project programmatically. (ST/VC/725)

You can make API calls to the Omnis VCS by calling:

$root.$modes.$dotoolmethod(kEnvToolVcs,'vcs_method_name'[,parameters,..]),

The first parameter is always kEnvToolVcs to specify a VCS method, followed by the
VCS method name and the appropriate parameters.

What’s New in Omnis Studio 11

150

Tokens

Each API call requires the use of a token, which is a unique string generated by the
VCS when a successful logon occurs. This token is an essential parameter to all the
calls (apart from $x_logonVCS) as it is the mechanism that the VCS uses to verify the
validity of the API call. By default a token will last for 60 minutes, but you can extend
the token lifespan to up to 8 hours. When the token time has expired, you will be

logged off automatically and will need to logon again.

Logon

The $x_logonVCS method allows you to logon to the Omnis VCS using an existing
SQL session, returning a token which must be passed by the other methods.
Do $root.$modes.$dotoolmethod(

kEnvToolVcs,'$x_logonVCS',cHOSTNAME,cUSERNAME,cPASSWORD,

nTokenTime,cToken,cErrors) Returns bStatus

cHOSTNAME, cUSERNAME, cPASSWORD are character strings used to identify the
session to log onto. The session must have been previously set up via the SQL
Browser Session Manager. cHOSTNAME is the name of the VCS session previously
set up and cUSERNAME and cPASSWORD are the credentials that are setup inside
the VCS (not the database credentials).

nTokenTime is a value to determine (in minutes) how long the token will remain valid
for. If 0 is passed, a default value of 60 minutes is applied; the token time can be up to
a maximum value of 480 (8 hours).

If the logon is successful, bStatus will return kTrue and cToken will contain a token

generated by the VCS which must be used to authenticate subsequent API requests.

As with all the methods (except Logoff), cErrors will contain any errors.

Logoff

The $x_logoffVCS method logs out of the current VCS session.
Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_logoffVCS',cToken)

You need to pass cToken to logoff.

Get Token Info

The $x_getTokenInfo method returns information about the token and session.
Do $root.$modes.$dotoolmethod(

kEnvToolVcs,'$x_getTokenInfo',cToken,rRow,cErrors) Returns bStatus

If successful, rRow lists the Token, Token Expiry Time, the session name you are
logged on to, VCS username you are logged on with, the token timeout in minutes and
the Logon time.

List Projects

The $x_listProjects method returns a list of projects.
Do $root.$modes.$dotoolmethod(

kEnvToolVcs,'$x_listProjects',lLibList,cToken,cErrors) Returns bStatus

If successful, lLibList will contain the list of projects that are available in the VCS
repository.

Class Status

The $x_classStatus method returns the status of a class, its checked out status, who
checked it out, and so on.
Do $root.$modes.$dotoolmethod(

kEnvToolVcs,'$x_classStatus',refClassRef,rRow,cToken,cErrors) Returns

bStatus

refClassRef is a reference to a class in your local library. If the call is successful, the
row variable rRow will be populated with the name of the class, its checked out status,
who checked it out and when, the date of the last revision and who checked it in, as
well as the current revision number.

 Omnis VCS

 151

Checked Out Classes

The $x_checkedOutClasses method returns a list of checked out classes.
Do $root.$modes.$dotoolmethod(

kEnvToolVcs,'$x_checkedOutClasses',cUserName,[cLibName],lList,cToken,cErrors

) Returns bStatus

cUserName is a character string for the VCS user name. The optional parameter
cLibName filters the list of checked out classes to the supplied library name. If the call
is successful, lList will be a list of classes containing project name, user name, class
type, class name, checked out date, check out notes and the original library name.

Is Class Current

The $x_isClassCurrent method tells you if a local class is up to date or not.
Do $root.$modes.$dotoolmethod(

kEnvToolVcs,'$x_isClassCurrent',refClassRef,cClassStatus,cToken,cErrors)

Returns bStatus

refClassRef is a reference to a class in your local library. If the call is successful,
cClassStatus will contain either 0 or 1: if 0, the class is up to date with the VCS, or if 1,
the VCS version is newer than the local copy.

Check Out

The $x_checkOut method allows you to check out or copy out a class.
Do $root.$modes.$dotoolmethod(

kEnvToolVcs,'$x_checkOut',refClassRef,refLibRef,cToken,bCheckOrCopy,cErrors)

Returns bStatus

refClassRef is a reference to a class in your local library and refLibRef is a reference
to the library you are checking the class out to. bCheckOrCopy is a boolean allowing
you to either check out (kTrue) or copy out the class (kFalse).

Check In

The $x_checkIn method allows you to check in a class.
Do $root.$modes.$dotoolmethod(

kEnvToolVcs,'$x_checkIn',refClassRef,refLibRef,cToken,cErrors) Returns

bStatus

refClassRef is a reference to a class in your local library and refLibRef is a reference
to the library you are checking in from. The project must already exist in the VCS as it
is not currently possible to create a new project using the API.

Label Project

The $x_labelProject method allows you to label a project.
Do $root.$modes.$dotoolmethod(

kEnvToolVcs,'$x_labelProject',cProject,cLabel,cToken,bOverwrite,cErrors)

Returns bStatus

cProject is the name of the project, cLabel is the label and bOverwrite indicates
whether to overwrite an existing label of the same name.

Build Project

The $x_buildProject method allows you to build a project to a specified folder.
Do $root.$modes.$dotoolmethod(

kEnvToolVcs,'$x_buildProject',cProject,cBuildPath,cLabel,

bLocked,bOverwrite,bLowercase,cToken,cErrors) Returns bStatus

cProject is the name of the project, cBuildPath is the directory to build into, cLabel is
the label to use, bLocked indicates whether to build a locked library, bOverwrite
identifies whether to overwrite an existing library, bLowercase builds the file name in
lowercase.

VCS Auto Login
There is a new option in VCS sessions to allow you to logon automatically at startup.
(ST/VC/695)

What’s New in Omnis Studio 11

152

For VCS sessions, there is a new ‘VCS’ tab that allows you to enter the VCS username
and password which will be used to log onto the VCS automatically when you start
Omnis. If this is an existing session, there is a button which allows you to verify the
username/password are correct for the session. Then on the Session Definition tab you
need to enable the ‘Logon at Startup’ option.

VCS Check in/out Options
The VCS Check in/out options can now be shown on one screen, without tabs.
(ST/VC/767)

The VCS Options has a new option Show All Options Without Tabs (included on the
Check in & Check out tabs) to allow you to show all Check in/out options in one screen

(by hiding the tabs) when classes are checked in/out.

Initial Library Check in
The VCS build properties are now set automatically when a library is checked in for the
first time, setting the classes to read-only. (ST/VC/792)

The is a new option Make library read-only when checking in for the first time on
the Check In tab under the VCS options to control this behavior; the default is
enabled, therefore set this to false to restore behavior in previous versions.

List Programming
List Methods
The LIST.$count() method has been added to list variables to return the count of lines

in a list. (ST/FU/813)

The method LIST.$count([bSelectedLinesOnly=kFalse]) returns the count of lines in a
list, optionally passing bSelectedLinesOnly as kTrue to only count selected lines. This
enhancement extends LIST.$count() to whole lists, since the method has been

available for list columns in previous versions.

Report Programming
Report Fields
The maximum number of report fields allowed in a report class has been increased to
8191 from 3000. (ST/RC/1383)

You are advised to split large reports (containing a large number of report fields) into a
number of sub-reports, and print them to either the Printer or PDF using the Begin and
End print job commands.

 Omnis Programming

 153

Page Preview Zoom Factor
You can now specify the initial zoom level for the Page Preview report destination.

(ST/RC/1347)

The ‘/zoom=n’ parameter can now be included directly after the ‘Title’ parameter when
executing the Send to page preview command, or setting the $windowprefs preference.

❑ Send to page preview syntax is now
Send to page preview ([Do not wait for user][,Hide until complete])
title[/zoom=n][/left/top/width/height/cen/max/stk]

❑ $prefs.$windowprefs setting is
Title[/ZOOM=n][/left/top/width/height/CEN/MAX/STK]) sets the position and initial

zoom factor for preview windows

The string /zoom=n is optional, where n is an integer zoom factor, while a zero value
means zoom fit. If omitted the command or preference behaves as in previous
versions, i.e. the Preview window is zoomed to fit the screen.

A value for n of -1 to -7 means use the standard zoom factor indexed using -n (1 to 7);
this corresponds to the 7 standard zoom factors for the window, in ascending order.

A positive value means use the standard zoom factor closest to, but not exceeding, n.
So you can pass in 175 for example to have an initial zoom factor of 175%.

Report Data Grid Column Parameters
Column calculation properties (in $::calculation) for the Report Data Grid component
are now tokenized so that they work with the current function parameter separator.
(ST/EC/1649)

For compatibility with previous versions, the component still works with the
$::calculation and $columnheader properties stored as character strings, provided that
the function parameter separators match those currently in use. When you re-enter one
of these properties (select the property in the Property Manager and press Return) the
property changes so that it is stored as a tokenized calculation, which will then work

with any function parameter separator.

An alternative way to convert a library is to export to JSON and re-import, and in this
case Omnis tokenizes the calculations on import. For import, Omnis will accept the
report list calculations as either character strings or calculations; import always results
in tokenized calculations being stored. Accepting both forms means that import is
compatible with JSON exported in previous versions.

Report Preview URL Prefix
The omnisPreviewURLPrefix item has been added to the ‘defaults’ section of
config.json to allow you to set the report preview URL prefix for the $linkaddress and
$address properties for report class Entry fields and HTML Link objects. The item
defaults to ‘omnis:‘ if empty. (ST/RC/1340)

Omnis Programming
User Constants
User constants allow you to define constants in a new User Constants class for use in
your methods and expressions. A user constant is a named value, where the value
cannot be changed during execution. Generally speaking, user constants can be used
anywhere in Omnis code and expressions, although there are exceptions, because
they cannot be used anywhere that would attempt to modify them, for example:

❑ As the result of a Calculate command

What’s New in Omnis Studio 11

154

❑ As the Returns component of commands such as Do

❑ As the dataname of a variable

To define user constants, you add their names and values to a new class type, the
User Constants class. The types and therefore values are restricted to Character,
Integer, Number and Boolean. You can have multiple user constants classes, each of

which defines a number of user constants and their values.

Internally, user constants are handled as a special type of file class, meaning that the
same naming rules as those for file classes apply, i.e. $clib.$prefs.$uniquefieldnames,
$clib. $prefs.$sensitivefieldnames and $clib.$prefs.$sensitivefilenames all apply (note
that this means $sensitivefilenames and $uniquefieldnames are now included in
JavaScript-only development editions of Omnis Studio). For naming and tokenisation
purposes, user constant names are essentially file class variable names.

Also, user constant classes are always treated as memory only, and file class
commands such as Clear all files, and Set memory-only files have no affect on user
constant class CRBs.

When exporting a library using the JSON export, user constants classes are included,
using a similar syntax to that used for file classes.

Creating User Constants

The New Class hyperlink in the Studio Browser and New Class hierarchical context
menu have a User constants command, to create a new User Constants class. There
is also a class filter that controls whether user constant classes are visible.

There is a new editor for user constants classes, where you can define the name, type,
subtype, value and description of user constants. User constants can be named
however you like, including the prefixes “k” and “ev” which are used for built-in
constants and events.

If you try to delete a user constant, the editor will check the current library to see if the

constant is in use, and warn you about this.

The Catalog has a new tab, named User Constants. This has similar behavior to the
Variables tab.

Method Editor and Code Assistant

User constants have a new syntax color and style, in the IDEmethodSyntax group of

appearance.json: userconstantcolor and userconstantstyle.

The code assistant default sort order includes user constants at the start of the list,
sorted with instance variables, etc.

Also, the option click menu, opened when you right click on a user constant, is a subset

of that which applies when you right click on a file class variable.

The Method Editor and other editors in the IDE have validations to prevent user
constants from being used where their value could be changed. Similarly, debugger
variable windows do not allow user constants to be modified. However, it is impossible
for the IDE to detect every such situation e.g. due to expressions generated at runtime
using square bracket notation, so in addition, as a fallback, the low-level code
managing the CRB also checks for attempts to modify a user constant, and generates
a runtime error if something attempts to do this.

Notation

There is a new notation group in $clib, named $userconstants, supporting similar
notation to $files. However, user constants classes do not have $conns, $datahead or
$indexes members, and user constant objects only have the properties $desc, $ident,
$name, $objinitval, $objtype, $objsubtype, $objsublen and $userinfo. $objinitval
contains the value of the constant.

Using the class notation for a user constants class is the only way you can
programmatically modify the value of a user constant.

 Omnis Programming

 155

The $classtype value for a user constants class is kUserConstants.

Adding Method Lines
You can now use $addbefore() and $addafter() with the $methodlines class method
property. (ST/NT/800)

❑ $addbefore(rItem,cText)
adds a new line with content cText before the line specified by rItem (rItem can be

either a 1-based integer line number, or an item reference to a line in the method)

❑ $addafter(rItem,cText)
adds a new line with content cText after the line specified by rItem (rItem can be
either a 1-based integer line number, or an item reference to a line in the method)

For example:
Do $cclass.$methods.$remove($cclass.$methods.Test)

Do $cclass.$methods.$add("Test")

Do $cclass.$methods.Test.$methodlines.$add("# aaa")

Do $cclass.$methods.Test.$methodlines.$add("# ccc")

Do $cclass.$methods.Test.$methodlines.$add("# eee")

Do $cclass.$methods.Test.$methodlines.$addbefore(2,"# bbb")

Do $cclass.$methods.Test.$methodlines.$addafter(3,"# ddd")

Do

$cclass.$methods.Test.$methodlines.$addbefore($cclass.$methods.Test.$methodl

ines.1,"# New line 1")

Do

$cclass.$methods.Test.$methodlines.$addafter($cclass.$methods.Test.$methodli

nes.2,"# New line 3")

Max Chain Depth
The maxChainDepth item has been added to the ‘defaults’ section of config.json
which allows you to configure the maximum number of field or item references that
Omnis will chain through in order to reach the referenced variable. (ST/VR/328)

The default or minimum is 20, and in all but exceptional cases, you should leave this
item set to 20. You can change it if you have a heavily recursive method that uses field
reference parameters. Since the minimum value is 20, setting this to any value less
than 20 results in Omnis using the value 20.

The debugger field menu still only chains through up to 20 references.

Initial Parameter Values
The way parameter variables are initialized has changed: any parameters that are
omitted when you call a method are now initialized using their initial value. This is the
default behavior for new libraries. (ST/NT/781)

A new library preference, $clib.$prefs.$useoldparameterpassing has been added to
control this behavior. If true, an empty parameter that is not the last parameter is
initialized to empty or zero, rather than its initial value in the called method parameter
definition (this does not apply to client executed client methods in the JavaScript client).
The new library preference defaults to false in new libraries, and true in converted
libraries to maintain backwards compatibility.

Item Group Methods
The group methods $makelist, $appendlist etc now allow you to list all objects in the
item group ignoring any containers. (ST/FU/822)

If the first argument is now the constant kRecursive, the item group methods $makelist,
$appendlist, $insertlist, $count for window class and instance $objs and $bobjs groups,
and remote form class $objs groups, now ignore containers and adds all objects to the

What’s New in Omnis Studio 11

156

returned list. The bRecursive argument has also been added to $sendall(), that applies
to window class and instance $objs and $bobjs groups, and remote form class $objs
groups.

Collecting Performance Data
Performance data collection no longer updates the $...executiontime properties (min,
max, total) when the method is being called recursively, however it still updates

$callcount for recursive calls. (ST/PF/1281)

Notation Error Checks
The ‘stricterNotationErrorChecks’ configuration item is now set to true by default.
(ST/NT/782)

Error Reporting for External Components
A new item "allExternalComponentErrorsAreFatal" has been added to the "defaults"
section of the Omnis configuration file (config.json) to manage whether or not
#ERRCODE and #ERRTEXT are reported by external components. (ST/PF/1338)

When allExternalComponentErrorsAreFatal is true (the default), and an external
component sets #ERRCODE and #ERRTEXT, the error always generates a runtime

error, entering the debugger in the development version of Omnis.

Web Services
HTTP Methods
The $sethttpstatus method now defaults to 200. (ST/WS/330)

RESTful APIs now no longer require $sethttpstatus to be called; if it is not called, the

status defaults to 200 OK.

Escaping String Parameters
The 'Escape query string parameters' option has been added to the RESTful panel,
allowing you to control whether or not string parameters are URI escaped.
(ST/WS/332)

The 'Escape query string parameters' option defaults to true (replicating the behavior in
previous versions), meaning that query string parameters are URI escaped. When
turned off, the query parameters are not URI escaped, allowing you to perform any
character encoding conversion yourself. For example, if you receive UTF-8 data
instead of ASCII, you could turn this option off and escape the text using the
ow3.escapeuritext() function.

Web and Email Communications
OW3 LDAP Worker
A new LDAP Worker has been added to the OW3 group of worker objects, named
LDAPClientWorker. Lightweight Directory Access Protocol (LDAP) allows “the sharing of
information about users, systems, networks, services, and applications throughout the
network” (Wikipedia).

To use the LDAP Worker, the $init method has the following definition:

❑ $init(cURI,cUser,cPassword) Initialise the object so it is ready to access the
specified URI using LDAP.Returns true if successful
cURI: The URI of the server, optionally including the URI scheme (ldap or ldaps)

 Web and Email Communications

 157

e.g. ldap://ldap.myserver.com. If you omit the URI scheme e.g. ldap.myserver.com,
the URI scheme defaults to ldap
cUser: The user name to be used to log on to the LDAP server
cPassword: The password to be used to log on to the LDAP server

After calling $init(), you can call $run() or $start(), as the details of what is to be
retrieved from the server are passed in the URL. The standard RFC4516 defines the
syntax of LDAP URLs (https://docs.ldap.com/specs/rfc4516.txt).

When the query completes, the worker calls $completed in the usual way for OW3
workers. The row passed to $completed has 4 columns:

errorCode: Zero for success, otherwise an error code

errorInfo: The description of the error

log: If you enabled logging for the OW3 worker, this contains the log

rawData: If successful, the result of the LDAP query. The developer is currently

responsible for parsing this.

OW3 Python Worker
A new Python Worker has been added to the OW3 group of worker objects.
(ST/EC/1749)

The Python worker works exactly like the JavaScript worker, including support for

HTTP/2, with a few exceptions, as follows.

The $init method has only one parameter instead of two, since Omnis does not support
the remote debugger capabilities in Python.

When passing rows to the Python worker, a dictionary object is created in your Python

module. When passing lists, a list object is created.

Installation

The Python executable is not provided with Omnis, so you will have to install it
manually alongside pip (the package manager) on your chosen platform. The Python
worker will work with python3 only and ideally you should use at least Python 3.6. Get
the latest download and installation notes for different platforms from:
https://www.python.org/

On Linux and macOS, Omnis expects the binary to be in /usr/bin/python3 as well as on
the PATH. On Windows, Omnis expects the installation to also be in the PATH as it
relies on loading the python3.dll to get the directory where Python is installed and use
the python.exe within. Currently, you cannot specify a path to a different python
executable to use.

In addition, flask, psutils and requests are required; these are listed in a file called
requirements.txt which is in the pyworker folder in the Omnis read/write directory. You
can either install them manually or by doing pip/pip3 install -r
path/to/file/requirements.txt

In order to create a Python module, create a new folder inside the pyworker folder in
the Omnis read/write directory, and include a main.py file which Omnis will load at
runtime. When calling your module, use the folder name of your module and a function
within your main.py. You can import omnis_calls in your main.py and use
sendResponse or sendError if required, or you can simply return a message or some
data, or raise an Exception if an error occurred (in which case it should automatically
return a $methoderror or $methodreturn).

https://docs.ldap.com/specs/rfc4516.txt
https://www.python.org/

What’s New in Omnis Studio 11

158

HTTP/2 support for OW3 Workers
The OW3 Workers have been enhanced to support HTTP/2 which is more secure as it
uses binary protocols instead of plaintext, and is generally faster and more efficient for
web communication. (ST/EC/1717)

The nghttp2 open source library has been added to accommodate HTTP/2 support,
and various libraries have been updated including: zlib, mbedTLS, libssh2, and libcurl;
if your application uses OW3 your product licensing should include the appropriate
third-party licensing.

In addition, KOW3cryptoTypeBlowfish for the OW3 CRYPTOWorker has been
deprecated (and will be removed in a future release) since there are more secure

encryption algorithms available.

OW3 Worker Methods
The OW3.$parserfc3339() static method has been added to return an Omnis date-time
value from a RFC3339 formatted time. (ST/VR/330)

❑ $parserfc3339(cRfc3339[,bUTC=kTrue,&iOffset,&cErrorText])
parses a date and time value conforming to RFC3339 and returns an Omnis date-
time value and optionally the time zone offset in minutes.
Returns #NULL if the string cannot be parsed.

The parameters are:

Parameter Description

cRfc3339 a date and time string conforming to RFC3339

bUTC If true, the returned date-time value is in UTC rather than the local time
zone of the RFC3339 date-time value

iOffset If the RFC3339 date and time string is parsed successfully this receives
the time zone offset in minutes

cErrorText If supplied, receives text describing the error that caused
$parserfc3339 to return #NULL

OW3 OAUTH2 Worker
Grant Types

The OW3 OAUTH2 Worker Object now supports multiple grant types:
authorization_code, password, and client_credentials (as per RFC 6749 sections 4.1,
4.3 and 4.4). (ST/EC/1658)

The new $granttype property takes one of the following grant types:

❑ kOW3OAUTH2grantAuthorizationCode (the default)
the Authorization Code grant type (behaves as previous versions)

❑ kOW3OAUTH2grantPassword
the Password grant type requires the new $username and $password properties to

be specified

❑ kOW3OAUTH2grantClientCredentials
the Client Credentials grant type requires $clientid and $clientsecret

The $granttype property is set to kOW3OAUTH2grantAuthorizationCode by default
which corresponds to behavior in previous versions, so your existing code should run
as before.

When $granttype is set to kOW3OAUTH2grantPassword, the new $password and
$username properties are used to retrieve an authorization token. However this is
deemed to be insecure, when compared to more secure methods, and should not be
used (unless a legacy system requires it).

 Web and Email Communications

 159

When $granttype is set to kOW3OAUTH2grantClientCredentials, the properties
$clientid and $clientsecret are used to obtain the authorization token. Note that when
using this grant type, the OAUTH2 server may not return a refresh token (as per RFC
6749 section 4.4.3).

OW3 HTTP Worker
The OW3 HTTP Worker Object now converts a POST payload to JSON automatically.

(ST/JA/006)

vContent of a HTTP POST request can be kOW3httpMultiPartFormData or a
Binary/Character/List/Row variable. The new behavior allows you to pass a raw List or
Row which the worker will subsequently transform into JSON before executing the
request. If a row is passed and it contains only one column, which is a path to a file that
exists, the contents of the file will be used. If the file does not exist, the contents of the
row will be converted to JSON and sent with the request.

Existing code bases which pass JSON in a binary variable are not affected.

The lists can contain sub-lists as this change supports both JSON arrays of arrays, and
arrays of objects.

OW3 FTP Worker
There is a new action kOW3ftpActionMove in the FTP Worker Object to move or
rename a file on the FTP server. (ST/EC/1659)

cServerPath in $init is the pathname of the file or directory to be moved. vParam is the
new server path name. The action works with FTP, FTPS and SFTP (the latter uses a
different command), and can be used to rename a file, or move it to a new location.

OW3 JavaScript Worker
Example app

There is a new example app called JS Worker under the Samples section of the Hub

in the Studio Browser (note there is a New option to display the new examples only).

Security

Security for the JS Worker has been improved, including encrypting all traffic sent
between the Omnis & Node JS processes. (ST/JS/3246)

Auto Loading modules

The JS Worker will now pick up any modules you have added automatically, if they are

placed in the jsworker folder. (ST/EC/1754)

Any modules added in their own folder (with a package.json or index.js) inside the
jsworker folder are now picked up automatically by the JS Worker. You can continue
using the hard-coded moduleMap method, as in previous versions.

Error Handling

The JS Worker now handles default error messages in the component, rather than
sending with the response. (ST/JS/3247)

The status codes of the returned errors when a method/module is not found have
changed from 400 for both method/module, to 460 for module not found, and 461 for

method not found.

Caller tag

An optional vTag column has been added to the row parameter for $callmethod in the
JS Worker Object. (ST/EC/1668)

If supplied, some data can be passed to $methoderror or $methodreturn in the column
__tag of the row parameter. This can be used, for example, to identify the caller when

the worker object is shared by several instances.

What’s New in Omnis Studio 11

160

OW3 IMAP Worker
A new action kOW3imapActionSelect has been added to the IMAP Worker which

executes an IMAP SELECT on the mailbox given to $init. (ST/EC/1772)

As part of the SELECT, IMAP returns the number of emails in the mailbox, which are
returned to the $completed method in resultList in column EXISTS. Note that an IMAP
SELECT will cause the current mailbox to be changed, so you may prefer to execute

this action on a different connection.

Menu Classes
Menu Instances
$menuinst for a Cascading menu object and a Popup menu window object now
appears in the Notation Inspector rather than the Property Manager. (ST/*A/142)

This allows you to select $menuinst and see the properties of the instance, and also
drill down further to see $objs, etc.

Note that $menuinst only appears in the Notation Inspector when the parent object has
an associated instance.

Menu Shortcuts (macOS)
A new item useFnInMenuShortcuts has been added to the “macOS” section of the
config.json file to control how Function and Command keys on macOS are interpreted.
When set to true (the default), the Function+number menu short cuts display as Fn, or
if false they display as <CmdKeySymbol>+n. (ST/MC/264)

Menu Line Icon Colors
Menu classes now support the $iconcolor and $defaulticoncolor properties to control
the color of icons when using themed SVG icons. This enhancement also applies to
Toolbar classes and Tree list window controls.

The $iconcolor property for a menu line (or toolbar button) sets the icon color when
using a themed SVG icon. The $defaulticoncolor property for a menu class (or
toolbar) sets the icon color when using themed SVG icons and the $iconcolor property
of the item is kColorDefault. If $defaulticoncolor is also kColorDefault, then themed
icons use the text color.

Object Oriented Programming
Window Status Bar
A window subclass can now inherit window status bar panes from a superclass.
(ST/WC/583)

In design mode, when you right click on the status bar, there is an additional Inherit
context menu option which allows you to inherit the status bar panes from a superclass
(the option allows you to toggle the panes on or off). When inherited, you cannot
change any of the pane or bar properties in design mode, and these properties are
displayed in the Property Manager using the inherited colour.

JSON export has been modified to export the status bar inherited flag. The original
pane definitions still remain in the class after inheriting, so these are restored if you turn
off the inherit option.

 Functions

 161

Subclass Editors
Class editors for subclasses now update immediately when the superclass has been
changed, so you no longer have to close and re-open a subclass to see the changes
made to the superclass (as in previous versions). This enhancement applies to the
class editors for Remote form, Window, Menu and Toolbar classes.

Functions
Example apps
There are new example apps called OIMAGE Functions and JS TOTP Passwords
under the Samples section of the Hub in the Studio Browser (note there is a New
option to display the new examples only).

The following functions have been added or updated:

binfrombase32()

Function group Execute on client Platform(s)

Binary Field NO All

Syntax

binfrombase32(vData)

Description

Decodes the binary or character vData from BASE32 and returns the resulting binary

data. Returns #NULL if vData is not valid BASE32 or an error occurs.

bintobase32()

Function group Execute on client Platform(s)

Binary Field NO All

Syntax

bintobase32(vData)

Description

Encodes vData as BASE32 and returns the result. vData can be either binary or
character. If vData is character, Omnis converts it to UTF-8 before encoding it as
BASE32. Returns #NULL if an error occurs.

charcount()

Function group Execute on client Platform(s)

String YES All

Syntax

charcount(string,char)

Description

Returns the number of occurrences of the character char in the string.

What’s New in Omnis Studio 11

162

Example
Calculate lString as 'Omnis Studio is great'

Calculate lCount as charcount(lString,'i')

returns 3

If charcount(lString,'i')>2

 # returned True

End If

complementarycolor()

Function group Execute on client Platform(s)

General NO All

Syntax

complementarycolor(color)

Description

Returns the complementary color given the passed color value. A complementary color
is a color on the opposite side of the color wheel.

contains()

Function group Execute on client Platform(s)

String YES All

Syntax

contains(string,substring[,ignorecase=kfalse])

Description

Returns true if the string contains the non-empty string substring. If ignorecase is
kTrue, the function uses case-insensitive comparison.

See also startswith() and endswith().

Example
Calculate lString as 'Build better software faster'

If contains(lString,'software')

 # returned True

End If

Calculate lBoolean as contains(lString,'SOFTWARE',kTrue)

lBoolean = True

endswith()

Function group Execute on client Platform(s)

String YES All

 Functions

 163

Syntax

endswith(string,end[,ignorecase=kfalse])

Description

Returns true if the string ends with the non-empty string end. If ignorecase is kTrue, the
function uses case-insensitive comparison.

See also contains() and startswith().

Example
Calculate lString as 'One Code'

If endswith(lString,'Code')

 # returned True

End If

Calculate lBoolean as endswith(lString,'CODE',kTrue)

lBoolean = True

FileOps.$getfileinfo()
The FileOps.$getfileinfo function can now return the size of a directory. (ST/FU/796)

FileOps.$getfileinfo has a new constant kFileOpsInfoCalcDirectorySize which
calculates the size of the passed directory path. The "size" is returned in bytes in the
CalcDirectorySize column.

FileOps.$putfilename()
When running on Windows, the dialog opened by FileOps.$putfilename() now prompts
if the file already exists, unless kFileOpsWindowsDisablePrompt is passed in the
iAppFlags parameter. (ST/JS/2976)

This makes the default behavior compatible with macOS (the file already exists prompt
cannot be disabled on macOS).

FileOps.$readfile()

Function group Execute on client Platform(s)

FileOps NO All

Syntax

FileOps.$readfile(cFilePath,&vVariable[,iEnc=kUniTypeAuto])

Description

Reads the file cFilePath into the variable vVariable. Returns an integer error code (zero

for success).

cFilePath (Character 100000000) The pathname of the file.

vVariable (Variant) The variable into which the file contents will be read. Binary or
Character. It it is Character, the file contents are converted to Character using the

encoding specified by the iEnc parameter.

iEnc (Integer 32 bit, default is kUniTypeAuto) The encoding used to convert the file
contents to Character. A kUniType… constant, not kUniTypeBinary or
kUniTypeCharacter. Only used when vVariable is a Character variable.

What’s New in Omnis Studio 11

164

FileOps.$writefile()

Function group Execute on client Platform(s)

FileOps NO All

Syntax

FileOps.$writefile(cFilePath,vVariable[,iEnc=kUniTypeUTF8,bBOM=kTrue,bReplace=
kTrue])

Description

Writes the file cFilePath with the contents of variable vVariable. Returns an integer

error code (zero for success).

cFilePath (Character 100000000) The pathname of the file.

vVariable (Variant) The variable into which the file contents will be read. Binary or
Character. If it is Character, the file contents are converted to Character using the

encoding specified by the iEnc parameter.

iEnc (Integer 32 bit, default is kUniTypeUTF8) The encoding used to convert the file
contents to Character. A kUniType… constant, not kUniTypeBinary or
kUniTypeCharacter. Only used when vVariable is a Character variable.

bBOM (Boolean, default is kTrue) If true, and character data is to be encoded as
Unicode, $writefile adds a Unicode Byte Order Marker at the start of the file.

bReplace (Boolean, default is kTrue) Specifies what occurs if the file already exists
before calling FileOps.$writefile(). If bReplace is true FileOps.$writefile() replaces the

file; if bReplace if false, FileOps.$writefile() returns an error.

hexcolor()

Function group Execute on client Platform(s)

General NO All

Syntax

hexcolor(string)

Description

Returns a color value from the passed hex string. The hex string format is RRGGBB or
RRGGBBAA for alpha support.

hsla()

Function group Execute on client Platform(s)

General NO All

Syntax

hsla(hue,saturation,light[,alpha])

Description

Returns a color value from the supplied color components: hue range is 0-360;

saturation range is 0-100; light range is 0-100; optional alpha range is 0-255.

 Functions

 165

iconidwithbadge()

Function group Execute on client Platform(s)

General NO All

Syntax

iconidwithbadge(cIcn,iCnt/cBadgeIcn[,kIconBadge...,iBadgeColor,iBadgeTextColor])

Description

Returns a formatted string for $iconid. cIcn is the main icon (an SVG icon),
iCnt/cBadgeIcn control the badge. The kIconBadge... constants control the display of

the badge, and iBadgeColor and iBadgeTextColor set the colors of the badge and text.

When an icon ID uses an SVG icon name, iconidwithbadge() allows you to append
additional values to the SVG name to define a badge to be added to the main icon.

The parameters are:

Parameter Description

cIcn the ID of the primary SVG icon for the object / toolbar object

iCnt/cBadgeicn the count to be displayed on the badge, or the ID of a smaller
secondary icon

kIconBadge kIconBadgeAlignTop, kIconBadgeAlignBottom, or the default is
the position set by the OS, also kIconBadgeBackgroundHide,
see below

ibadgecolor the color of the badge, the default is
kJSThemeColorSecondary

ibadgetextcolor the color of the count, or secondary icon, the default is
kJSThemeColorSecondaryText

The following lines of code set up icon badges for buttons:
Do $cinst.$objs.button.$iconid.$assign(iconidwithbadge(‘tablet_mac’, 9))

Do $cinst.$objs.button.$iconid.$assign(iconidwithbadge(‘tablet_mac+32x32’, 9

))

Do $cinst.$objs.button.$iconid.$assign(iconidwithbadge(‘tablet_mac’, 99, 0,

kDarkGreen, kWhite))

Some Omnis objects used fixed icon sizes, such as menu items or tabbar tabs,
therefore when applying a badge to these objects you cannot supply an icon size for
the primary icon as the size will be fixed by the object, for example:
Do $imenus.NewMenu.$objs.Item.$iconid.$assign(iconidwithbadge(‘tablet_mac’, 9

))

When using iconidwithbadge() in a client-executed method, the SVG parameters must
be URLs, which can be generated with iconurl() in server-executed code.

The default icon badge background colour is kJSThemeColorSecondary, while the
count or secondary icon is kJSThemeColorSecondaryText (for window class controls

the colors are the standard OS colors).

Badge Options

The constants kIconBadgeAlignTop and kIconBadgeAlignBottom can be used in
the kIconBadge parameter in iconidwithbadge() to specify the position of the badge.
Omitting this or passing 0, Omnis will use the default position for the OS – by default,

macOS will draw a badge at the top right of an icon, and Windows at the bottom right.

The constant kIconBadgeBackgroundHide allows you to hide the default colored
circle badge when used with a secondary icon. If the badge has a count and not an
icon, the badge background is always drawn and this option ignored. For example:

What’s New in Omnis Studio 11

166

$iconid.$assign(iconidwithbadge('tablet_mac', 'star',

kBadgeIconHideBackground, kDefault, kRed))

isclient()

Function group Execute on client Platform(s)

General YES All

Syntax

isclient() no parameters

Description

Returns true if the code is currently running in JavaScript client-executed code.

iseven()

Function group Execute on client Platform(s)

Number YES All

Syntax

iseven(integer)

Description

Returns true if integer is an even number. If you pass a number rather than an integer,
the function rounds it to the nearest integer before determining the result.

The function is available in client executed methods.

isodd()

Function group Execute on client Platform(s)

Number YES All

Syntax

isodd(integer)

Description

Returns true if integer is an odd number. If you pass a number rather than an integer,

the function rounds it to the nearest integer before determining the result.

The function is available in client executed methods.

isoweekstart()

Function group Execute on client Platform(s)

Date and Time NO All

Syntax

isoweekstart(year,week)

Description

Returns the date of the first day of the specified ISO week in the specified year.

 Functions

 167

join()

Function group Execute on client Platform(s)

String YES All

Syntax

join(list[,delimiter=kTab,column=1,stripWhite=kFalse,quoteChar=''])

Description

Returns a string of all column values in list, delimited by delimiter which defaults to
kTab, but can be one or more characters. There are options to strip the leading and
trailing whitespace (default is not to strip), and/or quote column values (escaping
quotes as 2 quotes).

OIMAGE.$getdimensions()

Function group Execute on client Platform(s)

OIMAGE NO All

Syntax

OIMAGE.$getdimensions(xImage, &iWidth, &iHeight [,&cErrorText])

Description

Returns the dimensions in iWidth and iHeight of the image xImage. Returns Boolean
true for success, or false and cErrorText if an error occurs.

xImage A binary variable containing the image.

iWidth and iHeight are 32 bit integer variables that receive the pixel Width and Height
of the image.

cErrorText The error text returned from the function.

OIMAGE.$makeqrcode()

Function group Execute on client Platform(s)

OIMAGE NO All

Syntax

OIMAGE.$makeqrcode(vData, &xQrCode [,iFmt=kOIMAGEfmtPNG, iSizePNG=256,

iECL=kOIMAGEerrHigh, iBorder=4, &cErrorText])

Description

Makes a QR Code for the specified binary or character vData. Returns Boolean true
and xImage for success, or false and cErrorText if an error occurs.

vData: Binary or character data to be represented by the QR Code.The method
converts character data to UTF-8 before encoding it. The amount of data that can be
encoded is limited, and varies according to iECL. See the QR Code standard.

xQrCode: Binary variable that receives the generated QR Code

iFmt: A kOIMAGEfmt... constant that specifies the format of the generated QR Code.

kOIMAGEfmtPNG or kOIMAGEfmtSVG

iSizePNG: The width and height in pixels of the QR Code, when generating
kOIMAGEfmtPNG. Must be between 32 and 262144 inclusive

What’s New in Omnis Studio 11

168

iECL: A kOIMAGEerr... constant that specifies the error correction level supported by

the generated QR Code:

❑ kOIMAGEerrLow
The QR Code can tolerate about 7% erroneous codewords

❑ kOIMAGEerrMedium

The QR Code can tolerate about 15% erroneous codewords

❑ kOIMAGEerrQuartile
The QR Code can tolerate about 25% erroneous codewords

❑ kOIMAGEHigh

The QR Code can tolerate about 30% erroneous codewords

iBorder: The number of border modules to surround the QR Code

cErrorText: Receives the error text if an error occurs.

OIMAGE.$resize()

Function group Execute on client Platform(s)

OIMAGE NO All

Syntax

OIMAGE.$resize(xImage, iWidth, iHeight, &xNewImage [,wParams=#NULL,
&cErrorText])

Description

Resizes the image xImage to the dimensions supplied in iWidth by iHeight. Returns
Boolean true and xNewImage for success, or false and cErrorText if an error occurs.

xImage and xNewImage are both binary variables. xImage must be a JPEG or PNG
image. xNewImage has the same type as xImage. You can use the same binary

variable for both parameters if you want to replace the original image.

iWidth and iHeight can both be greater than zero and less than or equal to 32000,
meaning resize to exactly that size. Alternatively, only one of the new dimensions can
be zero, meaning calculate the dimension with value zero using the aspect ratio of the

input image.

wParams is an optional row variable of parameters. The following columns can be
specified in wParams:

❑ sampler
The sampling method to be used when resizing. Either kOIMAGEsamplerBilinear or
kOIMAGEsamplerNearestNeighbour. Defaults to kOIMAGEsamplerBilinear if this
column is not present, or if wParams is omitted.

❑ gray
A Boolean that indicates if the new image is to be a grayscale image. Defaults to
kFalse if this column is not present, or if wParams is omitted.

❑ quality
If the input image type is JPEG this column contains the JPEG image quality (1 to
100) of the new image. Defaults to 80 if this column is not present, or if wParams is
omitted.

cErrorText The error text returned from the function.

 Functions

 169

OIMAGE.$transform()

Function group Execute on client Platform(s)

OIMAGE NO All

Syntax

OIMAGE.$transform(xImage,&xNewImage[,wParams=#NULL,&cErrorText])

Description

Perform a transformation on the image xImage. Returns Boolean true and xNewImage
for success, or false and cErrorText if an error occurs.

xImage and xNewImage are both binary variables. xImage must be a JPEG or PNG
image. xNewImage has the same type as xImage. You can use the same binary
variable for both parameters if you want to replace the original image.

wParams is an optional row variable of parameters. The following columns can be

specified in wParams:

❑ transform
The transformation to be performed, a kOIMAGEtransform… constant, see below.
Defaults to kOIMAGEtransformRotate90 if this column is not present, or if wParams

is omitted.

❑ quality
If the input image type is JPEG this column contains the JPEG image quality (1 to
100) of the new image. Defaults to 80 if this column is not present, or if wParams is

omitted.

Valid transformations are:

Constant Description

kOIMAGEtransformRotate90 Rotates the image 90 degrees clockwise; the

default

kOIMAGEtransformRotate180 Rotates the image 180 degrees

kOIMAGEtransformRotate270 Rotates the image 270 degrees clockwise

kOIMAGEtransformFlipLeftRight Flips the image on the left to right axis

kOIMAGEtransformFlipTopBottom Flips the image on the top to bottom axis

kOIMAGEtransformTranspose Transposes the image, i.e. flips the image
along a 45 degree axis, from top-left corner to
bottom-right corner

cErrorText The error text returned from the function.

ONOTIFY.$removebadge()

Function group Execute on client Platform(s)

ONOTIFY NO All

Syntax

ONOTIFY.$removebadge([,&cErrorText])

Description

Removes the badge from the application icon. Returns Boolean true for success, or
false (and sets cErrorText) if an error occurs.

What’s New in Omnis Studio 11

170

ONOTIFY.$removelocal()

Function group Execute on client Platform(s)

ONOTIFY NO All

Syntax

ONOTIFY.$removelocal([vIDs,&cErrorText])

Description

Removes local notifications with id(s) specified by vIDs which is a single character id,
or a single column list of ids (remove all local notifications if vIDs is empty or omitted).
Returns Boolean true for success, or false (and cErrorText) if an error occurs.

ONOTIFY.$sendlocal()

Function group Execute on client Platform(s)

ONOTIFY NO All

Syntax

ONOTIFY.$sendlocal(cTitle, cMessage, vImage, iAction, wUserInfo, [iDelay=0,
&cErrorText])

Description

Sends a local operating system notification. Returns character notification id for

success or returns #NULL (and cErrorText) if an error occurs.

If the call to $sendlocal() succeeds, it returns a character string. This is a string that
uniquely identifies the notification. You can use this string to remove the notification
from the system Notification Center using $removelocal, if for example the notification

is no longer relevant.

The parameters are as follows:

Parameter Description

cTitle The title of the notification. Some text, displayed in bold font above the
main notification text. The operating system will truncate this if it is too
long. Windows allows this to occupy two lines, if you separate the lines
using either kCr, lLf or kCr kLf. macOS only allows a single line

cMessage The text of the notification. This is the main notification message,
displayed in a plain font. The operating system will truncate this if it
occupies more than 4 lines, either due to word wrapping, or the

presence of newline characters (kCr, lLf or kCr kLf)

vImage Image(s) to be displayed with the notification. See the ‘Specifying

Images’ section

iAction A value that specifies up to 2 optional actions that are to be included in
the notification; on Windows, this is via one or two buttons; on macOS,
this is either via a button for a single action, or via an options popup for
two actions. A ‘Specifying Actions’ section

wUserInfo A row containing user information that is passed to the $localnotify()
method when the user clicks on the notification or a notification action.
It must be possible to convert $userinfo to JSON. See section ‘Handling

Notification Clicks’

 Functions

 171

Parameter Description

iDelay The delay in seconds between the call to $sendlocal() and the
notification being delivered (optional). Omnis can quit before the
notification is delivered, as the operating system takes care of deferred
delivery

cErrorText A character variable that receives text describing an error if
$sendlocal() fails

ONOTIFY.$setbadgecount()

Function group Execute on client Platform(s)

ONOTIFY NO All

Syntax

ONOTIFY.$setbadgecount(iCount[,&cErrorText,iBadgeColor,iBadgeTextColor])

Description

Sets the badge on the application icon to have the value iCount. Returns Boolean true
for success, or false (and cErrorText) if an error occurs.

The parameters are as follows:

Parameter Description

iCount The count to display as the badge. Must be greater than zero.
When running on Windows, a value greater than 99 is displayed as

99+.

cErrorText A character variable that receives text describing an error, if

$setbadgecount() fails

iBadgeColor Windows only. The background color of the count badge. Defaults
to styledbadgebackgroundcolor in the “system” section of
appearance.json.

iBadgeTextColor Windows only. The text color of the count badge. Defaults to
styledbadgetextcolor in the “system” section of appearance.json.

ONOTIFY.$setbadgeicon()

Function group Execute on client Platform(s)

ONOTIFY NO All

Syntax

ONOTIFY.$setbadgeicon(vIconId[,&cErrorText,iBadgeColor])

Description

Note this is available on Windows only. Sets the badge on the application icon to be
the specified icon vIconId. Returns Boolean true for success, or false (and sets
cErrorText) if an error occurs.

The parameters are as follows:

Parameter Description

vIconId The icon id of the icon to display as the badge. The size

What’s New in Omnis Studio 11

172

component is ignored, as badges are always 16x16.

cErrorText A character variable that receives text describing an error, if
$setbadgeicon() fails

iBadgeColor The color to be applied to the themed SVG; only applies if the icon
is a themed SVG. Default is kColorHilight.

ord()

Function group Execute on client Platform(s)

Unicode NO All

Syntax

ord(integer[,locale,thousands=kFalse])

Description

Returns a string comprising positive integer with ordinal suffix for supplied locale, or
current language if locale parameter is omitted or empty. Optionally includes ICU
thousands separators, the default is not to include them.

OW3.$computername()

Function group Execute on client Platform(s)

OW3 NO All

Syntax

OW3.$computername(bFormat=kFalse)

Description

Returns the name of the current computer or an empty string if the name could not be
obtained. If bFormat is true, $computername attempts to format the string to make it
suitable for an end-user, by removing a '.local' suffix, replacing all - characters with
space, and capitalizing each word.

OW3.$parserfc3339()

Function group Execute on client Platform(s)

OW3 NO All

Syntax

$parserfc3339(cRfc3339[,bUTC=kTrue,&iOffset,&cErrorText])

Description

Parses a date and time value conforming to RFC3339 and returns an Omnis date-time
value and optionally the time zone offset in minutes. Returns #NULL if the string cannot
be parsed.

 Functions

 173

The parameters are:

Parameter Description

cRfc3339 a date and time string conforming to RFC3339

bUTC If true, the returned date-time value is in UTC rather than the local time
zone of the RFC3339 date-time value

iOffset If the RFC3339 date and time string is parsed successfully this receives
the time zone offset in minutes

cErrorText If supplied, receives text describing the error that caused
$parserfc3339 to return #NULL

OW3.$totpgenerate()

Function group Execute on client Platform(s)

OW3 NO All

Syntax

OW3.$totpgenerate(xSharedSecretKey,iTimeStep,iDigits,&iTOTP[,&cErrorText,iHash

Type=kOW3hashSHA1])

Description

Generates a Time-based One-Time Password in iTOTP using the TOTP algorithm.
Returns true if successful.

xSharedSecretKey (Binary) The shared secret key, length must be between 16 and

256 bytes inclusive.

iTimeStep (Integer 32 bit) The time step in seconds, must be between 1 and 3600
inclusive.

iDigits (Integer 32 bit) The number of digits in the TOTP, must be between 6 and 8

inclusive.

iTOTP (Integer 32 bit) Receives the generated TOTP.

cErrorText (Character 100000000) If supplied, receives text describing the error that
caused $totpgenerate or $totpvalidate to return false.

iHashType (Integer 32 bit, default is kOW3hashSHA1) The type of hash to use, a
kOW3hash… constant.

OW3.$totpvalidate()

Function group Execute on client Platform(s)

OW3 NO All

Syntax

OW3.$totpvalidate(xSharedSecretKey,iTimeStep,iDigits,iTOTP[,&cErrorText,iHashTy
pe=kOW3hashSHA1,iStepsBefore=2,iStepsAfter=1])

Description

Validates the Time-based One-Time Password in iTOTP using the TOTP algorithm.

Returns true if iTOTP is a valid TOTP.

xSharedSecretKey (Binary) The shared secret key, length must be between 16 and
256 bytes inclusive.

What’s New in Omnis Studio 11

174

iTimeStep (Integer 32 bit) The time step in seconds, must be between 1 and 3600

inclusive.

iDigits (Integer 32 bit) The number of digits in the TOTP, must be between 6 and 8
inclusive.

iTOTP (Integer 32 bit) The TOTP that is to be validated.

cErrorText (Character 100000000) If supplied, receives text describing the error that
caused $totpgenerate or $totpvalidate to return false.

iHashType (Integer 32 bit, default is kOW3hashSHA1) The type of hash to use, a
kOW3hash… constant.

iStepsBefore (Integer 32 bit, default is 2) The number of time steps before the step for
the current time that can be checked when validating the supplied TOTP, must be
between 1 and 20 inclusive.

iStepsAfter (Integer 32 bit, default is 1) The number of time steps after the step for the
current time that can be checked when validating the supplied TOTP, must be between
1 and 20 inclusive.

rgba()
The rgba() function can now be executed on the client, which allows you to set the

color and alpha value of objects in client executed methods.

row()
The row() function now uses the variable name to name the columns if you pass in a
variable. (ST/FU/806)

For example, if you pass in row(var1, var2), the row's column names would become
var1 and var2.

startswith()

Function group Execute on client Platform(s)

String YES All

Syntax

startswith(string,start[,ignorecase=kfalse])

Description

Returns true if the string starts with the non-empty string start. If ignorecase is kTrue,
the function uses case-insensitive comparison.

See also contains() and endswith().

Example
Calculate lString as 'Fast prototyping'

If startswith(lString,'Fast')

 # returned True

End If

Calculate lBoolean as startswith(lString,'FAST',kTrue)

lBoolean = True

 Commands

 175

sys(251) and sys(252)
On macOS, sys(251) and sys(252) now return the overall width and height of all
screens; in previous versions, these returned the main window area available on
Windows. (ST/FU/737)

sys(254) and sys(255)
The functions sys(254) and sys(255) have been added to return the omnispdf folder
and the omnispdf temp folder, respectively. (ST/FU/808)

sys(254) returns the pathname of the folder where Omnis writes scripts and other files
used to generate PDF documents.

sys(255) returns the pathname of the folder where Omnis writes temporary PDF files.

sys(256) and sys(257)
The function sys(256) has been added to return the maximum server license count,

and sys(257) to return the current number of server licenses in use. (ST/JS/3214)

sys(290)
The function sys(290) has been added to provide the method count excluding any
cleared methods. (ST/FU/797)

sys(290) returns the number of methods on the method stack excluding any that are to
be cleared. This does not work for client requests running in a thread of the Multi-
threaded Server.

tracelog()
The tracelog() function now returns the logged string, or #NULL if the string could not
be logged. (ST/DB/1149)

Commands
OK Message
If no icon is specified in the OK message command, the default action on macOS is to
show the application icon (applies to Big Sur or later). (ST/HE/1748)

Set Timer Method
The Set timer method command now causes its timer method to run in the context of
the task that was current when Set timer method was called. Note that the timer
method will continue to run after the task closes. (ST/PF/1291)

Create Library
The Create library command now requires a full pathname for the new library file.
(ST/PC/576)

Send to trace log
The "Start diagnostic logging" and "Stop diagnostic logging" options have been added
to the Send to trace log command to allow you to start and stop the logging of
diagnostic messages. (ST/DB/1390)

When either of these options is used with an empty log message parameter, no

message is logged. The new options are as follows:

Start / Stop diagnostic logging
If specified, the command switches on/off the Log Diagnostic Messages trace log

What’s New in Omnis Studio 11

176

option, before logging the message if the other command options allow. Also, if

specified with an empty message to log, the command does not log an empty line.

The full syntax of the command is now:
Send to trace log ([Diagnostic message][,Always log][,Start diagnostic

logging][,Stop diagnostic logging]) text

Working Message
The syntax for specifying the sequence of icons displayed in a working message has
changed. In previous versions, you had to specify the start and end icon ID to use a
consecutive series of icons in an iconset or icon datafile. Now you can use SVG icons,
so the Working Message command can accept icon name IDs and now all the icons
used in the sequence must be specified. For example, the new icons for the Generic
(default) working message are specified as follows:
Working message

Working/48:kIDEColorIcon:working01,working02,working03,working04,working05;5

0;0;60

When configuring the Working Message command, you can click on the Helper button
at the bottom of the Code Editor to open a helper window where you can set the
parameters:

In addition, you can now specify the icon color to be used when using themed SVG
icons. To specify a color, use either the name of an Omnis color constant, e.g. kRed, or
a hex color, e.g. #0000FF which is blue. Set the color to kColorDefault to use the
default theme color.

The previous syntax for configuring the icons is still supported for existing code, but if
you edit a working message command with the old syntax, using the working message
configuration Helper, the result is saved back to the code using the new syntax.

Deploying your Web & Mobile Apps
Headless Server Admin Tool
The Admin Tool for the Headless Omnis Server (osadmin) can now be used to upload
new libraries and htm files to the /startup folder of the Omnis Server or to the webroot

of the web server. (ST/AD/243)

On a Linux server, osadmin can now be used to upload libraries from the developer
version to the startup folder of the Omnis Server, as well as move .htm files to the root
of your web server (/var/www/html); plus you can remove files.

The Settings section of osadmin can now take two extra options: the path to webroot
and the web server handler, which default to /var/www/html and /omnis_apache
respectively.

If you are running a different web server or web root directory, you need to modify
these settings before uploading. For example, if you are using the Omnis built-in web
server, you need to set the webroot path to '[path to Omnis read/write directory]/html'
and the handler to '_PS_'.

Furthermore, osadmin will change the htm uploaded to use the specified web handler
and the server port Omnis is currently bound to, therefore changing an htm before
uploading it could break this functionality, so do not edit the htm file in this case.

 oXML

 177

Headless Server Serialization
Serialization for the Headless Omnis Server is now allowed using the OMNIS_SERIAL

environment variable. (ST/SR/030)

If the Headless Server checks for serial.txt and there is no serial number saved in the
omnis.cfg, it reads the serial number from the OMNIS_SERIAL environment variable
before failing.

Version and Build Number
The Version and Build number of Omnis Studio has been added to the HTML
generated by the Test Form option. (ST/JS/3123 & ST/JS/3125)

The "%%version%%" placeholder has been added to the template file (jsctempl.htm)
which will be replaced with the Omnis Studio version number when the Test Form

option is used. For example, the following is added to the beginning of the html:
<!DOCTYPE html>

<!-- Generated by Omnis Studio Version 11.0 Build 110034477 -->

The "%%build%%" placeholder has also been added to the template file which will be
replaced with the Omnis Studio build number, e.g. 110034477 in the above example.

Omnis LSP Debugging
Debugging has been added to the Load Sharing Process (LSP) on the Omnis App

Server. (ST/PF/1350)

You can enable debugging in the Omnis LSP using the new DebugMode setting in the
[Setup] section of ini configuration file.

If DebugMode=1, more information will be logged, such as when the LSP fails to

connect to the Omnis App Server, in the following format:

Tue Sep 13 20:38:19 2023 [DEBUG] [127.0.0.1:7001] Failed connecting to OMNIS
server.

Furthermore, any debug messages will have [DEBUG] in the message.

Web Server Plug-in ini
The web server plug-in ini (omnissrv.ini) file now works with the OMNISAPI plug-in to
allow you to configure the plug-in. (ST/WT/1879)

Note that the ISAPI, CGI and Apache module, all look for omnissrv.ini in the same
directory as the ISAPI/Apache DLL, or CGI exe.

oXML
Object References
There is a new property $useobjectrefs in the oXML external to force Omnis to return
Object References, rather than objects. (ST/VR/324)

If true, the $useobjectrefs property ensures oXML returns object references rather than
objects, that is, object return values are object references and object parameters must

be object references.

This property is automatically set in new returned objects to the value of $useobjectrefs
in the object returning the new object.

What’s New in Omnis Studio 11

178

JavaScript Component SDK
JavaScript API Reference
Theme Methods

Static versions of the theme instance methods getColorString() and
getTextColorString() have been added. The static versions are the same as the
instance methods except you don't need a theme instance to call them.

The existing instance methods are retained for backwards compatibility, but they are
deprecated in 11.0 and you should use the new static versions.

External Component SDK
GDI Reference
The GDIcreatePixmapFromJPEG function has been added. (ST/AD/252)

GDIcreatePixmapFromJPEG

GDIAPI HPIXMAP OMNISAPI GDIcreatePixmapFromJPEG(fldval& pPath, qdim&
pWidth, qdim& pHeight)

Creates an HPIXMAP from JPEG image.

pPath - The pathname of the file containing the JPEG image

pWidth - If successful, receives the pixel width of the JPEG

pHeight - If successful, receives the pixel height of the JPEG

return - either the HPIXMAP for success, or NULL if an error occurs e.g. the file does

not contain JPEG data

GDIAPI HPIXMAP OMNISAPI GDIcreatePixmapFromJPEG(qbyte* pJpeg, qlong
pJpegLen, qdim& pWidth, qdim& pHeight)

Creates an HPIXMAP from JPEG image.

pJpeg - The address of the in-memory JPEG image

pJpegLen - The length in bytes of the in-memory JPEG image

pWidth - If successful, receives the pixel width of the JPEG

pHeight - If successful, receives the pixel height of the JPEG

return - either the HPIXMAP for success, or NULL if an error occurs e.g. the supplied
data is not JPEG data.

PRI Reference
PRIdestParmStruct

The PRIdestParmStruct structure has been modified. Therefore, any xcomps that use
PRIdestParmStruct must be rebuilt with the Studio 11 SDK. The following members of
PRIdestParmStruct have been made private: mEdFile, mTextFile and mRepFile. As
such, accessor methods have been added to the PRIdestParmStruct class:

void getRepFile(EXTfldval& pRetVal) const;
void setRepFile(EXTfldval& pNewVal);

void getTextFile(EXTfldval& pRetVal) const;
void setTextFile(EXTfldval& pNewVal);

void getEdFile(EXTfldval& pRetVal) const;
void setEdFile(EXTfldval& pNewVal);

These can be used by xcomps to retrieve and set the respective private members.

 Deployment Tool

 179

Deployment Tool
This section refers to the Deployment Tool for deploying your Windows or macOS

desktop applications, not web and mobile apps.

A number of methods have been exposed in the Deployment Tool API to allow you to
manage builds in your own code, rather than via the Deployment Tool UI. (ST/AD/228
and ST/AD/235)

Deployment Tool API
Using the new method $root.$modes.$getapiobject("customtool") Returns iObRef a
number of API calls for the Deployment Tool have been exposed.

$setcallbackinst($cinst) takes a reference to an instance that implements $completed
and $error. If the callback instance is set via this method, the deployment tool API will
call either $completed or $error instead of returning the outcome to the caller. Note
$error also receives a character variable as a parameter containing the error message
and $completed can receive a 36-character long string on macOS if the built bundle is
submitted for notarization.

$run(cConfigFilePath,cError[,cUUID]) requires the path to the deployment
configuration file, a character variable to return errors to, or if on macOS, the UUID
when the build is submitted for notarization. If successful, the method returns kTrue,
otherwise kFalse is returned. The configuration file can be built using the GUI version

of the Deployment tool.

Managing Builds via the API

The Deployment Tool API supports builds with in-memory data structures rather than
file-based only. You can now get the data structures, load and save to a config.json file
programmatically.

$getBuildDataStructure() returns a row containing the main data structure for a cross-
platform build.

$getEntitlementsDataStructure returns a row containing two row: the standard and
extended entitlements data structures (in that order).

$loadConfig(cPathToConfig.json, rBuildDataStructure, rEntitlements, cErrorText)
takes in the path to a config.json containing data structures, a row that receives the
build data structures, a row that receives and entitlements rows and a character
variable that receives and error text. Returns true if successful, otherwise false.

$setBuildData(rBuildData) sets the build data structure in-memory to rBuildData row,
or you can use $run without passing in the path to a build config.json in order to use
the in-memory data values.

$setEntitlementsData(rEntitlements) sets the entitlements data structure in-memory to
rEntitlements row (note the rEntitlements row must contain two rows where the first is
standard entitlements and the second is extended entitlements. Works only on macOS.

$saveConfig(cPathToFile, bOverwrite, cErrorText) saves the build data and
entitlements data currently stored in the API object to a .json file in cPathToFile. If
cPathToFile already exists, bOverwrite (defaults to false) will be used to determine if
the file should be overwritten. cErrorText receives any errors if unsuccessful; function
returns true if successful, otherwise false.

The $run function can be run without passing the path to a build config.json file, e.g. Do
api.$run("",cError, cUUID) Returns bOutcome as long as the build data has been set
via $setBuildData, the build can start. You can use $run by passing the path a build
config.json and the build/entitlements stored in the file will be used.

What’s New in Omnis Studio 11

180

Creating config.json in the UI
The Deployment Tool allows you to create your own config.json file from inside the UI

itself to provide settings for your application package. (ST/AD/237)

To create your own Configuration file you need to enable the Custom config.json option
on the Additions tab in the Deployment tool. A customtool folder is created within the
installed writable directory of Omnis containing a copy of the config.json file from the
current instance of Omnis. From there you can edit the configuration file for your
application to build. Alternatively, you can select an existing config.json to use for your
application.

Removing Items from Builds
You can now remove files or folders during a build by specifying them on the Size

Optimization tab. (ST/AD/211)

When adding files or folders to be removed, you only need to specify the relative path
to the file or folder inside the bundle (macOS) or readonly/readwrite directory
(Windows).

The tab will give some information regarding the estimated size before the build and
the estimated size saved.

oProcess
oProcess is a new Worker Object (external component) providing a simple interface to
launch and manage other processes, executables and applications, thereby providing
you with greater interoperability from within Omnis Studio.

You can interact with oProcess using the standard worker methods, e.g. $init(), $run(),
etc, which are described below, plus the external component has the common worker

properties.

Properties
The OProcess object has the following properties:

Property Description

$callbackinst Sets the instance that will receive a worker's callbacks.

$cancancel If kFalse, you can only cancel the worker forcefully. Defaults to
kTrue.

$elapsed Seconds elapsed since the worker's process was launched.
Stops counting when the process returns an exit code.

$pid The worker's process identification.

$exitcode The worker's process exit code.

$timeout Seconds the worker's process is allowed to run before getting
cancelled. Defaults to 0 (no timeout).

$eol End-of-line character which when encountered, a callback to the
appropriate stream the worker's process wrote to is executed.
Defaults to kLf for Linux and macOS and kCr,kLf for Windows.
Setting $eol to an empty string i.e. $eol.$assign("") will cause an
immediate callback to the stream the worker's process has
written to.

$state Returns the worker's current state.

 oProcess

 181

$errortext Returns the error text associated with the last action.

$threadcount Returns the number of active background threads for all worker
instances.

$errorcode Error code associated with the last action.

Methods
$init()

$init(cProcess [,rArguments, cInitialDirectory, lEnvironment])

Initialises the worker to launch process in cProcess parameter. Use the rArguments
row parameter to pass arguments to the process. cInitialDirectory can be used to
launch the process with a different current directory. lEnvironment is a two column list
of environment variables and their values to be used during the process' runtime. For

example, launching the following process:

proc.$init('/bin/echo$TEST',,,list(row("TEST","Hello world!")))

will result in callback to $stdout with "Hello world!" in the stdout column.

$run()

Runs the process on the worker's main thread, therefore blocking code execution until
the process returns. Should be avoided, unless there are specific synchronous
requirements.

$start()

Starts the process on the worker's background thread (non-blocking).

$cancel()

$cancel([bForce=kFalse])

Cancels the worker's process. Pass kTrue for bForce parameter to close the process
forcefully (currently supported only on Linux and macOS, sends SIGTERM signal). If
bForce is kFalse, a SIGINT signal is sent. Note: if $cancancel property is kFalse and
bFore is kFalse, the call to $cancel will be ignored: use kTrue for bForce to override the

$cancancel property.

$completed()

$completed(wResults)

Callback method when the worker has finished running. wResults is a row with a
retcode column containing the return code of the process and runtime_seconds column

containing the seconds the process was alive for.

$cancelled()

Callback method when the worker's process has been cancelled.

$started()

Callback method when the worker's process has started and can now write to stdin.
You can use this callback to work with processes that expect input as soon as they

start running, e.g. when they prompt for a password.

$isrunning()

Returns kTrue if the worker's process is running, meaning that is has a PID greater
than 0.

$stdout()

$stdout(wResults)

Callback method when worker's process writes to the stdout stream. wResults is a row
with a stdout column containing the text the worker's process has written.

What’s New in Omnis Studio 11

182

$stderr()

$stderr(wResults)

Callback method when worker's process writes to the stderr stream. wResults is a row
with a stderr column containing the text the worker's process has written.

$write()

$write(cCharacters)

Writes cCharacters to the stdin stream of the worker's process.

$readlines()

$readlines(iStream [,nLines=0])

Returns a list containing all the lines written to kOProcessStd... stream, starting from
the beginning of the stream. Use optional parameter nLines to limit the number of lines
returned. For example:

$readlines(kOProcessStdin, 3)

will return the first 3 lines of the stdin stream.

iStream for $readlines() and $readtail() can be one of the following constants:

kOProcessStdin Identifier for the stdin stream.

kOProcessStdout Identifier for the stdout stream.

kOProcessStderr Identifier for the stderr stream.

$readtail()

$readtail(iStream [,nLines=0])

Returns a list containing all the lines written to kOProcessStd... stream, starting from
the end of the stream. Use optional parameter nLines to limit the number of lines
returned. For example:

$readlines(kOProcessStdout, 3)

will return the last 3 lines of the stdout stream.

Using oProcess
Using the $init method you can run multiple bash commands as follows:
proc.$init("/bin/bash",row("-c","echo hey && echo hey2"))

or without using the arguments parameter
proc.$init("/bin/bash -c 'echo hey && echo hey2'")

On macOS and Linux, you can run processes as the root user as follows:
proc.$init("/usr/bin/sudo",row("-S","/usr/bin/whoami"))

and when the $started callback is received, call proc.$write(con("password",kLf)) to
respond with the password. In this case, you will receive a call to $stdout with the
stdout column containing "root", indicating that process is running with higher
privileges.

On Windows, you cannot elevate the currently running process since the underlying
APIs that make use of RunAs cannot redirect the stdout and stderr streams, suggesting
that you cannot directly capture the output streams of an elevated process from a non-
elevated process. Although the best way to ensure the elevated privileges are
transferred to the process launched is to run Omnis with elevated privileges, you could
do:
proc.$init('powershell.exe start powershell -Verb runAs -ArgumentList \"net

session\" -WindowStyle hidden -Wait')

to execute something as admin when Omnis is not running as admin, but you will not
get the $stdout or stderr callbacks and you will not be able to use $write to the elevated
process, making it a run-and-forget process.

 oProcess

 183

Appendix

184

Appendix
Omnis Configuration Items

The following is a complete list of configuration groups and items in the Omnis
Configuration file (config.json) which you can edit using the Edit Configuration option
in the Studio Browser (click on the Options button in the bottom-left of the Studio
Broswer).

Not all of these items appear in the default config.json provided with Omnis Studio, but
you can add any item in the Configuration Editor; you must use the exact spelling and
case of the item when adding it.

codeAssistant
The items in the codeAssistant group configure the behavior of the Code Assistant.

createVariableScopePrefixes

Use this configuration item to configure the scope suggested for new variables created

by the Create Variable dialog, based on the prefix of the variable name.

You can add a new variable simply by typing its name in a code line and declaring the
variable in the Create Variable dialog. When you type the name of the new variable in
your code, initially it will not be recognized and is marked as an error. In this case,
clicking on the Fix button at the base of the Code Editor window, or the fix error
keyboard shortcut, will open the Create Variable dialog, allowing you to declare the
new variable, including its scope, data type, subtype, initial value and description.

Note that the unrecognized variable dialog can also open when assigning a new or
unknown variable name to a property in the Property Manager. In this case, for
properties such as $dataname, the initial type of the variable creation dialog is set to
the most likely data type for the control, e.g. List data type for a list form control. The
dialog restricts the scope of the new variable to what makes sense based on class

type, and so on.

When you type the name of a new variable in your code, you can specify the initial
scope for the variable using a predefined prefix; the Create Variable dialog will select
the scope automatically. For example, you could begin the variable name with "i" to
create an instance variable, or "p" to create a parameter. You configure these prefixes
using the createVariableScopePrefixes item. This is an array, where each entry has
the syntax

 prefix:scope

where prefix is the case-insensitive prefix that results in the specified scope, and
scope can be the string Instance, Class, Parameter, Local or Task.

The Create Variable dialog processes these entries in array order, and as soon as it
finds a scope that is allowed for the method being edited (e.g. instance variables are
only allowed for class types that have instances), where the first part of the entry value
case insensitively matches the start of the variable name, it uses the configured scope
(the second part of the entry value after the colon) to set the initial scope suggested by
the dialog. If no prefix match occurs, the scope suggested is local.

createVariableTypeSuffixes

Use this item to configure the type suggested for new variables created by the Create
Variable dialog, based on the suffix of the variable name. See the description of
createVariableScopePrefixes for details of the Create Variable dialog.

createVariableTypeSuffixes is an array, where each entry has the syntax

 suffix:type

 Omnis Configuration Items

 185

where suffix is the case insensitive suffix that results in the specified type, and type is

a type constant name such as kList, kItemref, kDate, kObject or kBinary.

Omnis strips any consecutive digits from the end of the desired variable name, and
then compares (case independently) the end of the resulting name string against the
suffixes in the array. If there is a match, and if the variable type is suitable (e.g. it is not
a non-client executed type when creating a variable for a client-executed method), then
the initial type is set using the type constant after the colon.

currentCommandFilter

The name of the current command filter selected by the Code Editor. This is
automatically set by the Code Editor when executing Save Window Setup for the Code

Editor window.

listShowsNamesFirst

Boolean. Default true. If true, notation attributes appear last in code assistant lists. So
for example, when showing the list for $objs, the object names occur in the list before
the group methods for $objs.

maxParameterHelpWidth

Integer. Default two thirds of the screen width. Specifies the maximum pixel width of
the parameter help popup.

oldSortOrder

Boolean. Default false. If false, the code assistant list is sorted with names and
variables first, followed by functions, then notation attributes, then constants and then

events. Each set of entries for a particular entry type is sorted by entry name.

If true, the code assistant list is sorted in the same way as it was in Studio 10.2. In this
case, the listShowsNamesFirst config item also applies.

oldTabReturnBehavior

Boolean. Default false. Applies when the code assistant popup is open. If false
pressing tab extends the current text with which the code assistant is working to the
longest matching prefix, whereas return replaces the current text with the first item in
the code assistant list. If true, tab behaves like return.

openParameterHelpWithCodeAssistantPopup

Boolean. Default true. If true, the code assistant and parameter help window both open
on the same side (above or below the text being entered). If false, they open on
opposite sides.

parameterHelpEnabled

Boolean. Default true. Enables or disables the code assistant parameter help popup.

parameterHelpSpace

Integer. Default 40 pixels. The space (in pixels) for parameter help on the same side of
the text as the code assistant popup; applies when
openParameterHelpWithCodeAssistantPopup is true.

tabAlsoLeavesFieldAfterClosingAssistant

Boolean. Default false. Ignored unless oldTabReturnBehavior is false. If true, and the
current field is not the code entry field in the code editor, it affects the tabbing behavior
in the code assistant: a tab will close the code assistant and the cursor will move to the
next field in the tabbing order.

useOmnisHelpPagesForFunctionHelp

Boolean. Default true. If true, the code assistant uses Omnis help pages to display the
content of the help panel for functions. If false, the code assistant uses a short text
description.

Appendix

186

width

Integer. Default 768. The pixel width of the code assistant window. Must be between

512 and 1536 inclusive.

complexgrid
The items in the complexgrid group configure the behavior of the fat client complex
grid.

mingridpos

Integer. Default zero. Specifies how close grid lines in a fat client complex grid can be
to one another. Zero allows them to overlay each other, giving the appearance of
hidden columns. A positive value allows them to be further apart. A negative value is
treated as zero.

shiftRequiredToResizeAllRows

Boolean. Default true. Controls the way complex grid rows are resized when using the
mouse.

If true, dragging a row divider without pressing the shift key resizes the single row
above the row divider. To make all rows have the new row height, press the shift key

while dragging a row divider.

If false, the behavior is reversed. Press the shift key while dragging a row divider in
order to resize the single row above the row divider. Dragging a row divider without
pressing the shift key gives all rows the new row height.

debugger
The items in the debugger group configure the behavior of the local and remote
debugger.

autoVariablesContextAttributes

An array of character strings that specify the context attributes to display on the auto
tab of the debugger variable panel. Default empty, which means the panel includes
$cinst, $cobj and $ctask. If not empty, each array member must be a context attribute
name e.g. "$cinst".

defaults
The items in the defaults group configure various default behaviors of the Omnis
environment.

allExternalComponentErrorsAreFatal

Boolean. Default true. If true, errors reported in external components by setting

#ERRCODE and #ERRTEXT, always generate a runtime error.

disableAllLibraryConversionPrompts

Boolean. Default false. If true, all library conversion prompts are disabled, and libraries
convert without any prompts.

dropDestinationFrameAlpha

Integer (0-255). Default 192. The alpha value used when drawing the drag and drop

destination rectangular frame.

dropDestinationFrameColor

Integer. Default colorhighlight system color defined in appearance.json. The color used
when drawing the drag and drop destination rectangular frame.

 Omnis Configuration Items

 187

dropDestinationFrameWidth

Integer. Default 4. The width in pixels of the drag and drop destination rectangular

frame.

enableCrashReporting

Boolean. Default true. If true, crash reporting is enabled, meaning that if Omnis
crashes, it writes a minidump file to the logs/crashes/reports folder.

entryFieldsIncludeQuotesWhenSelectingWords

Boolean. Default false. If true, fat client entry fields treat single and double quote

characters as part of words.

extraClassNameValidations

Boolean. Default true. If true, Omnis performs extra validations before assigning a
name to a class. These validations are recommended, as using the characters they
exclude in class names can cause confusion and potentially errors. This property is
present to allow code from previous versions to continue working if the additional
validations cause the code to fail.

The characters excluded by these validations are any character with a value less than
space, a character in the string ".,;:!?)]}([{+-*/|&><=", or a single or double quote
character. In addition, the validations do not allow the name to start with the character
$.

floatWindowSubclass

Boolean. Default true. If true, and the subclass overrides $width or $height of its
superclass, apply appropriate floating to superclass controls based on their $edgefloat

value.

initiallayoutbreakpoints

A comma-separated layout breakpoint character string that specifies the value
assigned to $clib.$prefs.$initiallayoutbreakpoints when creating a new library. Default
320,768 if empty.

language

Default empty. If not empty, a character string that specifies the name of a language in
the localization data file, used to override the current language set in the localization
data file.

maxCachedIconSetBitmaps

Integer. Default 1000. Configures the cache of bitmaps generated from PNG and SVG
images held in icon sets. The maximum number of bitmaps that can be cached. If
Omnis needs to create a new bitmap for an icon from an icon set, and the current
number of cached bitmaps is at this limit, Omnis frees the least recently used bitmap.

maxChainDepth

Integer. Default 20. Configures the maximum number of field or item references that
Omnis will chain through in order to reach the actual referenced variable. Normally you
would leave this item set to 20. Change it if you have a heavily recursive method that
uses field reference parameters.

Note the minimum value is 20 so that setting this to any value less than 20 results in

Omnis using the value 20.

nationalFieldCompareChars

Boolean. Default false. Controls how national fields are compared.

If true, national fields are compared a character at a time. If false, national fields are
compared using the ICU collator. You are recommended to leave this value set to the
default, unless advised otherwise by Omnis Support.

Note that if you are using the Omnis data file and you change this value, you will need
to drop and rebuild all indexes.

Appendix

188

omnisPreviewURLPrefix

The report preview URL prefix for $address; defaults to "omnis:" if empty.

reportErrorOpeningInitialFileAsLibrary

Boolean. Default true. If true, Omnis reports an error when trying to open the initial file
(dropped on Omnis, or double clicked) as a library. If false, Omnis ignores an error
when doing this.

reportQueueCommandFieldNotFoundErrors

Boolean. Default true. If true, queue commands (such as Queue set current field)
generate a debugger (or runtime) error if the field cannot be found. If false, execution
just continues if the field cannot be found; setting this item to false can be used to
provide compatibility with earlier versions of Omnis.

responsiveLayoutPadding

Integer. Default 2. The default value of $layoutpadding for a new remote form.

showLibraryConversionWorkingMessage

Boolean. Default true. Specifies if a working message can be displayed to show the
progress of conversion of a library from an earlier version of Omnis to the current
version.

stricterNotationErrorChecks

Boolean. Default true. When true, certain unresolved name errors (for example, from
notation of the form $cinst.name and $ctask.name) result in a debugger (or runtime)
error if $clib.$prefs.$reportnotationerrors is kTrue.

sys192ExcludesIDEmethods

Boolean. Default true. Specifies whether to exclude IDE method calls from the list
returned from sys(192). If true, it excludes an IDE method if the library containing the

method is marked as always private.

sys192ListRowLimit

Integer. Default zero. If greater than zero, lists (and rows) with up to
sys192ListRowLimit rows are included as a third column in the parameter data. Each
parameter in the parameter list stored in each line of the sys(192/292) list has a third
column, which for lists and rows contains the actual list (or row) data, if the list or row
has less than or equal to sys192ListRowLimit lines. In all other cases (not a list or
row, or line limit sys192ListRowLimit exceeded) column 3 is empty.

If less than or equal to zero, no third column is added.

tokenEntryPopupDelay

Integer. Default 500. The delay in milliseconds after you stop typing in the fat client
token entry field, after which the token entry popup can appear.

tokenizeExternalFieldNames

Boolean. Default false. The initial value for $prefs.$tokenizeexternalfieldnames. If true,
Omnis uses tokens rather than text when tokenizing external field names.

tokenizeExternalFileNames

Boolean. Default false. The initial value for $prefs.$tokenizeexternalfilenames. If true,
Omnis uses tokens rather than text when tokenizing external file names.

traceLogUsesStyles

Boolean. Default true. Specifies whether the trace log renders text styles.

Notes: If false, trace log lines can still contain text styles; in this case, Omnis ignores
the styles when drawing trace log lines. Omnis always strips text styles from trace log
lines written to the text log file in the logs folder, irrespective of the value of
traceLogUsesStyles. (In effect this replaces traceLogUsesSyntaxColors which has
been removed.)

 Omnis Configuration Items

 189

useOldRegularExpressionSyntax

Boolean. Default false. If false, Omnis uses PCRE2 compatible regular expressions. If
true, Omnis uses the regular expression syntax used in Omnis Studio version 10.1 and
earlier.

useScreenDestination

Boolean. Default false. If false, Omnis automatically maps the old Screen report
destination to the Preview report destination. If true, the old Screen report destination is

available.

useSystemSettingsForSpelling

Boolean. Default true. If true, entry fields that perform spelling checks and provide
spelling suggestions, use the system settings to identify the current language or
languages. If false, these entry fields use the national sort ordering locale for the
current language in the Omnis localisation data file. If Omnis fails to initialise the
system spelling API to use the required language it reports this failure to the trace log.

diacriticalpopup
The diacritical popup opens after you long press on certain keys in fat client entry
fields, giving you the option of entering related characters with diacritical marks for
either the current Omnis language, or optionally on macOS the language determined
from the current keyboard layout.

Use items in this group to configure the behavior of the diacritical popup on macOS.

The items in the diacriticalpopup group are
diacriticalPopupUsesMacOSKeyboardLayout and keyboard identifiers, for example:

"com.apple.keylayout.British": "en",

"com.apple.keylayout.German": "de",

"com.apple.keylayout.French": "fr",

"com.apple.keylayout.Spanish": "es",

"com.apple.keylayout.Italian-Pro": "it",

"com.apple.keylayout.Italian": "it"

Each keyboard identifier is the string id of a macOS keyboard layout. The value of
each keyboard identifier item is the language identifier - this is the language used for
the diacritical popup when the current keyboard layout matches the item name.

diacriticalPopupUsesMacOSKeyboardLayout

Boolean. Default true. Only applies to macOS. If true, Omnis tries to determine the
language for the diacritical popup by using the current keyboard layout and the
remaining items in the diacritical popup group.

docview
The items in the docview group configure the behavior of the docview external

component.

replaceTabsInRTFwithSpacesWhenAddingToReport

Integer. Default 2. This can be a value from zero to 32 inclusive, and it specifies what
happens to tab characters in RTF when the RTF object is added to a report. Zero
means leave the text unchanged. 1-32 means replace each tab character found in the

text with 1-32 spaces.

Appendix

190

exportimportjsonoptions
The exportimportjsonoptions group stores the values of the

$prefs.$exportimportjsonoptions Omnis preference.

deleteexportoutputtreeifcancelled

Boolean. Default true. If true, $exportjson() deletes a partially exported output tree, if
the export is cancelled by the user.

exportcodefoldingstate

Boolean. Default false. Controls whether the code-folding state in the methods in your

library is exported by $exportjson().

exportoverwritesconflicts

Boolean. Default false. If false, $exportjson() does not replace the folder for a
conflicting class, and before it exports the class, renames the folder for the class to be
of the form name.conflict<n> where <n> is an optional integer added if the .conflict
folder already exists from a previous export; this makes both the original JSON and the
new JSON available in the library tree.

If true, $exportjson() replaces conflicts when overwriting an existing tree (conflicts are
ignored when the method text file extension has changed, or class.json contains the

error marker - in other words, in these cases, the class is always replaced).

hideexportworkingmessage

Boolean. Default false. If true, the working message is hidden for $exportjson() and
$comparejson().

hideimportworkingmessage

Boolean. Default false. If true, the working message is hidden for $importjson().

importtreatsunknownpropertyaswarning

Boolean. Default true. Specifies whether unknown properties in imported JSON are
treated as a warning or an error.

includenotationinide

Boolean. Default false. Specifies whether the notation methods $comparejson(),
$exportjson() and $importjson() are present in the IDE property manager tables. This

also controls whether these notation methods appear in the code assistant.

ide
The items in the ide group configure the behavior of the IDE.

allowNumericObjectNames

Boolean. Default false. When false, the Property Manager validates the value assigned
to $name for menu, remote form, remote menu, report, schema, toolbar and window
objects. The validation applied is that when the name starts with a digit, the remaining
characters cannot all be a digit or a character in the string "+-.".

You are not recommended to allow numeric object names, as there can be clashes
between names and idents, and notation strings of the form ...$objs.[lName] (where
lName is a variable containing the name of an object) will fail to locate the object if
lName is an integer, since Omnis will treat lName as an ident rather than a name.

animateIDEcontrols

Boolean. Default true. Specifies whether controls on IDE windows can be animated.

autoSave

Boolean. Default false. The state of the Auto Save option on the file menu. Omnis

saves the state of this option selected via the file menu in this configuration item.

 Omnis Configuration Items

 191

When Auto Save is enabled, Omnis periodically automatically saves the content of all
class and code editors, except for system classes, provided that the class is not read-
only, and the code editor is not in read-only mode.

autoSaveInterval

Integer. Default 1000. Applies when Auto Save is enabled. The interval between each
Auto Save in milliseconds.

canUseCreateVariableOnVarNotFound

Boolean. Default true. Specifies if the Create Variable dialog can be used to define a
missing variable.

catalogUsesSyntaxColors

Boolean. Default true. If true, the Catalog displays items in the right hand list using their
syntax color (if any).

componentStorePopupDelay

Integer. Default -1. The delay in milliseconds between a click on an entry in the
Component Store window and the popup for that entry appearing. -1 means Omnis
calculates the delay to be just longer than the double click time, which means you can
double click on an entry to add the corresponding default component to the design

window without the popup appearing briefly.

currentJavaScriptTheme

The name of the current JavaScript theme. Stores the value of the property
$prefs.$javascripttheme.

dockingAreaDesignDPI

The scaling DPI values used for the main docking areas when
dockingAreaDesignDPIMode is not set to kDPIoff. A comma separated string of three
DPI values. Default 96,72,75.

dockingAreaDesignDPIMode

A character string specifying the main docking area DPI mode. Default kDPIoff. Either
kDPIoff, kDPIframeOnly or kDPIall.

dragObjectAlpha

Integer. Default 220. The alpha value (0-255) applied to the drag bitmap when dragging
objects from a fat client window.

findAndReplaceLogUsesSyntaxColors

Boolean. Default true. Specifies whether the find and replace log uses syntax colors
when displaying method lines.

findAndReplaceSelectsTopClass

Boolean. Default true. If true, when the find and replace dialog comes to the front, it
selects the class of the top-most window that has a class. If false, or the dialog cannot
find a class (because for example there is no window with a class), then the selection
remains unchanged.

libConverterAddsInlineCommentToStaCommandParameter

Sta: commands in Omnis Studio 10.0 and later cannot have an inline comment. This
item configures how to convert an inline comment on a Sta: command, when
converting from versions prior to Omnis Studio 10.0.

If empty, Omnis does not add the inline comment to the Sta: command parameter. The
inline comment is discarded, and then processed according to
libConverterAppendsDiscardedInlineComments and
libConverterInsertsDiscardedInlineComments.

If not empty, it must be a string containing a % placeholder e.g. "-- %" or "/* % */".
When converting a Sta: command with an inline comment, Omnis replaces the % with

Appendix

192

the inline comment, appends it to the Sta: command parameter, and attempts to
tokenize the command. If the command tokenizes, conversion is complete; otherwise,
the inline comment is discarded, and then processed according to
libConverterAppendsDiscardedInlineComments and
libConverterInsertsDiscardedInlineComments. If
libConverterAddsInlineCommentToStaCommandParameter does not contain %,
the inline comment is similarly discarded.

libConverterAppendsDiscardedInlineComments

Boolean. Default true. If true, an inline comment from a Text: or JavaScript: command,
or an inline comment discarded from a Sta: command (see
libConverterAddsInlineCommentToStaCommandParameter) is appended as a
comment after the command.

libConverterInsertsDiscardedInlineComments

Boolean. Default false. If true, an inline comment from a Text: or JavaScript: command,
or an inline comment discarded from a Sta: command (see
libConverterAddsInlineCommentToStaCommandParameter) is inserted as a
comment before the command.

This item is ignored if libConverterAppendsDiscardedInlineComments is true.

maxDisplayedDropListLines

The maximum number of displayed lines in all droplists and combo boxes in the Omnis

IDE. Defaults to 30, and can be 5-50 inclusive.

maxRecentClassEntries

Integer. Default 9. Can be set to any value in the range 9 to 32 inclusive. Specifies the
maximum number of recent class entries in the View menu on the main menu bar. Note
that this also affects the class browser recent classes hyperlink, but since that only
shows classes (or methods when the shift key is pressed), there are typically fewer
recent class items on the recent classes hyperlink than on the main View menu.

neverUseSystemStyleTooltips

Boolean. Default false. If true, Omnis does not use system style tooltips (ignoring the
setting of the systemstyle entry in the tooltip section of appearance.json).

positionAssistantKeyboardTimer

Integer. Default 750. Used when position assistance appears while using the keyboard.
Specifies the maximum time that position assistance remains visible after you stop
pressing an arrow key.

positionAssistantShowsPositionOrSize

Boolean. Default true. Applies to position assistance for the remote form and window
editors. Specifies whether the position assistant displays the current position when
objects are being moved or dropped from the Component Store, or the current size
when objects are being sized. When more than one object is selected, the position or
size corresponds to the union of the object rectangles.

restoreOpenClassEditorsAtStartup

Boolean. Default true. If true, after completing startup, the development version of
Omnis tries to re-open class editors that were open when Omnis last shut down
successfully. Note that the class editors to which this applies do not include the system
table editors.

Note: The value of this configuration entry is ignored, and treated as false, if the
restoreOpenLibsAtStartup entry is false.

 Omnis Configuration Items

 193

restoreOpenLibsAtStartup

Boolean. Default true. If true, after completing startup, the development version of
Omnis tries to re-open libraries that were open when Omnis last shut down
successfully.

When the development version of Omnis shuts down successfully, it saves the list of
libraries to re-open. The library list saved excludes all libraries in the startup and studio
folders, and all private libraries; these libraries will typically re-open anyway. In
addition, Omnis will only run the startup task of a library that it re-opens, if the startup
task was open when Omnis last shut down successfully.

saveSearchDelay

Integer. Default 500. Each keystroke in an IDE search combo box performs a search.
After starting a search, if saveSearchDelay milliseconds passes without a keystroke,
the search combo box saves the current search string for future use via the combo box
popup list.

saveWhenSettingGoPoint

Boolean. Default false. If true, a save is triggered when manually setting the Go point

while debugging your code.

searchFindAndReplaceLogByType

Boolean. Default true. Controls how keyboard searches work in the find and replace
log. Only applies when $prefs.$oldlistsearching is false. When true, and
$prefs.$oldlistsearching is false, keyboard searches in the find and replace log search

column 2 (the type column) rather than column 1.

syntaxColorProbableSQLComments

Boolean. Default true. If true, the code editor attempts to recognize and syntax color
comments in Sta: commands, by looking for -- and /* */ comments.

tryDesignTaskWhenTestingWindow

Boolean. Default true. If true, when testing a window using Ctrl/Cmd+T, Omnis looks at
the design task name, and if it is the same as the startup task name, switches to the
startup task. If however, the design task name is different, Omnis switches to the first
instance it can find of that task; if there is none, it switches to the startup task as
before.

If false, when testing a window using Ctrl/Cmd+T or the open window hyperlink of the
browser, or the browser context menu for a window class, Omnis switches to the
startup task of the library containing the window.

updateVariableWindowsOnDebuggerStop

Boolean. Default true. If true, Omnis updates any open variable value windows with the
current variable value, when stopping in the local debugger. If false, the update does
not occur in a variable window until it becomes the top window.

windowToolbarDesignDPI

The scaling DPI values used for the window toolbar of IDE windows when
windowToolbarDesignDPIMode is not set to kDPIoff. A comma separated string of

three DPI values. Default 96,72,75.

windowToolbarDesignDPIMode

A character string specifying the DPI mode for the window toolbar of IDE windows.
Default kDPIoff. Either kDPIoff, kDPIframeOnly or kDPIall.

Appendix

194

java
The items in the java group configure Java support when Java support has been
included as part of the Omnis installation. (Note: the Omnis Java support files are not
installed by default, and need to be added only if required.)

jvmPath

The pathname of the JVM DLL used when Java support has been included as part of
the Omnis installation.

resetClassCacheOnStartup

Boolean. Default false. If true, and Java support has been included as part of the
Omnis installation, the Java objects external component discards the class cache when
Omnis starts.

startjvm

Boolean. Default false. Only used by the headless Linux server. If true, and Java
support has been included as part of the Omnis installation, start the JVM during
headless server startup.

log
The items in the log group configure logging.

conversionLogDelimiter

Configures the delimiter used by the log generated in the logs/conversion folder, when
converting a library from a version prior to Omnis Studio 10.0. Default \t. You can enter
\t to mean tab, or any single character in this item.

datatolog

An array of keys that specifies the information that will be written to the log. Supported

keys are:

restrequestheaders RESTful request headers

restrequestcontent RESTful request content

restresponseheaders RESTful response headers

restresponsecontent RESTful response content

tracelog Trace log

seqnlog Sequence log

soapfault SOAP fault

soaprequest SOAP request

soapresponse SOAP response

soaprequesturi SOAP request URI

cors RESTful CORS processing errors

headlessdebug Headless server event handling debug messages

headlesserror Headless server event handling error messages

headlessmessage Headless server general messages

 Omnis Configuration Items

 195

encloseConversionLogTextInQuotes

Boolean. Default true. Specifies whether entries in the log generated in the
logs/conversion folder, when converting a library from a version prior to Omnis Studio
10.0, are enclosed in double quotes.

logcomp

Either empty (meaning logging does not occur) or the name of the logging component
to use for logging. Omnis currently only provides a single logging component named
logToFile.

logDamSerialNumberErrors

Boolean. Default false. If true, Omnis writes an entry to the trace log if it fails to load a
DAM because the serial number does not allow the DAM to be used.

logNowExternalComponentErrors

Boolean. Default true. If true, Omnis writes an entry to the trace log if it fails to load an
external component because either the component was built for Studio Now and the
current Omnis build is a periodic release, or the component was built for a periodic
release and the current Omnis build is a Studio Now release.

logToFile

An object that configures logging when the logcomp item is set to logToFile. The
object has members as follows:

folder

The name of the folder in which log files are written. The name must not
be empty, and it must not end in a path separator. It can either be a full
pathname or a path relative to the Omnis data folder. When using a full
pathname, the folder must exist; when using a relative pathname, the
logToFile component attempts to create the log folder (including any
intermediate folders).

rollingcount

The number of log files to keep. logToFile starts a new log file every log
period (see the daily item). rollingcount specifies the maximum number
of log files that can be kept in the log folder. When the limit is reached, and
logToFile needs to start a new log file, logToFile deletes the oldest log file.

rollingcount must be between 2 and 1024 inclusive.

daily

logToFile starts a new log file every log period. A log period is either hour

or day. Use this Boolean item to specify which.

When set to hour (daily = false), a new log starts at startup, and when a
log entry is to be generated after the hour has changed.

When set to day (daily = true), a new log starts when the day has
changed; in this case, when you start Omnis, and there is already a log file
for the current day, logToFile appends to it.

overrideWebServicesLog

Boolean. Default false. SOAP Web Service support in Omnis has a separate log file.

When overrideWebServicesLog is false, SOAP log messages are written to both the

logcomp log and the separate log file.

When overrideWebServicesLog is true, SOAP log messages are only written to the
logcomp log.

windowssystemdragdrop

Boolean. Default false. If true, and Omnis is running on the Windows platform, Omnis
logs the clipboard formats being dragged from the operating system and dropped on

Appendix

196

Omnis, to the trace log. This can be useful when debugging operating system drag and

drop.

macOS
The items in the macOS group configure behavior when Omnis is running on macOS.

allowStopInRuntime

Boolean. Default true. If true, the Cmnd+. (Cmnd plus period) key press will stop

execution (e.g. break a loop) in a runtime on macOS.

dragIconBackground

Boolean. Default true. If true, a fat client drag icon has a background. A background is
typically required because a themed SVG icon can appear almost invisible if dragged
without a background. You can set this to false if you want your drag icons to appear

as they do in Omnis Studio 10.2.

macOSbuttonNewTextDrawingStyle

Boolean. Default true. Controls the text color used for text on fat client system buttons
(buttons with $buttonstyle set to kSystemButton).

If true, text on default buttons draws using the color colorpushdefaulttextmacos in the
pushButton section of appearance.json; and text on pressed buttons draws using the
color colorpushpressedtextmacos.

If false, text on default and pressed buttons draws using their text color.

macOStreeOutlineStyle

Boolean. Default true. If true, text in the fat client tree control draws using the colors
coloroutlinetextselected and coloroutlinetextdeselected in the system section of
appearance.json.

If false, text in the fat client tree control draws using the colors colorhighlighttext and
colorwindowtext in the system section of appearance.json.

menuTrackingSuppressTimers

Boolean. Default true. If true, timers do not fire during menu tracking; any timers that
would fire during menu tracking are deferred until menu tracking completes. This is the
preferred setting.

If false, timers can fire during menu tracking.

monitorDockKeyEvents

Boolean. Default true. Set this to false to prevent Omnis from monitoring keyboard
events from the Dock; this also prevents the system dialog requesting permission to do
this from being shown.

odbcdam.ini

Use this character string to configure the environment variables for the ODBC DAM. A

comma-separated list of entries of the form var=value.

oracle8dam.ini

Use this character string to configure the environment variables for the Oracle DAM. A
comma-separated list of entries of the form var=value.

postKeyEvents

Boolean. Default true. When true this allows the Queue keyboard event command to

post key events which use a modifier key.

This should be true to send the correct modifier key for the current keyboard using
Queue keyboard event. To allow this key event to be sent the system will display a
one-time prompt requesting that the user allows accessibility access for events.

 Omnis Configuration Items

 197

If this is false the prompt will not be shown and a key will be sent without applying the

modifier.

preventUpdateWithNoRefreshOn

Boolean. Default true (for Studio 11 onwards, false in previous versions). When set to
true and a window has set $norefresh to kTrue then this will prevent changes to the
window hierarchy, e.g. adding fields, from causing a redraw to screen. The window

changes will then be applied when $norefresh is set to kFalse.

stackSize

Integer. Default 1048576. The stack size in bytes for a new thread created by Omnis.
Set this item to zero to use the operating system default.

sybasedam.ini

Use this character string to configure the environment variables for the Sybase DAM. A

comma-separated list of entries of the form var=value.

useDictation

Boolean. Default true. Specifies whether Omnis supports the operating system
dictation interface.

useFnInMenuShortcuts

Boolean. Default true. If true, menu shortcuts for function keys display as Fn. If false,

menu shortcuts for function keys display as ⌘n.

useToolbarStyleExpanded

Boolean. Default false. Only applies to macOS 11 and later. When true, the window
toolbar style is the legacy expanded style, i.e. toolbars sit under the window title. When
false, the window toolbar style is the standard macOS 11 and later style, i.e. toolbars
are unified and to the right of the window title.

methodEditor
The items in the methodEditor group configure the behavior of the Method Editor

(including the Code Editor).

badNotationNameIsSyntaxError

Boolean. Default true. If true, the method editor treats a bad notation name as a syntax
error rather than automatically escaping it using a pair of double slashes.

checkFileClassPrefixBasedOnUniqueFieldNames

Boolean. Default true. Note that true is the recommended setting.

When $uniquefieldnames for the library is true, and
checkFileClassPrefixBasedOnUniqueFieldNames is true, it prevents you from
entering a file class name prefix (for file classes in the same library as the class being
edited).

When $uniquefieldnames for the library, and
checkFileClassPrefixBasedOnUniqueFieldNames is true, it requires that you enter a
file class name prefix (for file classes in the same library as the class being edited).

extraLineSpacing

Integer. Default 1 pixel. Extra spacing added to the height of each code line.

maxHeightOfMethodTooltipGeneralInformation

Integer. Default 100 pixels. The maximum height of the general information section
displayed at the top of a method tooltip. If the general information needs more than this
space, it is displayed with a vertical scrollbar.

Appendix

198

maxVisibleMethodLinesInMethodTooltip

Integer. Default 20 lines. The maximum number of visible text lines displayed in the
code section of a method tooltip. If the method needs more space, it is displayed with a
vertical scrollbar.

modifyMethodsCommandSetsFocusToTree

Boolean. Default false. This affects the focused field in the method editor after opening
the method editor using a modify command of some sort (e.g. by opening the methods
using the Studio browser) when the method editor for the class is already open. False
means the focused field is not changed. True means the focus is moved to the method
tree.

printMethodsWithSyntaxColors

Boolean. Default true. Specifies whether method text is printed with syntax coloring.
Note that when using syntax coloring, the colors used are those from the default
appearance theme.

selectAllCanScrollCodeEntryField

Boolean. Default false. Specifies whether select all in the code entry field scrolls the
field to the end of the method rather than leaving the scroll position unchanged.

stripTrailingEmptyCommands

Boolean. Default true. Specifies whether the code editor removes trailing empty lines
from a method before saving it back to the class.

useDefaultColorsForClipboard

Boolean. Default true. Specifies the appearance theme used for syntax colors when
placing method text on the clipboard, for the HTML (and RTF on macOS) formats.

If true, use the default appearance theme, or if false use the current appearance
theme.

validateEventsForOnCommand

Boolean. Default true. Specifies whether the code editor validates events entered for
the On command.

When validation is enabled, the code editor checks to see if the code is valid for the
object: if not, it flags it as an error. If the event is valid, and the method is in a remote
form, and the event is not specified in $events for the object, the editor automatically
adds it to $events when editing a method named $event in a non-inherited object. The

editor displays a temporary status bar message after it does this.

methodeditorandremotedebugger
includeObjectNodesInTreeSearch

Boolean. Default true. If true, searching the method tree searches object nodes in
addition to searching method nodes.

obrowser
The items in the obrowser group configure the behavior of the obrowser fat client
external component (CEF - Chromium Embedded Framework).

cefSwitches

An array of character strings. Each string in the array is a switch passed to CEF when

initialising CEF, e.g. --disable-logging

clearCacheWhenLoaded

Boolean. Default true. If true, obrowser clears the cache just after Omnis loads
obrowser.

 Omnis Configuration Items

 199

clearLocalStorageWhenClearingCache

Boolean. Default false. If true, obrowser clears local storage just after Omnis loads
obrowser. This occurs just after checking and clearing the cached based on the value
of clearCacheWhenLoaded, but note that local storage can be cleared (depending on
the value of clearLocalStorageWhenClearingCache) even if
clearCacheWhenLoaded is false.

defaultHtmlcontrolsFolderInDataFolder

Boolean. Default false. If htmlcontrolsFolder is empty, specifies if the default HTML
controls folder is in the Omnis program folder or the Omnis data folder.

htmlcontrolsFolder

The pathname of the folder in which any HTML controls are located. If this is empty,
HTML controls are located in the folder named htmlcontrols, immediately subordinate
to the Omnis program or data folder, depending on the value of
defaultHtmlcontrolsFolderInDataFolder.

locale

The locale to be used for CEF. Defaults to empty, meaning use the locale of the Omnis
program (as returned by the Omnis locale() function). If not empty, it must be a locale
string that can be used to set the locale of CEF, e.g. it_IT. This affects for example the
context menus displayed for HTML pages rendered by obrowser.

logSeverity

Integer. Default 99. The CEF log severity. Valid values are 99 (disabled), 0 (default:
info), 1 (verbose), 2 (info), 3 (warning) or 4 (error).

messageTimeout

Integer. Default 60. Used when obrowser is communicating via a local websocket with
HTML controls. The timeout in 1/60th second units after which obrowser stops waiting
for an expected response from the HTML control.

remoteDebuggingPort

Integer. Default 5989. A value between 1024 and 65535. The port number passed to
CEF as its remote debugging port. You can debug pages attached to obrowser
instances by opening a web browser and navigating to the URL
http://localhost:<remoteDebuggingPort>.

useOmnisTraceLogForConsole

Boolean. Default true. If true, console messages from pages hosted by obrowser are

redirected to the Omnis trace log.

ocx
The items in the ocx group configure the behavior of the OCX external component.

markPtrAsAltered

Boolean. Default true. Provides the ability to handle issues when using functions for
certain automation objects that have parameters of type VT_PTR; setting this to false
can work around some of these issues. However, you should keep this option set to
true unless you are advised otherwise by Omnis Support.

ole2auto
The items in the ole2auto group to configure the behavior of Windows platform
Automation.

Appendix

200

enableEvents

Boolean. Default true. Some automation servers fire events, for example, an email
application may fire an email alert event to signify new emails. To enable these events
set this item to true.

omnishttpserver
The items in the omnishttpserver group configure the behavior of the built-in Omnis
HTTP server. This server is primarily intended to be used for the local testing of remote
forms.

preventclientcaching

Boolean. Default true. If true, the server adds headers to its responses that tell the
client that it must not cache the returned content.

pdf
The items in the pdf group configure the behavior of the Omnis PDF device.

On the Windows platform only, you can specify font name mappings as additional
items within this group. These items have an entry name which is the name of the font
(as used in Omnis) and an entry value which is the name of the font as it appears in the
Windows registry.

omnispdfFolder

Used to configure the folder in which the Omnis PDF device generates scripts and
PNG files. Defaults to an empty string (meaning use the omnispdf folder in the Omnis
data folder). If not empty, it must be the path of the folder to use in place of omnispdf.
The folder must already exist (otherwise Omnis reverts to the normal omnispdf folder).

plainSuffixes

Windows platform only. A comma-separated string of suffix values that can be used to
identify fonts with a plain style. This is needed because different languages name these
fonts using different suffixes. The string defaults to
"Regular,Standard,Normal,Normale".

properties
The items in the properties group configure the behavior of the Property Manager.

show_editor

Boolean. Default false. If true, the property manager includes the properties $editor and
$editordata where relevant.

server
The items in the server group configure the behavior of the Omnis Server.

bindAttempts

Integer. Default 5 in a dev version, 0x7fffffff in a server or runtime version. The
maximum number of attempts (1 second apart) to bind to the Omnis server port.

disableInRuntime

Boolean. Default false. Only applies to a runtime (or server) version. If true, Omnis
does not try to bind to the Omnis server port. Useful if you do not want the server to be

active, and you want to prevent operating system firewall prompts.

 Omnis Configuration Items

 201

getpdfFolders

The JavaScript client getpdf command only allows non-temporary PDF files to be
retrieved from a fixed set of folders. You specify these folders using this item, which is
an array of folder paths. Each entry is a folder path, without a trailing file separator.

headlessAcceptConsoleCommands

Boolean. Default true. Applies to headless Linux server only. If true, and the headless
server is run synchronously from a console or terminal, you can use the keyboard to
enter commands, for example to quit the headless server. To see a list of possible
commands, press return.

headlessDatabaseLocation

The pathname of the SQLite database file used by the headless server admin tool
(osadmin). If empty, the admin tool uses the file osadmin.db in the same directory as
the osadmin library. If the database file does not exist, osadmin creates a new
database file.

iconsFolderName

Allows you to override the name of the icons folder in the html folder in the Omnis data
folder. If this item is empty or omitted the icons folder is html/icons;

otherwise it is html/<iconsFolderName>.

multiProcess

Boolean. Default false. Applies to headless Linux server only. If true, the headless
server runs in multi process mode.

overridePushURL

Use this to override the default push URL generated by the JavaScript client scripts:
this can only be used when using openpush in a server method. To use the default
push URL, set this item to empty.

port

A character string. The TCP/IP port number (1-32767), or service name, on which the
Omnis Server listens for connections. This is where $prefs.$serverport is stored.

readTimeout

Integer. Default 20. The length of the read timeout in seconds. Only applies if
timeoutReads is true.

RESTfulConnection

[POOL,][IPADDR:][PORT]. Controls how the Omnis RESTful Web Server plugin
connects to Omnis. POOL is a load sharing process pool name; IPADDR and PORT
identify Omnis or load sharing process; if empty,defaults to $serverport. This is where
$prefs.$restfulconnection is stored.

RESTfulURL

The base URL used to call Omnis RESTful Web Services, e.g.
http://www.test.com/scripts/omnisrestisapi.dll. Omnis uses this in the OpenAPI and
Swagger definitions it generates. If empty,Omnis uses http://127.0.0.1:$serverport. This
is where $prefs.$restfulurl is stored.

retryBind

Boolean. Default true. If true, and binding to the server port fails, Omnis will retry
binding (once a second) for up to bindAttempts times.

runtimeOpensTraceLogOnSocketBindError

Boolean. Default true. If Omnis fails to bind to the Omnis server port, after retrying if
allowed, it writes an error message to the trace log. If this item is true, then a runtime or
server version of Omnis also opens the trace log after writing the error message.

Appendix

202

showBindRetryMessage

Boolean. Default true. If true, Omnis displays a working message while it is retrying the

bind to the Omnis server port.

stacks

Integer. Default 5. The number of threaded stacks set up by the Start server command.
Must be between 1 and 99 inclusive. This is where $prefs.$serverstacks is stored.

start

Boolean. Default false. This setting is ignored by the Linux headless server if
multiProcess is set to true. Otherwise, set this to true to automatically execute Start
server when Omnis starts.

timeOffsetMinutes

Integer. Default zero. Omnis adds this to the current system date-time when generating
the value for #D and #T. This allows the server date and time evaluated in Omnis code

to be adjusted to match the time zone of its clients.

timeoutReads

Boolean. Default true. If true, the Omnis server times out and closes inactive
connections from clients. A connection is considered inactive if either no message has
been received, or only a partial message has been received, and no further data is

received in readTimeout seconds.

timeslice

The duration (in 1/60th second units) of the execution time slice for a server thread. A
value of less than or equal to zero results in the timeslice value actually used being 20.
This is where $prefs.$timeslice is stored.

webServiceConnection

[POOL,][IPADDR:][PORT]. Controls how the WSDL Web Service Web Server plugin
connects to Omnis. POOL is a load sharing process pool name; IPADDR and PORT
identify Omnis or load sharing process; if empty,defaults to
127.0.0.1:$prefs.$serverport. This is where $prefs.$webserviceconnection is stored.

webServiceLogging

A string that specifies how the Omnis WSDL Web Service Server logs requests:off for
no logging, faults to log SOAP faults only, full to log all requests. This is where
$prefs.$webservicelogging is stored. See also the library preference
$disablewebservicelogging.

webServiceLogMaxRecords

The maximum number of records allowed in the WSDL Web Service request log; once
reached,the server deletes the oldest record before inserting a new record. Setting a
new value deletes records if the new limit is exceeded. This is where
$prefs.$webservicelogmaxrecords is stored.

webServiceStrictWSDL

Boolean. Default true. If true, Web Service WSDLs are strict (types are qualified with
schema restrictions where possible, and annotations can be added to schema types).
Set this to false if your client objects to this additional information in the WSDL. This is
where $prefs.$webservicestrictwsdl is stored.

webServiceURL

The URL used to call Omnis WSDL Web Services, e.g.
http://www.test.com/scripts/owsisapi.dll. Omnis uses this in the WSDL files it
generates. If empty, Omnis writes http://127.0.0.1:$serverport to WSDL files (use
empty for local testing). This is where $prefs.$webserviceurl is stored.

 Omnis Configuration Items

 203

servermgmt
The items in the servermgmt group configure the behavior of the Omnis Server

Management Library (servermgmt.lbs).

showTrayIcon

Boolean. Default false. Controls whether servermgmt.lbs shows the tray icon.

svg
The items in the svg group configure the behavior of the SVG icon support.

customSizes

An array that allows you to configure the custom sizes available in the IDE select icon
dialog, when specifying the dimensions of an SVG icon. Note that the select icon dialog
also allows you to manipulate this array. Each entry is of the form wxh, specifying the
width and height of the custom size e.g. 256x256.

tooltips
The items in the tooltips group configure the behavior of tooltips.

generalDisplayDelay

Integer. Default 500. The delay in milliseconds before a general (non-method) tooltip
displays while the mouse is held over an object that has a tooltip.

maxWidth

Integer. Default 0. The maximum pixel width of a tooltip. A value less than or equal to
zero means use a third of the screen width. This item applies in all but a few special
cases.

methodContentDisplayDelay

Integer. Default 500. The delay in milliseconds before a method content tooltip displays

while the mouse is held over an object that has a method tooltip.

vcs
The items in the vcs group configure the behavior of the Omnis VCS.

enableBranching

Boolean. Default false. If true, the Omnis VCS supports branching.

web
The items in the web group configure the behavior of the Omnis WEB method
commands.

ftpsresumesession

Boolean. Default true. If true, the FTP commands attempt to resume the control

connection session when establishing a secure data connection.

windows
The items in the windows group configure behavior when Omnis is running on
Windows.

Appendix

204

backgroundObjectsMustUseTrueTypeFont

Boolean. Default true. Applies to fat client label and text background objects. If true,
these require a TrueType font; if false, they will draw using any font. If you set this item
to false, there may be certain cases e.g. when dragging the objects in design mode,
where the text does not draw.

canConvertAnsiPageSetupData

Boolean. Default true. If true, Omnis converts Ansi page setup data in converted non-

Unicode report classes to Unicode.

createShortcut

Boolean. Default true. If true, and there is no shortcut to itself in the Start menu, Omnis
creates a shortcut to itself in the Start menu. It then modifies the shortcut to contain the
AppUserModelID required for local notifications to work.

defaultMenuDesignDPI

The default scaling DPI values used for menus on the Windows platform when
defaultMenuDesignDPIMode is not set to kDPIoff. A comma separated string of three
DPI values. Default 96,72,75.

defaultMenuDesignDPIMode

A character string specifying the DPI mode for menus on the Windows platform.

Default kDPIoff. Either kDPIoff, kDPIframeOnly or kDPIall.

forceHighDPIawareMode

Integer. Default zero. Set this to be 1, to force Omnis into high DPI mode, irrespective
of the DPI (only recommended on a retina screen or higher; high DPI mode will
activated and DPI set internally to 192).

hideStudiorgMessage

Boolean. Default false. If true, it prevents Omnis from displaying the dialog informing
the user that studiorg will run.

highDPIaware

Boolean. Default true. If true, Omnis will tell Windows that it is DPI aware, meaning that
on retina resolution screens it will operate at high DPI (192).

includeDDEEditMenuItems

Boolean. Default false. If true, the DDE menu items "Paste Link" and "Remove DDE
Link" are added to the Edit menu. Omnis requires a restart after editing this item.

initLocalNotifications

Boolean. Default true. If true, Omnis initialises the interfaces required to send
notifications to the local Notification Center. See also the createShortcut configuration

entry in the windows section.

miniconid

The icon id of the minimize icon for the Omnis executable.

noAdmin

Boolean. Default false. When true, Omnis does not try to run studiorg with
administrator privileges.

pythonPath

If the Omnis PDF device is using python to generate PDF reports, this item allows you
to override and specify the path of the python executable used to run the PDF
generator python scripts. Leave this empty to use the default python executable in the
Omnis tree.

 Omnis Configuration Items

 205

readBorderActiveColorFromSystem

Boolean. Default true. If true, Omnis reads the accent color from the system, and uses
that as the color for active window borders, when $prefs.$windowoptions specifies
Windows 8, 8.1 or 10, and borderactivecolor in $prefs.$windowoptions is set to
kColorDefault. If false, Omnis uses a hard-coded color (rgb(244,112,35)) for
borderactivecolor when borderactivecolor is kColorDefault.

scaleScreenCoordsUsingPhysicalSize

Boolean. Default false. Defaults to false. Only applies when $clib.$screencoordinates is
true. If false, screen coordinate scaling is based on the size of the main window; if true,
it is based on the physical screen size.

singleInstance

Boolean. Default false. Controls the default value of $prefs.$singleinstance. On
Windows, if the $singleinstance root preference is set to kTrue, the same instance of
Omnis is used to open a library file, otherwise another instance of Omnis will be
started.

updateFileAssociations

Boolean. Default true. If true, Omnis will if necessary attempt to associate its file
extensions (e.g. .lbs, .df1) with the current running executable, by executing studiorg at
startup.

useLegacyDefaultPrinter

Boolean. Default false. If false, Omnis uses the Windows GetDefaultPrinter API to
obtain the default printer. If true (present for potential backwards compatibility issues)

Omnis uses the Win16-compatible API GetProfileString).

	What's New in Omnis Studio 11
	About This Manual
	Software Support, Compatibility and Conversion Issues
	Serial Numbers and Licensing
	Library and Datafile Conversion
	Converting 10.x Libraries
	Converting 8.x or earlier Libraries

	npm
	Microsoft SQL Server in the Community Edition
	Input Monitoring & Keystroke Receiving (macOS only)
	Date and Time Conversion in the JavaScript Client
	PDF Printing
	Oracle DAM
	Form and Report Object Limit
	JavaScript Worker
	macOS System Font
	External Components
	FLDeditState

	OLE2 Menu Options
	DDE Menu Options
	Web Client Form Cache

	What’s New in Omnis Studio 11 Revision 36251
	Omnis Studio Now
	Studio Browser
	Documentation

	JavaScript Components
	JS Data Grid
	Custom Picklists
	Resizing Columns

	JS Droplist
	List line selection
	List definition

	JS Combo Box
	List definition

	JS Rich Text Editor
	Inserting text
	Events

	JS Native List
	Themed SVG Icons
	Menu Icons

	JS Tile Grid
	JS Toolbar
	JS Entry Field
	evInput event
	Label Position

	Custom CSS Styles
	Component Object Type

	JavaScript Remote Forms
	Subform Sets
	Trapping the close event
	Maximize behavior
	Closing a subform with Esc

	Using a Promise with Client Commands
	Client Methods
	Debugging Client Methods
	Server Method Calls

	JS Theme
	Vertical Text in PDF reports

	Window Components
	Screen Report Fields
	Combo Boxes and Droplists
	Picture Controls
	Entry Fields
	Content Tips

	HTML Controls

	The Omnis Environment
	Spell Checking
	Property Manager
	Setting Location and Size Properties
	Selecting Properties
	Changing Boolean Properties

	Save Window Setup and Omnis Preferences

	Unicode
	Import Encoding

	Libraries and Classes
	Export JSON Options

	List Programming
	Defining Lists
	Binary Data in Lists

	Server-Specific Programming
	PostgreSQL
	Notification Channels

	Debugging Methods
	Method Stack Limit

	OW3 Worker Objects
	Hash Worker Object
	OAUTH2 Worker Object

	Commands
	Importing Data

	Functions
	FileOps Workers
	FileOps.$spaceinfo()
	Syntax
	Description

	split()
	bitset() and bittest()
	bitclear()
	iso8601toomnis() and omnistoiso8601()
	hexcolor() and hsla()
	dpart()
	truergb()

	Deploying your Web & Mobile Apps
	Headless Server Admin Tool

	Omnis Studio External Components
	OmnisObject and OmnisObjectContainer
	Version Support
	ToolTips

	Version Control
	VCS API

	What’s New in Omnis Studio 11 Revision 35659
	Libraries and Classes
	Class Locking and Library Conversion

	JavaScript Components
	JS Camera
	JS File
	Native List

	JavaScript Remote Forms
	Date and Time Conversion in SQLite

	Window Components
	Complex Grid
	Toolbars
	oBrowser
	Chromium Safe Storage Prompt (macOS only)

	Omnis Environment
	Omnis Configuration
	Keystroke Receiving Prompt (macOS only)

	Web and Email Communications
	OAUTH2 Worker Object
	SMTP Worker Object

	Functions
	OIMAGE.$makeqrcode
	rnd()
	mouseover()
	FileOpsObj

	Online Documentation
	Latest Revisions

	What’s New in Omnis Studio 11 Revision 35439
	JavaScript Components
	JS Camera Control
	JS Data Grid
	JS Native List
	List Pager

	JavaScript Remote Forms
	PDF Printing

	Push Notifications
	Window Components
	Headed List
	Popup List
	oBrowser
	Multibutton Control

	Libraries and Classes
	Class Data and Method Text Notation

	Version Control
	Building Projects
	VCS API

	oProcess
	Web and Email Communication
	Python Worker
	$init method
	Example app

	LDAP Worker

	What’s New in Omnis Studio 11
	The Omnis Environment
	Enhancements in the IDE
	Studio Browser
	Property Manager
	Property Tab
	Tab and Focus Selection
	Copy Value
	Selecting Integer Values
	Check box list properties

	Component Store
	Searching for a component
	Adding a Component to a form
	JavaScript Components & Groups
	Window, Report & Toolbar Components
	Changing the Appearance
	Two Column mode
	Favorites
	Further Options
	Configuration
	Editing the Component Store Library
	Compound Objects
	Container Compound Objects
	Class Templates

	Catalog
	Variable values
	Syntax Colors

	Configuration File Editor
	Adding Configuration items
	Updated or Unsupported Items
	Configuration Editor Visibility
	Help Files

	Spell Checking
	Configuration
	Window Class Controls
	Code Editor
	Remote Debugger

	Multi- Undo and Redo
	Property Manager
	Method Editor
	Report Editor
	Form or Window Editor

	Appearance Color Format
	Dark Mode
	Dark Mode in Themes
	User Defined Colors
	IDE Window Colors (Windows only)
	System Colors

	Design Window Titles
	Find and Replace
	Find Matches
	Recent Search List
	Checked Out Classes
	$findandreplace method

	Trace Log
	Styled Text
	Log Font Size

	Using Multiple Screens on macOS
	Tooltips
	Single Instance Preference

	JavaScript Components
	JS Chart
	Chart Data
	Properties
	Events
	Mixing Chart Types

	JS Gauge
	Properties
	Events
	Customizing the Scale and Range

	JS Camera
	Camera Actions
	Camera Permission and Testing
	Image Aspect Ratio
	Capture Size
	Image Type & Quality
	Events

	JS Floating Action Button
	Defining the data list
	Properties
	Events

	JS Tile Grid
	Properties
	Configuring the grid layout
	Setting the tile width
	Defining the data list
	Events

	JS Scroll Box
	Subform Sets
	Group Box

	JS Color Picker
	Properties
	Events
	Predefined Color Swatches

	JS Side Panels
	Panel Mode Property
	Panel Mode Method
	Events

	JS Data Grid
	Enter Key Behavior
	Horizontal Padding
	Grid Line Visibility
	Column Headers
	evCellChanged
	Formatting cells
	Column Properties in Field Styles

	JS Edit Field
	Dynamic Labels
	Content tip text color
	Date Picker

	JS Button
	Text Position

	JS Droplist & Combo Box
	Droplist Style

	JS Date Picker
	Disabling Dates
	Week Number
	Calendar View Change Event

	JS File
	JS Slider
	JS Toolbar
	JS Nav Bar
	JS Map
	SVG marker color
	Border Radius

	JS Native List
	Menu Accessory
	Vertical Scroll

	JS Picture
	JS Rich Text Editor
	JS Radio Button Group
	Icon Badges
	Badge Options
	Tab panes and Tab strips

	Position Assistance
	Position and Size coordinates
	Position for dropping objects

	Group Selection & Object Properties
	SVG Icons
	SVG Themer tool
	Material Icon set
	SVG Icon size

	Field List
	Object Search
	Renaming Objects
	Opening the Field List

	Color Palette
	Background Images
	Inactive Appearance
	Edge Float
	Fonts and Semi-bold
	Tab Order
	Remove from Tab Order
	Next Tab Object

	Subform Events
	Subform Promise
	Rounded Borders
	Numeric Object Names
	ARIA Properties

	JavaScript Remote Forms
	Remote Form Editor
	Testing Remote Forms
	Subform Palettes
	subformpaletteshow
	subformpaletteclose

	Event Specific Client Methods
	Showing Built-in Methods

	Layout Breakpoints
	Minimum number of Breakpoints
	Component Properties in new Breakpoints
	Copying Layout Breakpoints
	Assigning Properties

	Subform Sets
	Add Return Method
	Client Script Version Reporting
	Remote Menus
	Text Alignment
	Icon Colors

	PDF Printing
	PDF path names
	PDF Version
	PDF/A support
	PDF Keywords

	Libraries and Classes
	Restoring Open Libraries & Classes
	Closing All Libraries
	Open/Close Library Notifications
	Class Names
	Library APIs
	Library Internal Names
	Importing Libraries
	Startup Task
	Library Startup & Conversion

	Method Editor
	Conditional Breakpoints
	List Variable Search
	Find Possible Calls
	Debugger Debug Panel
	Overriding or Inheriting multiple methods
	Display Integers as Hex
	Code Assistant
	Parameter list order
	Do command
	$obj and $field
	Code Assistant Width

	Item Reference Classes
	Jump to Variable Definition
	Jump to Search or Error Item
	Variable Names
	Renaming Inherited Variables
	Naming Variables

	Inherited Descriptions
	Object Search
	Event Parameters
	Break On Event Option
	Copy Method Name
	Edit List Line
	JavaScript Error Messages
	Method Editor Focus

	System Notifications
	Notification Object
	Notification Functions
	Specifying Images
	Specifying Actions
	Handling Notification Clicks
	Removing Notifications
	Badges
	$setbadgecount
	$setbadgeicon
	$removebadge

	Enabling Notifications
	macOS
	Windows

	Power Management Notifications
	Power Management Methods
	$systemcansleep (only sent on macOS)
	$systemwillsleep
	$systemwillwake
	$systemdidwake

	Disabling idle sleep

	Window Components
	Entry Fields
	Field Border Icons
	Content Padding
	Animated Content Tips
	Strip Control Characters from Edit Fields
	Emoji and Symbols in Edit Fields

	Token Entry Field
	Token Tags
	Token Events
	Get Tokens

	List Row Buttons
	Adding Row Buttons
	Setting Row Buttons
	Events

	List Box
	Selected List Line Colors
	Extra Line Height

	Tab Strip
	Tab Strip Groups
	Keyboard Navigation
	Animated Line and Dot Modes
	Selected Tab Text Style

	Round Check Boxes
	Pushbuttons
	Button Timer
	Button Area
	IDE Button Style
	Icon Color

	Themed SVG Icons
	Drag Icon background
	Dark and Light Modes

	Paged Pane Buttons
	OBrowser
	Back and Forward options
	HTTP headers

	Headed List
	Progress Bar
	Ellipses in Headed Lists
	Tooltips
	Resize Column

	Complex Grid
	Row Height
	Resizing Rows
	Footer

	String Grid
	Rounded Borders
	Styled Text
	Tree List
	Rounded Rectangle and Shape Field
	Tab Pane and Paged pane
	Picture Control
	Combo Box
	Hyperlink
	Color Palette
	Window Toolbars on macOS
	kTBOptionmacOSExpanded
	kTBOptionmacOSCompressed

	JavaScript Client Bridge
	Calendar External Component
	Navigation bar

	Window Programming
	Toast Messages
	Window Minimum Size
	Window Animations
	Simple Style Windows
	Window Title Colors on macOS
	Docking Areas & $screen property on macOS
	Bitmap Image Conversion
	Masked Entry Fields

	JSON Components
	SVG Icons

	SQL Programming
	Debugging Slow Queries
	updatenames() List Method

	Omnis VCS
	VCS API
	Tokens
	Logon
	Logoff
	Get Token Info
	List Projects
	Class Status
	Checked Out Classes
	Is Class Current
	Check Out
	Check In
	Label Project
	Build Project

	VCS Auto Login
	VCS Check in/out Options
	Initial Library Check in

	List Programming
	List Methods

	Report Programming
	Report Fields
	Page Preview Zoom Factor
	Report Data Grid Column Parameters
	Report Preview URL Prefix

	Omnis Programming
	User Constants
	Creating User Constants
	Method Editor and Code Assistant
	Notation

	Adding Method Lines
	Max Chain Depth
	Initial Parameter Values
	Item Group Methods
	Collecting Performance Data
	Notation Error Checks
	Error Reporting for External Components

	Web Services
	HTTP Methods
	Escaping String Parameters

	Web and Email Communications
	OW3 LDAP Worker
	OW3 Python Worker
	Installation

	HTTP/2 support for OW3 Workers
	OW3 Worker Methods
	OW3 OAUTH2 Worker
	Grant Types

	OW3 HTTP Worker
	OW3 FTP Worker
	OW3 JavaScript Worker
	Example app
	Security
	Auto Loading modules
	Error Handling
	Caller tag

	OW3 IMAP Worker

	Menu Classes
	Menu Instances
	Menu Shortcuts (macOS)
	Menu Line Icon Colors

	Object Oriented Programming
	Window Status Bar
	Subclass Editors

	Functions
	Example apps
	binfrombase32()
	Syntax
	Description

	bintobase32()
	Syntax
	Description

	charcount()
	Syntax
	Description
	Example

	complementarycolor()
	Syntax
	Description

	contains()
	Syntax
	Description
	Example

	endswith()
	Syntax
	Description
	Example

	FileOps.$getfileinfo()
	FileOps.$putfilename()
	FileOps.$readfile()
	Syntax
	Description

	FileOps.$writefile()
	Syntax
	Description

	hexcolor()
	Syntax
	Description

	hsla()
	Syntax
	Description

	iconidwithbadge()
	Syntax
	Description
	Badge Options

	isclient()
	Syntax
	Description

	iseven()
	Syntax
	Description

	isodd()
	Syntax
	Description

	isoweekstart()
	Syntax
	Description

	join()
	Syntax
	Description

	OIMAGE.$getdimensions()
	Syntax
	Description

	OIMAGE.$makeqrcode()
	Syntax
	Description

	OIMAGE.$resize()
	Syntax
	Description

	OIMAGE.$transform()
	Syntax
	Description

	ONOTIFY.$removebadge()
	Syntax
	Description

	ONOTIFY.$removelocal()
	Syntax
	Description

	ONOTIFY.$sendlocal()
	Syntax
	Description

	ONOTIFY.$setbadgecount()
	Syntax
	Description

	ONOTIFY.$setbadgeicon()
	Syntax
	Description

	ord()
	Syntax
	Description

	OW3.$computername()
	Syntax
	Description

	OW3.$parserfc3339()
	Syntax
	Description

	OW3.$totpgenerate()
	Syntax
	Description

	OW3.$totpvalidate()
	Syntax
	Description

	rgba()
	row()
	startswith()
	Syntax
	Description
	Example

	sys(251) and sys(252)
	sys(254) and sys(255)
	sys(256) and sys(257)
	sys(290)
	tracelog()

	Commands
	OK Message
	Set Timer Method
	Create Library
	Send to trace log
	Working Message

	Deploying your Web & Mobile Apps
	Headless Server Admin Tool
	Headless Server Serialization
	Version and Build Number
	Omnis LSP Debugging
	Web Server Plug-in ini

	oXML
	Object References

	JavaScript Component SDK
	JavaScript API Reference
	Theme Methods

	External Component SDK
	GDI Reference
	GDIcreatePixmapFromJPEG

	PRI Reference
	PRIdestParmStruct

	Deployment Tool
	Deployment Tool API
	Managing Builds via the API

	Creating config.json in the UI
	Removing Items from Builds

	oProcess
	Properties
	Methods
	$init()
	$run()
	$start()
	$cancel()
	$completed()
	$cancelled()
	$started()
	$isrunning()
	$stdout()
	$stderr()
	$write()
	$readlines()
	$readtail()

	Using oProcess

	Appendix
	Omnis Configuration Items
	codeAssistant
	createVariableScopePrefixes
	createVariableTypeSuffixes
	currentCommandFilter
	listShowsNamesFirst
	maxParameterHelpWidth
	oldSortOrder
	oldTabReturnBehavior
	openParameterHelpWithCodeAssistantPopup
	parameterHelpEnabled
	parameterHelpSpace
	tabAlsoLeavesFieldAfterClosingAssistant
	useOmnisHelpPagesForFunctionHelp
	width

	complexgrid
	mingridpos
	shiftRequiredToResizeAllRows

	debugger
	autoVariablesContextAttributes

	defaults
	allExternalComponentErrorsAreFatal
	disableAllLibraryConversionPrompts
	dropDestinationFrameAlpha
	dropDestinationFrameColor
	dropDestinationFrameWidth
	enableCrashReporting
	entryFieldsIncludeQuotesWhenSelectingWords
	extraClassNameValidations
	floatWindowSubclass
	initiallayoutbreakpoints
	language
	maxCachedIconSetBitmaps
	maxChainDepth
	nationalFieldCompareChars
	omnisPreviewURLPrefix
	reportErrorOpeningInitialFileAsLibrary
	reportQueueCommandFieldNotFoundErrors
	responsiveLayoutPadding
	showLibraryConversionWorkingMessage
	stricterNotationErrorChecks
	sys192ExcludesIDEmethods
	sys192ListRowLimit
	tokenEntryPopupDelay
	tokenizeExternalFieldNames
	tokenizeExternalFileNames
	traceLogUsesStyles
	useOldRegularExpressionSyntax
	useScreenDestination
	useSystemSettingsForSpelling

	diacriticalpopup
	diacriticalPopupUsesMacOSKeyboardLayout

	docview
	replaceTabsInRTFwithSpacesWhenAddingToReport

	exportimportjsonoptions
	deleteexportoutputtreeifcancelled
	exportcodefoldingstate
	exportoverwritesconflicts
	hideexportworkingmessage
	hideimportworkingmessage
	importtreatsunknownpropertyaswarning
	includenotationinide

	ide
	allowNumericObjectNames
	animateIDEcontrols
	autoSave
	autoSaveInterval
	canUseCreateVariableOnVarNotFound
	catalogUsesSyntaxColors
	componentStorePopupDelay
	currentJavaScriptTheme
	dockingAreaDesignDPI
	dockingAreaDesignDPIMode
	dragObjectAlpha
	findAndReplaceLogUsesSyntaxColors
	findAndReplaceSelectsTopClass
	libConverterAddsInlineCommentToStaCommandParameter
	libConverterAppendsDiscardedInlineComments
	libConverterInsertsDiscardedInlineComments
	maxDisplayedDropListLines
	maxRecentClassEntries
	neverUseSystemStyleTooltips
	positionAssistantKeyboardTimer
	positionAssistantShowsPositionOrSize
	restoreOpenClassEditorsAtStartup
	restoreOpenLibsAtStartup
	saveSearchDelay
	saveWhenSettingGoPoint
	searchFindAndReplaceLogByType
	syntaxColorProbableSQLComments
	tryDesignTaskWhenTestingWindow
	updateVariableWindowsOnDebuggerStop
	windowToolbarDesignDPI
	windowToolbarDesignDPIMode

	java
	jvmPath
	resetClassCacheOnStartup
	startjvm

	log
	conversionLogDelimiter
	datatolog
	encloseConversionLogTextInQuotes
	logcomp
	logDamSerialNumberErrors
	logNowExternalComponentErrors
	logToFile
	overrideWebServicesLog
	windowssystemdragdrop

	macOS
	allowStopInRuntime
	dragIconBackground
	macOSbuttonNewTextDrawingStyle
	macOStreeOutlineStyle
	menuTrackingSuppressTimers
	monitorDockKeyEvents
	odbcdam.ini
	oracle8dam.ini
	postKeyEvents
	preventUpdateWithNoRefreshOn
	stackSize
	sybasedam.ini
	useDictation
	useFnInMenuShortcuts
	useToolbarStyleExpanded

	methodEditor
	badNotationNameIsSyntaxError
	checkFileClassPrefixBasedOnUniqueFieldNames
	extraLineSpacing
	maxHeightOfMethodTooltipGeneralInformation
	maxVisibleMethodLinesInMethodTooltip
	modifyMethodsCommandSetsFocusToTree
	printMethodsWithSyntaxColors
	selectAllCanScrollCodeEntryField
	stripTrailingEmptyCommands
	useDefaultColorsForClipboard
	validateEventsForOnCommand

	methodeditorandremotedebugger
	includeObjectNodesInTreeSearch

	obrowser
	cefSwitches
	clearCacheWhenLoaded
	clearLocalStorageWhenClearingCache
	defaultHtmlcontrolsFolderInDataFolder
	htmlcontrolsFolder
	locale
	logSeverity
	messageTimeout
	remoteDebuggingPort
	useOmnisTraceLogForConsole

	ocx
	markPtrAsAltered

	ole2auto
	enableEvents

	omnishttpserver
	preventclientcaching

	pdf
	omnispdfFolder
	plainSuffixes

	properties
	show_editor

	server
	bindAttempts
	disableInRuntime
	getpdfFolders
	headlessAcceptConsoleCommands
	headlessDatabaseLocation
	iconsFolderName
	multiProcess
	overridePushURL
	port
	readTimeout
	RESTfulConnection
	RESTfulURL
	retryBind
	runtimeOpensTraceLogOnSocketBindError
	showBindRetryMessage
	stacks
	start
	timeOffsetMinutes
	timeoutReads
	timeslice
	webServiceConnection
	webServiceLogging
	webServiceLogMaxRecords
	webServiceStrictWSDL
	webServiceURL

	servermgmt
	showTrayIcon

	svg
	customSizes

	tooltips
	generalDisplayDelay
	maxWidth
	methodContentDisplayDelay

	vcs
	enableBranching

	web
	ftpsresumesession

	windows
	backgroundObjectsMustUseTrueTypeFont
	canConvertAnsiPageSetupData
	createShortcut
	defaultMenuDesignDPI
	defaultMenuDesignDPIMode
	forceHighDPIawareMode
	hideStudiorgMessage
	highDPIaware
	includeDDEEditMenuItems
	initLocalNotifications
	miniconid
	noAdmin
	pythonPath
	readBorderActiveColorFromSystem
	scaleScreenCoordsUsingPhysicalSize
	singleInstance
	updateFileAssociations
	useLegacyDefaultPrinter

